
Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL769

IJISRT24JUL769 www.ijisrt.com 3463

A Machine Learning Model for Training Your AI

Akaninyene Udoeyop

Abstract:- Artificial Intelligence is playing an increasing

role in solving some of the world’s biggest problems.

Machine Learning Models, within the context of

reinforcement learning, define and structure a problem in

a format that can be used to learn about an environment

in order to find an optimal solution. This includes the

states, actions, rewards, and other elements in a learning

environment. This also includes the logic and policies that

guide learning agents to an optimal or nearly optimal

solution to the problem. This paper outlines a process for

developing machine learning models. The process is

extensible and can be applied to solve various problems.

This includes a process for implementing data models

using multi-dimensional arrays for efficient data

processing. We include an evaluation of learning policies,

assessing their performance relative to manual and

automated approaches.

I. INTRODUCTION

Artificial Intelligence (AI) is a field of study that utilizes

computer systems and data to solve problems. The term

“Artificial Intelligence” is often used interchangeably with

the term “Machine Learning”. However, it is important to

distinguish between the two concepts. Machine learning is a

type of AI that involves training computer systems to solve
problems through learning and adapting from experience.

There are several approaches to machine learning,

including Supervised and Unsupervised Learning. This paper

will focus on reinforcement learning. Reinforcement learning

is a machine learning technique that involves utilizing a

reward-based model to train a learning agent, then enabling

the agent to make decisions based on the data accumulated

during training.

This paper will outline a process to develop and train
data models using reinforcement learning.

A. Reinforcement Learning

Reinforcement learning is a machine learning method

that involves rewarding desired behavior and punishing
undesired behavior. This involves learning agents interacting

with an environment and observing the results or rewards

from their actions. The objective in reinforcement learning is

to learn the optimal behavior based on experience.

This section outlines reinforcement learning policies

and the Q-learning learning algorithm that will be utilized in

this paper.

 Policies

A policy is a function that maps states to actions. It is
essentially a strategy that guides the learning agent’s actions

while it is interacting with the environment. Policies can be

either deterministic or stochastic:

 Deterministic - Maps states to actions with an expected

reward value.

 Stochastic - Maps states to a probabilistic distribution

over actions.

The difference between a deterministic and stochastic

policy is in the way that they choose actions. A deterministic
policy will choose the optimal action that maximizes the

reward value. This is considered a “greedy” policy. A

stochastic policy will choose a random action some

percentage of the time, otherwise will follow a greedy policy.

This is known as the Epsilon-greedy policy.

 Q-Learning Algorithm

Q-Learning is a machine learning algorithm that assigns

reward values to state-action combinations. The algorithm

estimates a function that is closely related to the policy. This

function is called the value function. With Q-Learning, the

reward values are numerical and are produced by the value
function and indicate how “good” or “bad” an outcome of an

action is. With Q-Learning, the Q-Value is the metric used to

measure an action at a particular state.

 Machine Learning Models

A machine learning model is a framework that

represents the environmental components and policies used
to train learning agents to detect patterns and solve problems.

They are trained using techniques such as reinforcement

learning. Developing a machine learning model involves

defining the states, actions, rewards, and other elements in the

environment. Then, selecting learning policies that guide
learning agents to an optimal or nearly optimal solution to a

problem.

https://doi.org/10.38124/ijisrt/IJISRT24JUL769
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL769

IJISRT24JUL769 www.ijisrt.com 3464

II. RELATED WORK

Approaches to developing machine learning models are

evolving. There are various theories, algorithms, and policies

that are available for solving problems using machine

learning. Data scientists, for example, can build tens to

hundreds of models before arriving at one that meets some

acceptance criteria (e.g. AUC cutoff, accuracy threshold)[1].
The process for building a machine learning model is not an

exact science. Emily Sullivan, in her research, outlines

considerations and rationale behind selecting a learning

model and mentions some of these challenges using Neural

Networks[2]. MIT researchers Manasi Vartak et al. describe

the challenges in building models that adequately correlate to

the problem being solved[1].

There are some efforts to organize and standardize

machine learning models. In their work, Manasi Vartak et al.

are developing a system for the management of machine
learning models called ModelDB. While tools like ModelDB

can be useful for managing models, this paper focuses on the

process of taking the problem, deconstructing the problem

into components that are used to build a learning model. Then

designing, training, and testing the learning model. James

Wexler et al. in their research, developed a tool called What-

If to evaluate the performance of several machine learning

models[3]. In their study, they show how selecting the

appropriate model, algorithm, and criteria can significantly

impact the efficiency and the accuracy of results produced by

the data model.

The advantages of modeling have been known for many

years. In 2013, Christopher M. Bishop touched on some of

these in his research on model-based approaches to machine

learning[4]. These advantages included the opportunity to

create highly tailored models for specific scenarios, as well

as rapid prototyping and comparison of a range of alternative

models.

III. MACHINE LEARNING MODEL FOR

REINFORCEMENT LEARNING

A machine learning model is a framework that defines

the states, actions, rewards, logic, data models, and learning

policies required to identify patterns or make predictions

using machine learning.

Fig 1: Machine Learning Model

The following outlines a process for deriving machine

learning models. The process can be used along with learning

policies to solve problems. This includes an approach for

implementing the data model used for reinforcement

learning.

A. The Learning Egg Problem

To assist in explaining the process for developing a
machine learning model, we will use the example of The

Learning Egg problem. The problem consists of an egg sitting

on a platform that rotates left and right, where the egg can

lean to the left and the right to shift the platform in either

direction. The objective is for the platform to be balanced and

not moving, or as close to being balanced as possible.

B. Define Problems and Goals

The objective in reinforcement learning is to solve a

problem through learning from experience. In order to solve

the problem, it should be broken down into sub-problems and

sub-goals that can be mapped into a machine learning model.
Sub-problems and sub-goals should include elements that are

quantifiable and limited to factors that affect the overall

objective.

https://doi.org/10.38124/ijisrt/IJISRT24JUL769
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL769

IJISRT24JUL769 www.ijisrt.com 3465

Fig 2: Sub-Problem to Sub-Goal Mapping

For the Learning Egg, the problems and goals are

defined in the following sections.

 Problems

 The platform is unbalanced when it is not positioned at 0°.

 The platform rotates to the left and to the right.

Note that each component of the problem affects the

objective of the platform being balanced. The platform’s

rotation position and the egg’s position can be quantified. The

objective of the problem is for the platform to also not be

moving. This can be quantified by measuring the platform

position over time. The egg's movement left and right can also

be quantified.

 Goals

 For the platform to be balanced, or as close to being
balanced as possible.

 For the platform to not be moving

Note that the state of the platform being balanced or

unbalanced is based on the platform position and speed,

which are quantifiable. Being balanced is not based on the

position of the egg, although the egg’s position influences the

position of the platform.

C. Define Environmental Components

After defining the problem and the goal, the
environment should be defined. This section outlines

environmental components that should be derived, followed

by their application in The Learning Egg problem. These

elements will provide the foundation for the machine

Learning Model.

 States

A state consists of a combination of quantifiable factors

in the environment that affect the problem and the goal. A
state factor is defined as a measurable and quantifiable value,

also called a state value, that reflects an environmental

condition at a point in time. Each state value should have an

objective that is aligned with the overall goal. A distinct state

is essentially a snapshot of the set of state values at a point in

time.

Fig 3: State to Objective Mapping

For The Learning Egg problem, the goal is defined “For

the platform to be balanced and not moving, or as close to
being balanced as possible”. This goal can be quantified by

the platform position and speed. The state for this problem

can be defined by the following state values:

 Platform Position - The number of degrees that the

platform has rotated away from a balanced position of 0°.

The objective of this state value is for the platform

position to be 0°, or as close to 0° as possible.

 Platform Speed - The change in the platform position

over time. As the platform rotates left and right, it

increases and decreases in speed. The objective of this

state value is to be at a speed of 0, which indicates that the
platform is not moving.

𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑠𝑝𝑒𝑒𝑑 = (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) / 𝑡𝑖𝑚𝑒

The objective for this state value is to be zero, which

indicates that the platform is not moving.

Note that the factors associated with the egg are not

included in the state as the goal only references the platform

and not the egg.

 Actions

An action is an operation that the learning agent, which

is the egg in this example, can take to change the state of the

environment. Actions are directly enacted by the learning

agent and result in a change in one or more state values.

Actions should be defined along with a reward metric to

gauge how “good” or “bad” the result of an action is. A

reward metric is a numerical value that represents how

positive or negative the result of an action is. An optimal

action is the action that will result in the highest reward or the

“best” outcome from the action.

For The Learning Egg problem, the only action that can

be taken is for the egg to lean to the left or right, or to stand

up-right. This can be quantified by the egg’s position.

https://doi.org/10.38124/ijisrt/IJISRT24JUL769
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL769

IJISRT24JUL769 www.ijisrt.com 3466

 Egg Position - A number representing the egg’s position.

The resulting platform position and speed after the egg

moves can be measured as the reward for the action. Thus,

the egg position represents the action and the combination of

the platform position and speed represents the reward metric.

The closer the platform is to being balanced without moving,

the better the reward.

 Rewards

Rewards are quantifiable observations of the

environment that indicate how positive or negative that the

result of an action is. They need to be quantifiable because

they need to indicate a state of positivity or negativity to

integrate into a learning model. Rewards are observed after

an action is taken and gives the machine learning model

feedback that is used to decide on future actions. Each reward

should map to a state objective and should be able to measure

the result of an action within the context of the objective.

For The Learning Egg problem, the sum of the platform

position and the platform speed were used as the reward

metric. The objective of the platform being balanced can be

measured by the platform angle position. The objective that

the platform not be moving while balanced can be measured

by the platform speed. The goal for the reward is for both the

platform position and speed to be zero, which indicates that

the platform is balanced and not moving.

Fig 4: State to Objective Mapping

D. Define Environment Rules and Constraints

Once the environment’s components have been defined,

rules and constraints should be defined for them. Rules

should describe how the environment behaves as it relates to

state values and actions. Constraints define what the

environment’s components can and cannot do. Constraints
should be defined as limitations for the state values and

actions. This can be implemented by defining a numerical

range, scale, and limits for the environment’s components.

Environment rules and constraints for The Learning Egg

problem are defined in the following sections.

 Platform Position

The platform can rotate from -50° to 50°. Thus, the

platform position value will range from -50 to 50, with the

value 0 meaning that the platform is balanced. Negative

values indicate that the platform has rotated left. Positive
values mean that the platform has rotated right.

Fig 5: Platform Position

 Egg Position

The egg can move into the following 5 positions:

Fig 6: Egg Position

The egg position will be represented by the numbers -2,-1,0,1, and 2 with each number denoting the respective position above.

https://doi.org/10.38124/ijisrt/IJISRT24JUL769
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL769

IJISRT24JUL769 www.ijisrt.com 3467

 Platform Speed

The platform speed is defined as the change in the platform position over time:

𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑠𝑝𝑒𝑒𝑑 = (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) / 𝑡𝑖𝑚𝑒

Since the platform position value is a representation of

degrees, the platform speed will be denoted in
degrees/second. The platform speed can range from -2 to 2,

with negative values indicating the speed going in the left

direction, and positive values indicating the speed going the

right direction. A platform speed of 0 means that the platform

is not moving.

The following table outlines how the egg position

affects the platform speed:

Table 1: Egg Position Effect on Platform Speed

Egg Position Platform Speed Change

Hard Left

Lean

Shifts platform speed left at -2

degrees/second

Soft left lean Shifts platform speed left at -1
degree/second

Stand Up-

Right

Platform speed does not change

Soft Right

Lean

Shifts platform speed right at 1

degree/second

Hard Right

Lean

Shifts platform speed right at 2

degrees/second

This table essentially shows that, if the egg leans left,

the platform speed will shift to the left. Also, if the egg leans

right, then the platform speed will shift to the right. The

harder the lean of the egg, the greater the change in speed for

the platform. Note that the platform speed will not change

when the egg is standing up-right. This simply means that if

the platform is in motion, it will remain at the same speed.

The egg standing up-right does not mean that the platform is
not moving.

E. Define Data Model

A Data Model is a data structure and format for
representing data. In machine learning, data models are used

to store the information learned from interacting with the

environment. There are several types of data models. In Q-

Learning, A Q-table is the data model used to store the reward

values, or Q-values, for actions taken at a specific state. Q-

tables format the states as the rows in the table and the actions

as the columns in the table.

Table 2: Q-table Example

 Action 1 Action 2

State 1 QScore(State1,

Action1)

QScore(State1,

Action2)

State 2 QScore(State2,

Action1)

QScore(State2,

Action2)

State 3 QScore(State3,
Action1)

QScore(State3,
Action2)

The Q-table serves as an effective lookup table for

scenarios where a single action is taken in a single state. Many

problems however, have multiple state factors and multiple

actions that affect the environment at a single point in time.

The Q-table operates in a 2-dimensional space, where the

state is the y-axis, and the action is the x-axis.

Because of this limitation, we derived a data model

design to support multiple state factors and multiple actions.

Instead of the 2-dimensional space that the Q-table operates

in, this data model design takes a multi-dimensional
approach. Like the Q-table, this data model design, as a

representation of the environment, should include the states,

actions, and rewards defined for the environment. These are

mapped into the columns of the table. The table should be

structured with the first columns representing state values,

followed by columns that represent the actions, then followed

by a reward column. This approach is extensible and can be

applied to a diverse set of problems. This approach is flexible

in that the number of states and actions can vary.

State val 1 State val 2 State val 3 ... Action 1 Action 2 ... Reward

Fig 7: State Action Reward Table Column Structure

 Based on this Format, the Table for The Learning Egg

Example will be Structured as Follows:

 Platform Position - Number of degrees that the platform

has leaned away from a balanced position or 0° before egg

movement

 Platform Speed - Degrees per second that the platform is

moving before egg movement

 Action - The position that the egg is moving to

 Reward - Sum of the platform position and speed.

Platform Position Platform Speed Egg Position Platform Position + Platform Speed

Fig 8: Platform/Egg State Action Reward Table Column Structure

https://doi.org/10.38124/ijisrt/IJISRT24JUL769
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL769

IJISRT24JUL769 www.ijisrt.com 3468

As the data model is populated with data, the learning

agent will gain an understanding of potential outcomes from

its actions. The following is a sample of what the data model

can look like as it is being populated:

Table 3: Data Model Trained for Platform Position and Speed.

Platform

Position

Platform

Speed

Egg Position Reward Resulting Platform

 Position

Resulting Platform

Speed

25° 1 Hard Left Lean 23 24° -1

25° 1 Soft Left Lean 25 25° 0

25° 1 Stand Up-Right 27 26° 1

25° 1 Soft Right Lean 28 27° 2

25° 1 Hard Right Lean 28 27° 2

The data model would be populated when the platform

has experienced the position of 25° while moving at a speed

of 1 degree/second multiple times. When the egg makes a
movement from that platform position and speed, it observes

the resulting platform and speed, then calculates their sum as

the reward. Based on the information in the data table above,

we can infer that at a platform position of 25° ,and moving at

a speed of 1 degree/second, the optimal action is a Hard Left

Lean because that results in the reward of 23. Since the goal

of The Learning Egg problem is to get to a platform position

and speed of 0, the reward value closest to 0 is considered

optimal. Thus, the reward value of 23 being the closest value

to 0 for this platform position and speed would be considered
optimal. This would lead the learning agent to take a Hard

Left Lean if it were pursuing the optimal action.

Note that the data table represents a small subset of a

larger dataset. The data model can store data for every

combination of platform position, platform speed, egg action,

and reward.

Fig 9: Data Table Subset of Larger Dataset

https://doi.org/10.38124/ijisrt/IJISRT24JUL769
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL769

IJISRT24JUL769 www.ijisrt.com 3469

F. Select Data Structure for Data Model

In Computer Science, data structures are software

components that are formatted for organizing, processing,

retrieving and storing data. These can be used for a variety of

purposes, including representing a data model in

reinforcement learning. The data structure utilized for this

approach is a multi-dimensional array. In Computer Science,

an array is essentially a list of values with indexes that point
to specific locations on the list. A multi-dimensional array is

essentially a list of lists. The choice to use nested arrays was

made due to arrays' fast lookup complexity of O(1). This

would allow the learning agent to efficiently lookup and

update rewards as it learns. Multi-dimensional arrays also

support the Q-table inspired data model described in Section

2.5.

 Multi-Dimensional Array

The multi-dimensional array represents the data from

the data model. Thus, each column of the data table, should

be mapped to indexes of the multi-dimensional array. The

rewards should be stored in the array with the indexes used to

lookup and update their respective rewards.

From the data model format described in Section 2.5, we

can derive the multi-dimensional array below by mapping

each of the columns of the table to an index of the array. This

approach allows the lookup and updating of reward values to

occur at an efficiency of O(1).

State val 1 State val 2 State val 3 ... Action 1 Action 2 ... Reward

array[state_val_1][state_val_2][state_val_3][action_2][action_2] = reward

Fig 10: Multi-Dimensional Array State Action Reward Data Model

This approach used for The Learning Egg problem produces the following multi-dimensional array:

Platform Position Platform Speed Egg Position Reward

array[platform_position][platform_speed][egg_position] = reward

Fig 11: Multi-Dimensional Array Platform/Egg State Action Reward Data Model

With this array, reward values can be looked up and

updated by using the platform position, platform speed, and

egg position to index. This allows managing the data via

indexing, not searching.

G. Environmental Logic and Policy

A machine learning model involves deriving policies

that can be used by a learning agent to guide its future actions.

In order to implement a policy, each rule and constraint
should be implemented within the logic of the environment

in software. For The Learning Egg problem, the following

rules and constraints were integrated into the environmental

logic of the program:

 The platform can rotate from -50° to 50°. Thus, the

platform position can range from -50 to 50.

 The following are the possibilities for egg position:

 Hard Left Lean

 Soft Left Lean

 Stand Up-Right

 Soft Right Lean

 Hard Right Lean

 The egg position will be represented by the numbers -2,-

1,0,1, and 2 with each number denoting the respective
position above.

 The platform speed can range from -2 to 2, with negative

values indicating the speed going in the left direction, and

positive values indicating the speed going the right

direction.

 The following table outlines how the egg position affects

the platform speed:

Table 4: Egg Position Effect on Platform Speed

Egg Position Platform Speed Change

Hard Left Lean Decreases platform speed at -2 degrees/second

Soft left lean Decreases platform speed at -1 degree/second

Stand Up-Right Platform speed does not change

Soft Right Lean Increases platform speed at 1 degree/second

Hard Right Lean Increases platform speed at 2 degrees/second

IV. TRAINING PHASE

Reinforcement learning involves an iterative learning

process that involves training the learning agent by running

simulations of the problem. During these simulations, the

learning agent will interact with the environment and

populate the data model, thus learning about the environment.
There are various approaches and factors that go into training

a learning agent. We will evaluate deterministic, stochastic,

manual, automated, and other approaches. For the approaches

that involve reinforcement learning, the data model is

populated with reward data.

https://doi.org/10.38124/ijisrt/IJISRT24JUL769
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL769

IJISRT24JUL769 www.ijisrt.com 3470

 Learning Policy and Approach

Now that we have developed a data model, we are faced

with the challenge of “how” to train our data model. Are some

approaches more efficient than others? Do some approaches

adapt better to changing environments? Why choose one

approach over another? How do these approaches compare to

manual or automated solutions? In this section, we will cover

the rationale behind why policies and approaches to training
were chosen.

 Manual Approach

A manual approach involves a human being controlling

the actions of the agent in the environment. This approach

does not use automation or machine learning. For The

Learning egg problem, a person would control the egg

movement with a computer keyboard. The person would

move the egg left and right with the goal of balancing the

platform.

 Automated Approach

An automated approach involves the agent following a

pre-programed policy where actions and conditions are hard-

coded to achieve a goal. No machine learning is used for this

approach as the behavior is predetermined. For The Learning

Egg problem, the following outlines the behavior of the egg

for an automated approach used for this research:

 If the platform angle is greater than 0°, move the egg one

position to the left until it is in a Hard Lean Left position.

 If the platform angle is less than 0°, move the egg one
position to the right until it is in a Hard Lean Right

position.

 Otherwise, move the egg to a Stand Up-Right position.

 Deterministic Policy

A deterministic policy selects actions that are projected

to yield the highest reward. This type of policy is considered

“greedy”. For The Learning Egg problem, the following

outlines the behavior for the deterministic approach used in

this research:

 When the platform is at an angle that has not been
experienced yet, the egg should make a random move

from the set of all possible moves.

 When the platform is at a previously experienced angle,

and has made moves from that angle, and learned from the

rewards, make the move that has yielded the highest

reward based on experience.

 Stochastic Policy

In reinforcement learning, stochastic policies will

choose a random action from a state some percentage of the

time, otherwise will follow a greedy policy. The notion of
choosing a random action is referred to as “exploring”. The

exploration rate is the percentage of actions that should be

taken by the learning agent in an exploring fashion vs a

greedy fashion.

 For The Learning Egg Problem, the Following Outlines

the Behavior for the Stochastic Approach used in this

Research:

 For a percentage of the time that matches the exploration

rate, the egg should make a random move from the set of

all possible moves.

 The rest of the time, the egg should make the move that
has yielded the highest reward based on experience.

 Exploratory Policy

The learning approaches referenced earlier have their

pros and cons, which we will discuss later in the document.

For this research, we are implementing and testing an

approach called an Exploratory Policy. The policy prioritizes

exploring new states and actions when little is known about

the environment. Once enough information has been learned

about the environment, the policy then guides the learning

agent using a deterministic policy.

 For The Learning Egg Problem, the Following Outlines

Behavior Using an Exploratory Policy:

 When the platform is at an angle that has not been

experienced yet, the egg should make a random move

from the set of all possible moves.

 When the platform is at a previously experienced angle,

and the egg has made a moves and learned from actions

from that angle:

 If the egg has learned from one or some actions, but has

not learned from all of the actions to take from that

platform angle, the egg makes a random move from the

set of actions that have not been taken from that state.

 If the egg has learned from every move from that angle,

make the move that has yielded the highest reward based

on experience.

This approach prioritizes exploring early in the learning

process, then prioritizes maximizing rewards once

information has been learned.

 Enumeration Policy

There are other approaches to training in reinforcement

learning. One of these approaches will be referred to as an

enumeration policy. This type of policy explicitly iterates

through every combination of the states and actions in the

environment until the data model is filled with information.

 For The Learning Egg Problem, the Following Outlines

Behavior Using an Enumeration Policy:

 The platform is forced into every position iteratively one-
by-one.

 At each position, the egg makes every possible move and

learns from the rewards from its actions.

 This is continued until every action has been taken from

every state.

https://doi.org/10.38124/ijisrt/IJISRT24JUL769
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL769

IJISRT24JUL769 www.ijisrt.com 3471

Note that there are both software and physical

limitations for this type of approach. In a physical setting,

physics, cost, and safety can render this policy not feasible.

This policy is also inefficient from a software complexity

standpoint, and does not scale well, which limits its use for

software based machine learning.

 Sampling
Sampling is when a learning agent takes an action from

a state and observes the result. In some learning

environments, sampling produces relatively consistent results

or rewards. This is common in many software-based

simulations. However, some learning environments have

factors that can lead to varied results when the same action is

taken from the same state. This can occur in many physical

environments where factors such as weather, turbulence, and

air resistance can affect the consistency of the rewards from

sampling. When this is the case, multiple samples may need

to be taken in order to derive an average or a distribution of

rewards. The Exploratory Policy allows for a number of

samples in order for a state-action combination to be

considered “learned”. This will allow the learning agent to

explore unknown states until all of the actions from a state

have been sampled an adequate number of times. After all of

the actions from a state are learned, a learning agent following

the Exploratory Policy will then take the greedy action.

 Learning Egg Simulation

The Learning Egg is simulated via a web application

that utilizes JavaScript to implement the logic, physics,

learning model, and policies for solving the problem. The egg

can be moved manually, via automation, and by several

reinforcement learning techniques. Moving the egg will

affect the position and speed of the platform based on the

rules and constraints defined in Section 3.4. The egg can be

manually moved left and right by a user pressing left and right

keys from the computer keyboard.

Fig 12: The Learning Egg Web Application

 The Balancing Game

Performance for each learning approach is measured by

simulating The Balancing Game. The goal of the game is to

balance the platform for 5 seconds. The platform is

considered balanced when its position is between -1° and 1°

for 5 seconds. Some approaches did not result in a balanced

egg, however a rolling 5 second average of the platform’s

angle is tracked. The best rolling 5 second average would

measure how close the platform came to being balanced

during the simulation.

https://doi.org/10.38124/ijisrt/IJISRT24JUL769
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL769

IJISRT24JUL769 www.ijisrt.com 3472

 Training Machine Learning Model

Approaches that utilize reinforcement learning will

require training. This occurs by the egg being guided by a

learning policy to make movements while populating the data

model with learned data. This can result in the egg balancing

dring training, however some approaches did not result in the

egg balancing.

After training the data model, we tested the quality of

the learned data by introducing “turbulence”, or instability,

into the environment and testing how quickly the egg would

rebalance the platform by following a greedy policy. This was

executed by shifting the egg and the platform all the way to

the right, then continuously pressing the right arrow key on

the keyboard to constantly manually move the egg to the

right. This is all done while the egg tries to rebalance by

following a greedy policy. This introduction of instability into

the environment will test how the learning policies react to

unforeseen changes to the environment.

 Performance and Metrics

The following metrics will be used to measure the

performance of the manual, automated, and machine learning

approaches:

 Best Angle From Balanced - The best rolling 5 second

average of the platform’s angle. This would measure how

close the platform came to being balanced during the

simulation.

 Number of Moves Until Balanced - The number of

movements that the egg has to make in order to balance.

This would measure the efficiency of the egg movements,

where balancing using less moves would be considered
more efficient.

 Time Until Balanced - The amount of time that the egg

took to balance. This would measure efficiency in terms

of time, with a faster time considered more efficient.

 Time Until Rebalanced - The amount of time that the

egg took to balance after instability is introduced into the

environment and a greedy policy is followed. This would

measure how quickly the learning policies react to

unforeseen changes to the environment, with a faster time

considered more efficient.

V. RESULTS

The Learning Egg problem was simulated using the

manual, automated, and machine learning techniques

discussed in this document. The table below shows the

average result of running 10 simulations for each approach:

Table 5: Results from Simulations

Learning Policy Best Angle From

Balanced

Number of Moves

Until Balanced

Time Until

Balanced

Time to Rebalance

Exploratory 0° 11,992.3 00:18:56.8 00:00:55.3

Greedy 0° 6268.7 00:15:22.5 00:01:31.9

Epsilon-Greedy (10%) 0° 13,802.1 00:18:46.9 00:01:20.7

Enumeration 0° 25,025.9 01:25:46.4 00:00:07.1

Automated 3.08° Does Not Balance Does Not Balance N/A

Manual 5.77° Does Not Balance Does Not Balance N/A

Epsilon-Greedy (50%) 33.10° Does Not Balance Does Not Balance Does Not Rebalance

Epsilon-Greedy (90%) 37.64° Does Not Balance Does Not Balance Does Not Rebalance

The Epsilon-Greedy policies are denoted with the

exploration rate percentage. Note that non-machine-learning
approaches did not utilize a machine learning data model,

thus could not be used to rebalance the platform. The “Time

to Rebalance '' column for manual and automated approaches

use “N/A” to indicate this.

A. Balancing Performance

From these results, we see that only the Exploratory,

Greedy, Epsilon-Greedy (10%), and Enumeration policies

resulted in the platform being balanced. The Automated

approach outperformed the Manual approach with best 5

second rolling averages of 3.08° and 5.77° respectively.
Epsilon-Greedy policies with moderate to high exploration

rates performed the worst. Policies with exploration rates of

50% and 90% yielded best 5 second rolling averages of

33.10° and 37.64° respectively.

For the machine learning approaches that resulted in a

balanced platform during training, the Greedy policy

achieved this in the least number of moves from the egg on

average, which was 581.7. The Exploratory and Epsilon-

Greedy (10%) policies required an average of 11,992.3 and

13,802.1 moves respectively, with the former slightly
outperforming the latter. The Enumeration policy performed

the worst in that it required an average of 25,025.9 moves.

This is due to the policy iterating through every combination

of state and action.

 Note: The following times are formatted as follows:

HH:MM:SS

 HH - 2 digits representing the number of hours

 MM - 2 digits representing the number of minutes

 SS - 2 digits representing the number of seconds

The Greedy policy also held the best average

performance of 00:03:12.5, with respect to the time that it

took to balance the platform during training. The Exploratory

and Epsilon-Greedy (10%) policies required an average time

of 00:16:46.8 and 00:18:46.9 respectively for the platform to

balance, with the former slightly outperforming the latter.

The Enumeration policy performed the worst with an average

time of 01:25:46.4.

https://doi.org/10.38124/ijisrt/IJISRT24JUL769
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL769

IJISRT24JUL769 www.ijisrt.com 3473

B. Rebalancing Test

After training, we tested the quality of the learned data

by introducing turbulence and observing how quickly a

greedy policy can use the learned data to rebalance. This

tested how well the learning policies react to unforeseen

changes to the environment. Interestingly, The Greedy policy

performed poorly with an average rebalancing time of 59.9

seconds. This was due to the learning agent not exploring and
learning enough of the environment to know what to do in the

states introduced by instability. The Epsilon-Greedy (10%)

performed even worse at an average time of 1 minute and 0.7

seconds. Although the learning agent is able to balance during

training, the learning agent would require significantly more

training to reduce the rebalancing time. The trade-off there

would be that more training would increase the amount of

time required for adequate training. The Exploratory and

Enumeration policies performed the best averaging 18.3 and

7.1 seconds respectively. The exploratory policy prioritizes

exploring states and actions that have not been visited before.

This adds some range to the set of states that get explored,

while minimizing re-visiting states. The Exploratory policy’s

trait of switching to a greedy policy after enough information

is known about a state, allowed the learning agent to move

closer to the goal faster than Epsilon-Greedy policies. The

Enumeration policy yielded a comprehensive dataset of every

state and action. This produced a data model that was robust
enough to handle turbulence well.

C. Knowledge Map Visualization

The Learning Egg web application includes a

knowledge map, which is a 2-dimensional grid that shows a

visualization of the coverage in knowledge. The map shows

which platform position/speed states that the egg has been

trained for. The x-axis represents the platform position, and

the y-axis represents the platform speed.

Fig 13: Knowledge Map Visualization

Each grid cell represents the number of actions, at a specific platform position/speed state, that the learning agent has been

trained for.

Fig 14: Knowledge Map Grid Cell Color Mappings

D. Extensibility

The process for developing machine learning models

that is outlined in this document was designed to be

extensible. This means that it can be applied to other

problems. The same principles used for The Learning Egg

problem can be used to define the environment and learning

policies for other problems. One example of how this

approach can be applied would be a drone.

The Learning Egg problem used the following data

model to represent its environment.

Platform Position Platform Speed Egg Position Reward

Fig 15: Learning Egg Platform/Egg State Action Reward Data Model

https://doi.org/10.38124/ijisrt/IJISRT24JUL769
http://www.ijisrt.com/

Volume 9, Issue 7, July – 2024 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24JUL769

IJISRT24JUL769 www.ijisrt.com 3474

Instead of balancing a platform, the goal for a drone

would be to balance the drone based on position and speed.

Instead of an egg moving, the drone’s propellers are moving.

The drone could use a similar data model to The Learning

Egg.

Drone Position Drone Speed Propeller Position Reward

Fig 16: Drone/Propeller State Action Reward Data Model

 The following Outlines a Process for Developing a

Machine Learning Model to Solve Problems Using

Reinforcement Learning:

 Define the problem and the goal

 Define environment components (states, actions, rewards)

 Define environment rules and constraints

 Define a data model

 Develop a data structure for the data model

 Implement the environmental logic and policies in

software

 Train the learning agent to learn an optimal solution

VI. CONCLUSION

Machine learning is a useful tool for solving problems

that manual or purely automated solutions cannot. In order to

solve these problems, they will need to be mapped to a

machine learning model. We have outlined an approach to

building machine learning models using reinforcement

learning that is extensible. Through simulations, we have

observed the performance of various learning policies and

approaches. We observed that the Exploratory policy

performed well across the board. Due to its directive to

explore the unknown, and maximize the reward once enough

information is known, the policy allowed for adequate
exploration, minimizing revisiting states. The policy also

took a greedy approach once enough information was known

about a state, which moved the egg and platform closer to the

goal of being balanced, faster. It is important to select a data

structure that optimizes performance and facilitates learning.

This is why multi-dimensional arrays proved useful due to

their fast lookup complexity of O(1). The Learning Egg

problem provides an example of how using a learning policy

that explores states and actions that have not been explored

before, then switching to a deterministic policy can be

effective. This paper gives insight into how to build a

machine learning model, not only for The Learning Egg
problem, but to solve a variety of problems.

REFERENCES

[1]. Manasi Vartak , Harihar Subramanyam , Wei-En Lee

, Srinidhi Viswanathan , Saadiyah Husnoo , Samuel
Madden , Matei Zaharia, 2016. ModelDB: A System

for Machine Learning Model Management.

[2]. Emily Sullivan, 2022. Understanding from Machine

Learning Models: The British Journal for the

Philosophy of Science, Volume 73, Number 1.

[3]. James Wexler, Mahima Pushkarna, Tolga Bolukbasi,

Martin Wattenberg, Fernanda Viegas, and Jimbo

Wilson, 2020. The What-If Tool: Interactive Probing

of Machine Learning Models: IEEE Transactions On

Visualization And Computer Graphics, Vol. 26, No. 1.

[4]. Christopher M. Bishop, 2013, Model-Based Machine

Learning: Phil Trans R, Soc A 371: 20120222

https://doi.org/10.38124/ijisrt/IJISRT24JUL769
http://www.ijisrt.com/

