
Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL929

IJISRT24JUL929 www.ijisrt.com 1773

SVM, KNN, and Neural Networks Investigated for

Machine Learning in Written Word Decoding

Gottipati Ajay1

Department of Computer Science and Enginnering,

Koneru Lakshmaiah Education Foundation,

Vaddeswaram, AP, India

Srungavarapu Bhuvanesh Babu2

Department of Computer Science and Engineering,

Koneru Lakshmaiah Education Foundation,

Vaddeswaram,AP, India

Madala Narasimha Rao3

Department of Computer Science and Engineering,

Koneru Lakshmaiah Education Foundation,

Vaddeswaram, AP, India

Magam Satya Siva Krishna4

Department of Computer Science and Engineering,

Koneru Lakshmaiah Education Foundation,

Vaddeswaram, AP, India

Dr. M. D Gouse5

 (Professor)

Department of CSE,

Koneru Lakshmaiah Education Foundation,

Vaddeswaram, AP, India

Abstract:- The capacity of a device to recognise and

understand legible handwriting input from a variety of

origins, including written material, snap shots, displays,

and other electronics, is known as handwritten

reputation. In this study, we investigate three

classification algorithms: Support Vector Machines

(SVM), K-Nearest_Neighbours (KNN), and Neural

Networks for handwritten character recognition, and we

will identify the best one among these three.

Keywords:- Handwritten popularity, SVM, Neural Network,

K-Nearest Neighbor;

I. INTRODUCTION

Handwriting perception empowers computers and

devices to understand handwritten input, whether it is from

bodily files, pictures, or direct touch display screen input.

This era has end up fundamental to diverse gadgets together

with smartphones, drugs, and PDAs, allowing users to

rapidly enter numbers and textual content using a stylus or

finger. The versatility of handwriting reputation has caused
its widespread adoption in numerous packages these days.

Among the strategies used for handwriting recognition is

Optical Character Recognition (OCR), which extracts textual

content from scanned documents and translates it into a

format that computers can process. In this paper, we explore

three category algorithms—Support Vector Machine (SVM),

Neural Network, and K-Nearest_Neighbor (KNN) to beautify

handwriting recognition competencies. We delve into the

details of those algorithms later inside the paper, discussing

their strengths and packages in recognizing handwritten text.

II. RELATED WORK

Several research studies have contributed significantly

to the advancement of handwriting recognition in various

fields. In a paper titled "Feature Set Evaluation for Offline

Handwriting Recognition Systems: Application of Recurrent

Neural Networks" Yusuf Chherawala, Partha Pratim Roy,

and Mohammad Cheriet thus emphasize the important role of

feature extraction in handwriting recognition systems if they

emphasize that the systems are effective rely heavily on
extracting features from handwritten word pictures[3]. While

there are a variety of feature extraction methods, identifying

the most promising ones often requires more than a simple

comparison based on detection rates To overcome this

challenge a system of propose a list of items based on a

common design. Their methodology predicts the significance

of various feature types, demonstrating the robustness and

universality of the technique through an integrated idea of

embedded RNN (recurrent neural network) classifiers.

In another research entitled "Handwriting Digit

Detection and K-Nearest Neighbor Classification Using
Local Binary Pattern Variance", Nurul Ilmi, Tjokorda Agung

Budi W, and Kurniawan Nur R focus on digit detection in

handwriting using local binary pattern variance method in

addition to K-Nearest over Neighbors (KNN)

classification[2]. Their study has focused exclusively on the

C1 form that Indonesia's General Electoral Commission uses.

Through the experiment, it was observed that although the

LBP variance method achieved an impressive accuracy of

89.81 percent in identifying the handwriting characters in the

MNIST dataset, when applied to the data from the C1 form in

which the accuracy remained promising at 70.91 percent [2] .

https://doi.org/10.38124/ijisrt/IJISRT24JUL929
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL929

IJISRT24JUL929 www.ijisrt.com 1774

Researchers Kutscher, T., Dietze, M., Bönninger,I.

Travieso, C. M., Dutta, M. K., & Singh, A. conducted a study

titled "Online handwriting verification with safe password

and increasing number of features "[4]. Their primary

objective is to reduce processing time or reduce volume

while maintaining or improving distribution performance.

Their analysis shows that the Bayes net classifier

outperformed the others, achieving 100 percent correct
accuracy in terms of lead time, speed andcorrelation, with a

false acceptance rate (FAR) of only 3.13 [4].

In a provocative study titled "Identifying Human

Personality Parameters Based on Handwriting Using Neural

Networks", Behnam Fallah and Hasan Khotanlo investigate

the possible relationship between handwriting characteristics

and human personality traits is a hidden Markov model of

neural networks (MLP) are concerned for handwriting-

personality based classification in their approach[9]. f

combination is employed integrating dependent and

independent text features into the feature extraction process
Their identity recognition system proposed makes it more

accurate and reliable Furthermore, their automated method

eliminates the need for segmentation time a feature extraction

is eliminated, while techniques such as Gaussian discriminant

analysis (GDA) are used to optimize class separation

Collectively, these research efforts also highlight the

importance of handwriting recognition technology for a

variety of applications, ranging from increased classification

accuracy to strong correlations with handwriting

characteristics searching between human minds.

III. RECOMMENDED SYSTEMS

We utilised sklearn, openCV, and python for this

gadget's categorization and dataset examination. For training

and type evaluation, we used the MNIST dataset. An

assessment tool for machine learning styles on handwritten

digit problems is the MNIST problem dataset. The dataset was

created by combining several scanned document datasets that

were made accessible by the National Institute of Standards

and Technology (NIST). There are 748 total pixels in each

image on this dataset, measuring 28 by 28 pixels [5]. In the
dataset, there are seventy thousand images that can be utilised

for both training and inspection of the gadget. Three (3)

categorization sets of rules, namely Support Vector Machine

(SVM), Multi Layer Perceptron and K-Nearest_Neighbour,

were employed in this proposed gadget to determine its

popularity.

A. Support Vector Machine (SVM)

SVM is a collection of supervised learning techniques

used in classification, regression, and outlier identification. In

SVM, the price of each feature is the fee of a certain
coordinate. Each record item can be plotted as a factor in n-

dimensional space (n = number of feature). The method used

to complete the type is to identify the hyper-plane that

separates the two (2) instructions[6].

Fig 1 SVM Categorization

The SVM implementation in scikit-learn, namely

LinearSVC, works well with both sparse and dense data

sources. With the use of the liblinear library and a linear

kernel, LinearSVC provides more options for selecting loss

functions and penalties. Because of this, it is especially
effective at managing huge datasets like MNIST, which has a

huge collection of handwritten digit pictures. There will be

two reports in this category: generate_Classifier.Py for the

category and perform_Recognition.Py for the type

experiment. There are three steps that we can complete in the

generate_Classifier.Py, including: a. Determine the HOG

characteristics for each sample in the database. B. Use each

sample's HOG capabilities at the side of the matching label to

train a multi-class linear SVM. C. Store the classifier in a

data file.

Fig 2 A c q u i r e M I N ST Da t a s e t .

The MNIST dataset will be downloaded, as

demonstrated in Distinct 2. Then, we may extract the MNIST

dataset's characteristic using Histogram of Oriented

Gradients (HOG) feature extraction. The digit photos from

the dataset may be stored in a numpy array with labels that

match. The HOG functions for every snapshot can then be

computed and saved in a different numpy array. The coding

is displayed in figure three below.

https://doi.org/10.38124/ijisrt/IJISRT24JUL929
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL929

IJISRT24JUL929 www.ijisrt.com 1775

Fig 3 Features Detection

In order to compute HOG functions, we first set the size

of cells to be 14 × 14. Since the MNIST dataset is 28 by 28

pixels in size, we can have four (4) blocks or cells that are

each 14 by 14. The vector of orientation is approximately

nine. This suggests that the HOG function vector may have a

dimension of 4 x 9 = 36. The classifier can then be kept in a

report, as seen in parent four below, once we have created a

Linear SVM object and completed the dataset's education.

Fig 4 Linear SVM Categorization

B. K-Nearest_Neighbor (KNN)
The K-nearest_neighbours classifier is a popular

technique in the realm of image classification due to its

simplicity and effectiveness. Unlike more complex

algorithms that require extensive training processes, KNN

operates on a different principle. It doesn't undergo

traditional learning iterations with labeled data. Instead, KNN

relies on the inherent structure of the data itself.

The idea of closeness or proximity between feature

vectors is fundamental to KNN. When a new, unlabeled data

point is introduced, KNN looks around it by calculating the

separations between the known data points that are the
closest to it. The categorization of the new data point is

mostly dependent on these neighbours, whose characteristics

are most similar to it.

Suppose that every data point in the dataset corresponds

to an image that has different properties, including texture

patterns, colour distributions, or pixel values. Based on how

comparable these features are, KNN finds the nearest

neighbours of a new image that is included for classification.

This is where the idea of "voting" is relevant. In a sense,
every neighbour "votes" for the class to which it belongs. For

example, the new data point is likely to be classed as

belonging to Class A if the majority of its closest neighbours

are also in Class A. By using a democratic procedure, the

classification decision is made based on the opinions of all

nearby neighbours, as opposed to just one particular criterion.

Fig 5 KNN Classification

 To train an image classifier, we go through five steps:

 Prepare the dataset: We organize the data for training and

evaluation.

 Divide the data: The dataset is split into sections for

testing and training.

 Extract features: We identify important characteristics

from the images.

 Train the model: We teach the classifier to recognize

patterns in the features.

 Evaluate the model: We check how well the classifier

performs using the testing data.

https://doi.org/10.38124/ijisrt/IJISRT24JUL929
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL929

IJISRT24JUL929 www.ijisrt.com 1776

We import the MNIST dataset and divide it into two parts: 25% for testing and 75% for training. Ten percent of the training

data were reserved for validation.

Fig 6 Divided Validation, Testing, and Training.

The classifier is then trained, and the optimal value for k—a parameter used in the K-nearest_neighbours (KNN)

algorithm—is ascertained. Furthermore, we compute the classifier's accuracy. We cycle over a range of k numbers, from 1 to 15,

in this process. The classifier's performance is next evaluated in order to confirm its efficiency, as shown in Figure seven below.

Fig 7 Classifier for Training and Validation

Afterward, we apply the trained classifier to the testing dataset, utilizing a k value set to 1. Following this, we conduct the final

evaluation of the classifier's performance, as illustrated in Figure seven.

Fig 8 Testing Classifier

Next, we will choose five (5) photos at random from the testing dataset in order to investigate each unique prediction. We'll

analyze the classifier's output for each of these images.

https://doi.org/10.38124/ijisrt/IJISRT24JUL929
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL929

IJISRT24JUL929 www.ijisrt.com 1777

Fig 9 Analysing the Classifier

C. Multi-Layer Perceptron (MLP)

The Multi-layer Perceptron (MLP) is a supervised

learning algorithm that aims to learn a function: f(·) : Rm →

Ro

The number of input dimensions, denoted by m, and the

number of output dimensions, denoted by o, are used to train

the function on a dataset. For either regression or

classification problems, the MLP may learn a non-linear

function approximator given a target y and a set of features X

= x1, x2,... xm. By adding one or more non-linear layers—

also referred to as hidden layers—between the input and

output layers, it differs from logistic regression. Neural

network topologies called Multi-layer Perceptrons (MLPs)

may identify complex patterns in data. Multiple hidden layers

with non-linear activation functions are a feature of MLPs, in
contrast to more straightforward models like logistic

regression. Consequently, they perform remarkably well in

fields such as natural language processing, picture

identification, and financial forecasting. Throughout training,

MLPs iteratively modify weights and biases to improve their

representations, enabling them to generalise and produce

precise predictions on fresh data. Because of their versatility,

MLPs are often used for a wide range of supervised learning

tasks involving intricate, non-linear interactions.

Fig 10 The Hidden Layer of MLP

Two files will be used to perform the classification

process: perform_Recognition.py for classification evaluation

and generate_Classifier-nn.py for handling the actual

classification.

 Within generate_Classifier-nn.py, We'll take three crucial

steps:

 Calculating HOG Features: For every sample in the

database, this entails calculating the Histogram of

Oriented Gradients (HOG) features.

 Training a Multi-class MLP Neural Network: Utilising

the HOG features of every sample together with their

respective labels, we will train a Multi-Layer

Perceptron neural network which is multi-class.

 Saving the classifier: Once the classifier is trained, we'll
save it into a file for later use.

Fig 11 Download MNIST Dataset

Initially, we will download the MNIST dataset, which is

made up of handwritten numbers. Next, we'll use a method

known as HOG (Histogram of Oriented Gradients) to take

these digit snapshots and extract features. The digit images

and the labels that go with them will be arranged into numpy

arrays. Next, for every image, we will compute the HOG

features and store them in a different numpy array. This

procedure's detailed coding instructions can be found in the

figure 12 beneath.

https://doi.org/10.38124/ijisrt/IJISRT24JUL929
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL929

IJISRT24JUL929 www.ijisrt.com 1778

Fig 12 Extraction of Features

In order to calculate the HOG features, we will use a 14

× 14 cell size. Since the MNIST dataset images are 28 x 28

pixels, we'll divide them into four blocks or cells, each with a

size of 14X14 pixels. We'll define the orientation vector to 9,

resulting in a feature vector of HOG size of 4 x 9 = 36.

Following that, we'll instantiate a MLP (Multi-Layer

Perceptron) Neural Network object & train it using the

dataset. As seen in Figure 13, after training, we'll save the

classification model into a file.

Fig 13 Neural Network Classification using MLP

D. Experiment

In order to evaluate the classifiers developed using the

MLP (Multi-Layer Perceptron) neural networks and Support

Vector Machine (SVM), we'll utilize the perform_

Recognition.py script. Within this script, we'll load the

classifier files that were previously saved, as demonstrated in
Figure 14.

Fig 14 Call Classifier File

After loading the image intended for testing the

classifier, we'll preprocess it. This preprocessing involves

converting the image to grayscale and applying Gaussian

filtering to reduce noise. Subsequently, we'll apply

thresholding to segment the image and identify contours

within it. Following this, we'll extract the rectangles that
encompass each contour, as illustrated in Figure 15.

Fig 15 Preprocessing the Image

https://doi.org/10.38124/ijisrt/IJISRT24JUL929
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL929

IJISRT24JUL929 www.ijisrt.com 1779

The classifier will then be applied to the test image.

This entails computing the image's HOG features and

applying them to forecast the digit that the image represents.

The final result and the anticipated number will then be

shown, as seen in Figure 17.

Fig 16 Testing image

Fig 17 Examining the Classifier

For KNN (K-Nearest_Neighbors), we'll conduct
experiments similar to those described in the previous

sections for MLP Neural Network and SVM. We'll evaluate

the classification model using random images from the

testing dataset. This process involves testing the classifier on

a variety of images to assess its performance across different

digit representations.

IV. RESULT

The experiment shows consistent findings for K-Nearest

Neighbours (KNN) for a variety of values of the parameter k,
which vary from 1 to 15. The accuracy obtained from all

these values is a remarkable 99.26 percent, meaning that the

accuracy stays high no matter which value of k is selected

within this range. In the following figure, this observation is

illustrated.

Fig 18 The classifier's accuracy

The testing data evaluation is depicted in the figure 19.

https://doi.org/10.38124/ijisrt/IJISRT24JUL929
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL929

IJISRT24JUL929 www.ijisrt.com 1780

Fig 19 Assessment of the test data

Fig 20 Analysing the Outcome

As seen in the figure 20, the analysing classifier uses

five (5) random images from the training dataset.

The SVM classification result is displayed in the figure

21.

Fig 21 SVM Classification Model Output

The next figure 22 displays the MLP Neural Network

classification result.

Fig 22 MLP Neural Network Result

V. CONCLUSION

The outcomes show that the dataset is accurately

classified by both KNN (K-Nearest_Neighbours) and SVM

(Support Vector Machine) classifiers. But there are certain

inaccuracies with the MLP (Multi-Layer Perceptron) Neural

Network, especially when it comes to forecasting the number

nine (9). This disparity results from the fact that MLP uses a
non-linear function, whereas KNN and SVM predict based

only on the features that have been retrieved. Multiple local

minima result from the non-convex loss functions of MLPs,

particularly those with hidden layers. As a result, different

random weight initializations may produce varied validation

accuracy. This issue can be mitigated by employing

Convolutional Neural Networks (CNNs) with frameworks

like Keras, which are better suited for capturing complex,

non-linear relationships in data.

REFERENCES

[1]. Shakoor, U., Mim, S. S., & Logofatu, D. (2023). Use

of machine learning algorithms to analyze the digit

recognizer problem in an effective manner. Artificial

Neural Networks and Machine Learning – ICANN

2023, 496-507. https://doi.org/10.1007/978-3-031-

44201-8_40

[2]. Ilmi, N., Budi, W. T., & Nur, R. K. (2016).

Handwriting digit recognition using local binary

pattern variance and k-nearest neighbor classification.

2016 4th International Conference on Information and

Communication Technology (ICoICT).
https://doi.org/10.1109/icoict.2016.7571937

[3]. Chherawala, Y., Roy, P. P., & Cheriet, M. (2016).

Feature set evaluation for offline handwriting

recognition systems: Application to the recurrent

neural network. IEEE Transactions on Cybernetics,

46(12), December 2016.

[4]. Kutzner, T., Dietze, M., Bönninger, I., Travieso, C.

M., Dutta, M. K., & Singh, A. (2016). Online

handwriting verification with safe password and

increasing number of features. 2016 3rd International

Conference on Signal Processing and Integrated
Networks (SPIN).

[5]. Yao, Y., & Cao, J. (2017). An adaptive scheduling

mechanism for analytical workflow model.

Communications in Computer and Information

Science, 31-45. https://doi.org/10.1007/978-981-10-

3996-6_3

https://doi.org/10.38124/ijisrt/IJISRT24JUL929
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL929

IJISRT24JUL929 www.ijisrt.com 1781

[6]. Belavagi, M. C., & Muniyal, B. (2016). Performance

evaluation of supervised machine learning algorithms

for intrusion detection. Procedia Computer Science,

89, 117-123. https://doi.org/10.1016/j.procs.2016.06.

016

[7]. El-Bendary, N., Zawbaa, H. M., Daoud, M. S.,

Hassanien, A. E., & Nakamatsu, K. (2010). ArSLAT:

Arabic sign language alphabets translator.2010
International Conference on Computer Information

Systems and Industrial Management Applications

(CISIM). https://doi.org/10.1109/cisim.2010.5643519

[8]. Seiderer, A., Flutura, S., & André, E. (2017).

Development of a mobile multi-device nutrition

logger. Proceedings of the 2nd ACM SIGCHI

International Workshop on Multisensory Approaches

to Human-Food Interaction. https://doi.org/10.1145/

3141788.3141790

[9]. Fallah, B., & Khotanlou, H. (2016). Identify human

personality parameters based on handwriting using

neural network. 2016 Artificial Intelligence and
Robotics (IRANOPEN). https://doi.org/10.1109/rios.

2016.7529501

https://doi.org/10.38124/ijisrt/IJISRT24JUL929
http://www.ijisrt.com/
https://doi.org/10.1145/3141788.3141790
https://doi.org/10.1145/3141788.3141790

	I. INTRODUCTION
	III. RECOMMENDED SYSTEMS
	A. Support Vector Machine (SVM)
	B. K-Nearest_Neighbor (KNN)
	C. Multi-Layer Perceptron (MLP)
	D. Experiment

	IV. RESULT
	V. CONCLUSION
	REFERENCES

