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A Machine Learning Model for Training Your AI 
 

 

Akaninyene Udoeyop 

 

 

Abstract:- Artificial Intelligence is playing an increasing 

role in solving some of the world’s biggest problems. 

Machine Learning Models, within the context of 

reinforcement learning, define and structure a problem in 

a format that can be used to learn about an environment 

in order to find an optimal solution. This includes the 

states, actions, rewards, and other elements in a learning 

environment. This also includes the logic and policies that 

guide learning agents to an optimal or nearly optimal 

solution to the problem. This paper outlines a process for 

developing machine learning models. The process is 

extensible and can be applied to solve various problems. 

This includes a process for implementing data models 

using multi-dimensional arrays for efficient data 

processing. We include an evaluation of learning policies, 

assessing their performance relative to manual and 

automated approaches. 

 

I. INTRODUCTION 

 

Artificial Intelligence (AI) is a field of study that utilizes 

computer systems and data to solve problems. The term 

“Artificial Intelligence” is often used interchangeably with  

the term “Machine Learning”. However, it is important to 

distinguish between the two concepts. Machine learning is a 

type of AI that involves training computer systems to solve 
problems through learning and adapting from experience.  

 

There are several approaches to machine learning, 

including Supervised and Unsupervised Learning. This paper 

will focus on reinforcement learning. Reinforcement learning 

is a machine learning technique that involves utilizing a 

reward-based model to train a learning agent, then enabling 

the agent to make decisions based on the data accumulated 

during training. 

 

This paper will outline a process to develop and train 
data models using reinforcement learning. 

 

 

 

A. Reinforcement Learning 

Reinforcement learning is a machine learning method 

that involves rewarding desired behavior and punishing 
undesired behavior. This involves learning agents interacting 

with an environment and observing the results or rewards 

from their actions. The objective in reinforcement learning is 

to learn the optimal behavior based on experience. 

 

This section outlines reinforcement learning policies 

and the Q-learning learning algorithm that will be utilized in 

this paper. 

 

 Policies 

A policy is a function that maps states to actions. It is 
essentially a strategy that guides the learning agent’s actions 

while it is interacting with the environment. Policies can be 

either deterministic or stochastic: 

 

 Deterministic - Maps states to actions with an expected 

reward value.  

 Stochastic - Maps states to a probabilistic distribution 

over actions.  

 

The difference between a deterministic and stochastic 

policy is in the way that they choose actions. A deterministic 
policy will choose the optimal action that maximizes the 

reward value. This is considered a “greedy” policy. A 

stochastic policy will choose a random action some 

percentage of the time, otherwise will follow a greedy policy. 

This is known as the Epsilon-greedy policy.  

 

 Q-Learning Algorithm 

Q-Learning is a machine learning algorithm that assigns 

reward values to state-action combinations. The algorithm 

estimates a function that is closely related to the policy. This 

function is called the value function. With Q-Learning, the 

reward values are numerical and are produced by the value 
function and indicate how “good” or “bad” an outcome of an 

action is. With Q-Learning, the Q-Value is the metric used to 

measure an action at a particular state. 

 
 

 Machine Learning Models 

A machine learning model is a framework that 

represents the environmental components and policies used 
to train learning agents to detect patterns and solve problems.  

They are trained using techniques such as reinforcement 

learning. Developing a machine learning model involves 

defining the states, actions, rewards, and other elements in the 

environment. Then, selecting learning policies that guide 
learning agents to an optimal or nearly optimal solution to a 

problem. 
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II. RELATED WORK 

 

Approaches to developing machine learning models are 

evolving. There are various theories, algorithms, and policies 

that are available for solving problems using machine 

learning. Data scientists, for example, can build tens to 

hundreds of models before arriving at one that meets some 

acceptance criteria (e.g. AUC cutoff, accuracy threshold)[1]. 
The process for building a machine learning model is not an 

exact science. Emily Sullivan, in her research, outlines 

considerations and rationale behind selecting a learning 

model and mentions some of these challenges using Neural 

Networks[2]. MIT researchers Manasi Vartak et al. describe 

the challenges in building models that adequately correlate to 

the problem being solved[1]. 

 

There are some efforts to organize and standardize 

machine learning models. In their work, Manasi Vartak et al. 

are developing a system for the management of machine 
learning models called ModelDB. While tools like ModelDB 

can be useful for managing models, this paper focuses on the 

process of taking the problem, deconstructing the problem 

into components that are used to build a learning model. Then 

designing, training, and testing the learning model. James 

Wexler et al. in their research, developed a tool called What-

If to evaluate the performance of several machine learning 

models[3]. In their study, they show how selecting the 

appropriate model, algorithm, and criteria can significantly 

impact the efficiency and the accuracy of results produced by 

the data model. 

 
The advantages of modeling have been known for many 

years. In 2013, Christopher M. Bishop touched on some of 

these in his research on model-based approaches to machine 

learning[4].  These advantages included the opportunity to 

create highly tailored models for specific scenarios, as well 

as rapid prototyping and comparison of a range of alternative 

models.  

 

III. MACHINE LEARNING MODEL FOR 

REINFORCEMENT LEARNING 

 
A machine learning model is a framework that defines 

the states, actions, rewards, logic, data models, and learning 

policies required to identify patterns or make predictions 

using machine learning. 

 

 
Fig 1: Machine Learning Model 

 

The following outlines a process for deriving machine 

learning models. The process can be used  along with learning 

policies to solve problems. This includes an approach for 

implementing the  data model used for reinforcement 

learning. 

 

A. The Learning Egg Problem 

To assist in explaining the process for developing a 
machine learning model, we will use the example of The 

Learning Egg problem. The problem consists of an egg sitting 

on a platform that rotates left and right, where the egg can 

lean to the left and the right to shift the platform in either 

direction. The objective is for the platform to be balanced and 

not moving, or as close to being balanced as possible. 

 

B. Define Problems and Goals 

The objective in reinforcement learning is to solve a 

problem through learning from experience. In order to solve 

the problem, it should be broken down into sub-problems and 

sub-goals that can be mapped into a machine learning model. 
Sub-problems and sub-goals should include elements that are 

quantifiable and limited to factors that affect the overall 

objective.  
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Fig 2: Sub-Problem to Sub-Goal Mapping 

 

For the Learning Egg, the problems and goals are 

defined in the following sections. 

 

 Problems 

 

 The platform is unbalanced when it is not positioned at 0°. 

 

 The platform rotates to the left and to the right. 

 
Note that each component of the problem affects the 

objective of the platform being balanced. The platform’s 

rotation position and the egg’s position can be quantified. The 

objective of the problem is for the platform to also not be 

moving. This can be quantified by measuring the platform 

position over time. The egg's movement left and right can also 

be quantified. 

 

 Goals 

 

 For the platform to be balanced, or as close to being 
balanced as possible. 

 For the platform to not be moving 

 

Note that the state of the platform being balanced or 

unbalanced is based on the platform position and speed, 

which are quantifiable. Being balanced is not based on the 

position of the egg, although the egg’s position influences the 

position of the platform. 

 

C. Define Environmental Components 

After defining the problem and the goal, the 
environment should be defined. This section outlines 

environmental components that should be derived, followed 

by their application in The Learning Egg problem. These 

elements will provide the foundation for the machine 

Learning Model.  

 

 States 

A state consists of a combination of quantifiable factors 

in the environment that affect the problem and the goal. A 
state factor is defined as a measurable and quantifiable value, 

also called a state value, that reflects an environmental 

condition at a point in time. Each state value should have an 

objective that is aligned with the overall goal. A distinct state 

is essentially a snapshot of the set of state values at a point in 

time. 

 

 
Fig 3: State to Objective Mapping 

 

For The Learning Egg problem, the goal is defined “For 

the platform to be balanced and not moving, or as close to 
being balanced as possible”. This goal can be quantified by 

the platform position and speed. The state for this problem 

can be defined by the following state values: 

 

 Platform Position - The number of degrees that the 

platform has rotated away from a balanced position of 0°. 

The objective of this state value is for the platform 

position to be 0°, or as close to 0° as possible. 

 Platform Speed - The change in the platform position 

over time. As the platform rotates left and right, it 

increases and decreases in speed. The objective of this 

state value is to be at a speed of 0, which indicates that the 
platform is not moving. 

 

 

𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑠𝑝𝑒𝑒𝑑 =  (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 −  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) / 𝑡𝑖𝑚𝑒 
 

The objective for this state value is to be zero, which 

indicates that the platform is not moving. 

 

Note that the factors associated with the egg are not 

included in the state as the goal only references the platform 

and not the egg. 
 

 Actions 

An action is an operation that the learning agent, which 

is the egg in this example, can take to change the state of the 

environment. Actions are directly enacted by the learning 

agent and result in a change in one or more state values. 

Actions should be defined along with a reward metric to 

gauge how “good” or “bad” the result of an action is. A 

reward metric is a numerical value that represents how 

positive or negative the result of an action is. An optimal 

action is the action that will result in the highest reward or the 

“best” outcome from the action. 
 

For The Learning Egg problem, the only action that can 

be taken is for the egg to lean to the left or right, or to stand 

up-right. This can be quantified by the egg’s position. 
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 Egg Position - A number representing the egg’s position. 

 

The resulting platform position and speed after the egg 

moves can be measured as the reward for the action. Thus, 

the egg position represents the action and the combination of 

the platform position and speed represents the reward metric. 

The closer the platform is to being balanced without moving, 

the better the reward. 
 

 Rewards 

Rewards are quantifiable observations of the 

environment that indicate how positive or negative that the 

result of an action is. They need to be quantifiable because 

they need to indicate a state of positivity or negativity to 

integrate into a learning model. Rewards are observed after 

an action is taken and gives the machine learning model 

feedback that is used to decide on future actions. Each reward 

should map to a state objective and should be able to measure 

the result of an action within the context of the objective. 
 

For The Learning Egg problem, the sum of the platform 

position and the platform speed were used as the reward 

metric. The objective of the platform being balanced can be 

measured by the platform angle position. The objective that 

the platform not be moving while balanced can be measured 

by the platform speed. The goal for the reward is for both the 

platform position and speed to be zero, which indicates that 

the platform is balanced and not moving. 

 

 
Fig 4: State to Objective Mapping 

 

D. Define Environment Rules and Constraints 

Once the environment’s components have been defined, 

rules and constraints should be defined for them. Rules 

should describe how the environment behaves as it relates to 

state values and actions. Constraints define what the 

environment’s components can and cannot do. Constraints 
should be defined as limitations for the state values and 

actions. This can be implemented by defining a numerical 

range, scale, and limits for the environment’s components. 

Environment rules and constraints for The Learning Egg 

problem are defined in the following sections. 

 

 Platform Position 

The platform can rotate from -50° to 50°. Thus, the 

platform position value will range from -50 to 50, with the 

value 0 meaning that the platform is balanced. Negative 

values indicate that the platform has rotated left. Positive 
values mean that the platform has rotated right. 

 

 
Fig 5: Platform Position 

 

 Egg Position 

The egg can move into the following 5 positions: 

 

 
Fig 6: Egg Position 

 

The egg position will be represented by the numbers -2,-1,0,1, and 2 with each number denoting the respective position above. 
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 Platform Speed 

The platform speed is defined as the change in the platform position over time: 

 

𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑠𝑝𝑒𝑒𝑑 =  (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 −  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) / 𝑡𝑖𝑚𝑒 

 

Since the platform position value is a representation of 

degrees, the platform speed will be denoted in 
degrees/second. The platform speed can range from -2 to 2, 

with negative values indicating the speed going in the left 

direction, and positive values indicating the speed going the 

right direction. A platform speed of 0 means that the platform 

is not moving. 

 

The following table outlines how the egg position 

affects the platform speed: 

 

Table 1: Egg Position Effect on Platform Speed 

Egg Position Platform Speed Change 

Hard Left 

Lean 

Shifts platform speed left at -2 

degrees/second 

Soft left lean Shifts platform speed left at -1 
degree/second 

Stand Up-

Right 

Platform speed does not change 

Soft Right 

Lean 

Shifts platform speed right at 1 

degree/second 

Hard Right 

Lean 

Shifts platform speed right at 2 

degrees/second 

 

This table essentially shows that, if the egg leans left, 

the platform speed will shift to the left. Also, if the egg leans 

right, then the platform speed will shift to the right. The 

harder the lean of the egg, the greater the change in speed for 

the platform. Note that the platform speed will not change 

when the egg is standing up-right. This simply means that if 

the platform is in motion, it will remain at the same speed. 

The egg standing up-right does not mean that the platform is 
not moving. 

 

 

 

 

 

 

E. Define Data Model 

A Data Model is a data structure and format for 
representing data. In machine learning, data models are used 

to store the information learned from interacting with the 

environment. There are several types of data models. In Q-

Learning, A Q-table is the data model used to store the reward 

values, or Q-values, for actions taken at a specific state. Q-

tables format the states as the rows in the table and the actions 

as the columns in the table. 

 

Table 2: Q-table Example 

 Action 1 Action 2 

State 1 QScore(State1, 

Action1) 

QScore(State1, 

Action2) 

State 2 QScore(State2, 

Action1) 

QScore(State2, 

Action2) 

State 3 QScore(State3, 
Action1) 

QScore(State3, 
Action2) 

 

The Q-table serves as an effective lookup table for 

scenarios where a single action is taken in a single state. Many 

problems however, have multiple state factors and multiple 

actions that affect the environment at a single point in time. 

The Q-table operates in a 2-dimensional space, where the 

state is the y-axis, and the action is the x-axis. 

 

Because of this limitation, we derived a data model 

design to support multiple state factors and multiple actions. 

Instead of the 2-dimensional space that the Q-table operates 

in, this data model design takes a multi-dimensional 
approach. Like the Q-table, this data model design, as a 

representation of the environment, should include the states, 

actions, and rewards defined for the environment. These are 

mapped into the columns of the table. The table should be 

structured with the first columns representing state values, 

followed by columns that represent the actions, then followed 

by a reward column. This approach is extensible and can be 

applied to a diverse set of problems. This approach is flexible 

in that the number of states and actions can vary. 

 

State val 1 State val 2 State val 3 ... Action 1 Action 2 ... Reward 

Fig 7: State Action Reward Table Column Structure 

 

 Based on this Format, the Table for The Learning Egg 

Example will be Structured as Follows: 

 

 Platform Position - Number of degrees that the platform 

has leaned away from a balanced position or 0° before egg 

movement 

 Platform Speed - Degrees per second that the platform is 

moving before egg movement 

 Action - The position that the egg is moving to 

 Reward - Sum of the platform position and speed. 

 

Platform Position Platform Speed Egg Position Platform Position + Platform Speed 

Fig 8: Platform/Egg State Action Reward Table Column Structure 
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As the data model is populated with data, the learning 

agent will gain an understanding of potential outcomes from 

its actions. The following is a sample of what the data model 

can look like as it is being populated: 

 

Table 3: Data Model Trained for Platform Position and Speed. 

Platform 

Position 

Platform 

Speed 

Egg Position Reward Resulting Platform 

 Position 

Resulting Platform 

Speed 

25° 1 Hard Left Lean 23 24° -1 

25° 1 Soft Left Lean 25 25° 0 

25° 1 Stand Up-Right 27 26° 1 

25° 1 Soft Right Lean 28 27° 2 

25° 1 Hard Right Lean 28 27° 2 

 

The data model would be populated when the platform 

has experienced the position of 25° while moving at a speed 

of 1 degree/second multiple times. When the egg makes a 
movement from that platform position and speed, it observes 

the resulting platform and speed, then calculates their sum as 

the reward. Based on the information in the data table above, 

we can infer that at a platform position of 25° ,and moving at 

a speed of 1 degree/second, the optimal action is a Hard Left 

Lean because that results in the reward of 23. Since the goal 

of The Learning Egg problem is to get to a platform position 

and speed of 0, the reward value closest to 0 is considered 

optimal. Thus, the reward value of 23 being the closest value 

to 0 for this platform position and speed would be considered 
optimal. This would lead the learning agent to take a Hard 

Left Lean if it were pursuing the optimal action. 

 

Note that the data table represents a small subset of a 

larger dataset. The data model can store data for every 

combination of platform position, platform speed, egg action, 

and reward. 

 

 
Fig 9: Data Table Subset of Larger Dataset 
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F. Select Data Structure for Data Model  

In Computer Science, data structures are software 

components that are formatted for organizing, processing, 

retrieving and storing data. These can be used for a variety of 

purposes, including representing a data model in 

reinforcement learning. The data structure utilized for this 

approach is a multi-dimensional array. In Computer Science, 

an array is essentially a list of values with indexes that point 
to specific locations on the list. A multi-dimensional array  is 

essentially a list of lists. The choice to use nested arrays was 

made due to arrays' fast lookup complexity of O(1). This 

would allow the learning agent to efficiently lookup and 

update rewards as it learns. Multi-dimensional arrays also 

support the Q-table inspired data model described in Section 

2.5. 

 

 Multi-Dimensional Array 

The multi-dimensional array represents the data from 

the data model. Thus, each column of the data table, should 

be mapped to indexes of the multi-dimensional array. The 

rewards should be stored in the array with the indexes used to 

lookup and update their respective rewards. 

 
From the data model format described in Section 2.5, we 

can derive the multi-dimensional array below by mapping 

each of the columns of the table to an index of the array. This 

approach allows the lookup and updating of reward values to 

occur at an efficiency of O(1). 

 

State val 1 State val 2 State val 3 ... Action 1 Action 2 ... Reward 

array[state_val_1][state_val_2][state_val_3][action_2][action_2] = reward 

Fig 10: Multi-Dimensional Array State Action Reward Data Model 

 

This approach used for The Learning Egg problem produces the following multi-dimensional array: 

 

Platform Position Platform Speed Egg Position Reward 

array[platform_position][platform_speed][egg_position] = reward

Fig 11: Multi-Dimensional Array Platform/Egg State Action Reward Data Model 

 

With this array, reward values can be looked up and 

updated by using the platform position, platform speed, and 

egg position to index. This allows managing the data via 

indexing, not searching. 

 

G. Environmental Logic and Policy 

A machine learning model involves deriving policies 

that can be used by a learning agent to guide its future actions. 

In order to implement a policy, each rule and constraint 
should be implemented within the logic of the environment 

in software. For The Learning Egg problem, the following 

rules and constraints were integrated into the environmental 

logic of the program: 

 

 The platform can rotate from -50° to 50°. Thus, the 

platform position can range from -50 to 50. 

 The following are the possibilities for egg position: 

 

 Hard Left Lean 

 Soft Left Lean 

 Stand Up-Right 

 Soft Right Lean 

 Hard Right Lean 

 

 The egg position will be represented by the numbers -2,-

1,0,1, and 2 with each number denoting the respective 
position above. 

 The platform speed can range from -2 to 2, with negative 

values indicating the speed going in the left direction, and 

positive values indicating the speed going the right 

direction. 

 The following table outlines how the egg position affects 

the platform speed: 

 

Table 4: Egg Position Effect on Platform Speed 

Egg Position Platform Speed Change 

Hard Left Lean Decreases platform speed at -2 degrees/second 

Soft left lean Decreases platform speed at -1 degree/second 

Stand Up-Right Platform speed does not change 

Soft Right Lean Increases platform speed at 1 degree/second 

Hard Right Lean Increases platform speed at 2 degrees/second 

 

IV. TRAINING PHASE 

 

Reinforcement learning involves an iterative learning 

process that involves training the learning agent by running 

simulations of the problem. During these simulations, the 

learning agent will interact with the environment and 

populate the data model, thus learning about the environment. 
There are various approaches and factors that go into training 

a learning agent. We will evaluate deterministic, stochastic, 

manual, automated, and other approaches. For the approaches 

that involve reinforcement learning, the data model is 

populated with reward data.  
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 Learning Policy and Approach 

Now that we have developed a data model, we are faced 

with the challenge of “how” to train our data model. Are some 

approaches more efficient than others? Do some approaches 

adapt better to changing environments? Why choose one 

approach over another? How do these approaches compare to 

manual or automated solutions? In this section, we will cover 

the rationale behind why policies and approaches to training 
were chosen. 

 

 Manual Approach 

A manual approach involves a human being controlling 

the actions of the agent in the environment. This approach 

does not use automation or machine learning. For The 

Learning egg problem, a person would control the egg 

movement with a computer keyboard. The person would 

move the egg left and right with the goal of balancing the 

platform. 

 
 Automated Approach 

An automated approach involves the agent following a 

pre-programed policy where actions and conditions are hard-

coded to achieve a goal. No machine learning is used for this 

approach as the behavior is predetermined. For The Learning 

Egg problem, the following outlines the behavior of the egg 

for an automated approach used for this research: 

 

 If the platform angle is greater than 0°, move the egg one 

position to the left until it is in a Hard Lean Left position. 

 If the platform angle is less than 0°, move the egg one 
position to the right until it is in a Hard Lean Right 

position. 

 Otherwise, move the egg to a Stand Up-Right position. 

 

 Deterministic Policy 

A deterministic policy selects actions that are projected 

to yield the highest reward. This type of policy is considered 

“greedy”. For The Learning Egg problem, the following 

outlines the behavior for the deterministic approach used in 

this research: 

 

 When the platform is at an angle that has not been 
experienced yet, the egg should make a random move 

from the set of all possible moves. 

 When the platform is at a previously experienced angle, 

and has made moves from that angle, and learned from the 

rewards, make the move that has yielded the highest 

reward based on experience. 

 

 Stochastic Policy 

In reinforcement learning, stochastic policies will 

choose a random action from a state some percentage of the 

time, otherwise will follow a greedy policy. The notion of 
choosing a random action is referred to as “exploring”. The 

exploration rate is the percentage of actions that should be 

taken by the learning agent in an exploring fashion vs a 

greedy fashion. 

 

 For The Learning Egg Problem, the Following Outlines 

the Behavior for the Stochastic Approach used in this 

Research: 

 

 For a percentage of the time that matches the exploration 

rate, the egg should make a random move from the set of 

all possible moves. 

 The rest of the time, the egg should make the move that 
has yielded the highest reward based on experience. 

 

 Exploratory Policy 

The learning approaches referenced earlier have their 

pros and cons, which we will discuss later in the document.  

For this research, we are implementing and testing an 

approach called an Exploratory Policy. The policy prioritizes 

exploring new states and actions when little is known about 

the environment. Once enough information has been learned 

about the environment, the policy then guides the learning 

agent using a deterministic policy.  
 

 For The Learning Egg Problem, the Following Outlines 

Behavior Using an Exploratory Policy: 

 

 When the platform is at an angle that has not been 

experienced yet, the egg should make a random move 

from the set of all possible moves. 

 When the platform is at a previously experienced angle, 

and the egg has made a moves and learned from actions 

from that angle: 

 

 If the egg has learned from one or some actions, but has 

not learned from all of the actions to take from that 

platform angle, the egg makes a random move from the 

set of actions that have not been taken from that state. 

 If the egg has learned from every move from that angle, 

make the move that has yielded the highest reward based 

on experience. 

 

This approach prioritizes exploring early in the learning 

process, then prioritizes maximizing rewards once 

information has been learned. 

 
 Enumeration Policy 

There are other approaches to training in reinforcement 

learning. One of these approaches will be referred to as an 

enumeration policy. This type of policy explicitly iterates 

through every combination of the states and actions in the 

environment until the data model is filled with information. 

 

 For The Learning Egg Problem, the Following Outlines 

Behavior Using an Enumeration Policy: 

 

 The platform is forced into every position iteratively one-
by-one. 

 At each position, the egg makes every possible move and 

learns from the rewards from its actions. 

 This is continued until every action has been taken from 

every state. 
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Note that there are both software and physical 

limitations for this type of approach. In a physical setting, 

physics, cost, and safety can render this policy not feasible. 

This policy is also inefficient from a software complexity 

standpoint, and does not scale well, which limits its use for 

software based machine learning. 

 

 Sampling 
Sampling is when a learning agent takes an action from 

a state and observes the result. In some learning 

environments, sampling produces relatively consistent results 

or rewards. This is common in many software-based 

simulations. However, some learning environments have 

factors that can lead to varied results when the same action is 

taken from the same state. This can occur in many physical 

environments where factors such as weather, turbulence, and 

air resistance can affect the consistency of the rewards from 

sampling. When this is the case, multiple samples may need 

to be taken in order to derive an average or a distribution of 

rewards. The Exploratory Policy allows for a number of 

samples in order for a state-action combination to be 

considered “learned”. This will allow the learning agent to 

explore unknown states until all of the actions from a state 

have been sampled an adequate number of times. After all of 

the actions from a state are learned, a learning agent following 

the Exploratory Policy will then take the greedy action. 

 

 Learning Egg Simulation 

The Learning Egg is simulated via a web application 

that utilizes JavaScript to implement the logic, physics, 

learning model, and policies for solving the problem. The egg 

can be moved manually, via automation, and by several 

reinforcement learning techniques. Moving the egg will 

affect the position and speed of the platform based on the 

rules and constraints defined in Section 3.4. The egg can be 

manually moved left and right by a user pressing left and right 

keys from the computer keyboard.  

 

 
Fig 12: The Learning Egg Web Application 

 

 The Balancing Game 

Performance for each learning approach is measured by 

simulating The Balancing Game. The goal of the game is to 

balance the platform for 5 seconds. The platform is 

considered balanced when its position is between -1° and 1° 

for 5 seconds. Some approaches did not result in a balanced 

egg, however a rolling 5 second average of the platform’s  

angle is tracked. The best rolling 5 second average would 

measure how close the platform came to being balanced 

during the simulation.   

https://doi.org/10.38124/ijisrt/IJISRT24JUL769
http://www.ijisrt.com/


Volume 9, Issue 7, July – 2024                                             International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                  https://doi.org/10.38124/ijisrt/IJISRT24JUL769 

  

 

IJISRT24JUL769                                                                 www.ijisrt.com                                                                                    3472 

 Training Machine Learning Model 

Approaches that utilize reinforcement learning will 

require training. This occurs by the egg being guided by a 

learning policy to make movements while populating the data 

model with learned data. This can result in the egg balancing 

dring training, however some approaches did not result in the 

egg balancing.  

 
After training the data  model, we tested the quality of 

the learned data by introducing “turbulence”, or instability, 

into the environment and testing how quickly the egg would 

rebalance the platform by following a greedy policy. This was 

executed by shifting the egg and the platform all the way to 

the right, then continuously pressing the right arrow key on 

the keyboard to constantly manually move the egg to the 

right. This is all done while the egg tries to rebalance by 

following a greedy policy. This introduction of instability into 

the environment will test how the learning policies react to 

unforeseen changes to the environment. 
 

 Performance and Metrics 

The following metrics will be used to measure the 

performance of the manual, automated, and machine learning 

approaches: 

 

 Best Angle From Balanced - The best rolling 5 second 

average of the platform’s  angle. This would measure how 

close the platform came to being balanced during the 

simulation. 

 Number of Moves Until Balanced - The number of 

movements that the egg has to make in order to balance. 

This would measure the efficiency of the egg movements, 

where balancing using less moves would be considered 
more efficient. 

 Time Until Balanced - The amount of time that the egg 

took to balance. This would measure efficiency in terms 

of time, with a faster time considered more efficient. 

 Time Until Rebalanced - The amount of time that the 

egg took to balance after instability is introduced into the 

environment and a greedy policy is followed. This would 

measure how quickly the learning policies react to 

unforeseen changes to the environment, with a faster time 

considered more efficient. 

 

V. RESULTS 

 

The Learning Egg problem was simulated using the 

manual, automated, and machine learning techniques 

discussed in this document. The table below shows the 

average result of running 10 simulations for each approach: 

 

Table 5: Results from Simulations 

Learning Policy Best Angle From 

Balanced 

Number of Moves 

Until Balanced 

Time Until 

Balanced 

Time to Rebalance 

Exploratory 0° 11,992.3 00:18:56.8 00:00:55.3 

Greedy 0° 6268.7 00:15:22.5 00:01:31.9 

Epsilon-Greedy (10%) 0° 13,802.1 00:18:46.9 00:01:20.7 

Enumeration 0° 25,025.9 01:25:46.4 00:00:07.1 

Automated 3.08° Does Not Balance Does Not Balance N/A 

Manual 5.77° Does Not Balance Does Not Balance N/A 

Epsilon-Greedy (50%) 33.10° Does Not Balance Does Not Balance Does Not Rebalance 

Epsilon-Greedy (90%) 37.64° Does Not Balance Does Not Balance Does Not Rebalance 

 

The Epsilon-Greedy policies are denoted with the 

exploration rate percentage. Note that non-machine-learning 
approaches did not utilize a machine learning data model, 

thus could not be used to rebalance the platform. The “Time 

to Rebalance '' column for manual and automated approaches 

use “N/A” to indicate this. 

 

A. Balancing Performance 

From these results, we see that only the Exploratory, 

Greedy, Epsilon-Greedy (10%), and Enumeration policies 

resulted in the platform being balanced.  The Automated 

approach outperformed the Manual approach with best 5 

second rolling averages of 3.08° and 5.77° respectively. 
Epsilon-Greedy policies with moderate to high exploration 

rates performed the worst. Policies with exploration rates of 

50% and 90% yielded best 5 second rolling averages of 

33.10° and 37.64° respectively. 

 

For the machine learning  approaches that resulted in a 

balanced platform during training, the Greedy policy 

achieved this in the least number of moves from the egg on 

average, which was 581.7. The Exploratory and Epsilon-

Greedy (10%) policies required an average of 11,992.3 and 

13,802.1 moves respectively, with the former slightly 
outperforming the latter. The Enumeration policy performed 

the worst in that it required an average of 25,025.9 moves. 

This is due to the policy iterating through every combination 

of state and action. 

 

 Note: The following times are formatted as follows: 

HH:MM:SS 

 HH - 2 digits representing the number of hours 

 MM - 2 digits representing the number of minutes 

 SS - 2 digits representing the number of seconds 

 
The Greedy policy also held the best average 

performance of 00:03:12.5, with respect to the time that it 

took to balance the platform during training. The Exploratory 

and Epsilon-Greedy (10%) policies required an average time 

of 00:16:46.8 and 00:18:46.9 respectively for the platform to 

balance, with the former slightly outperforming the latter. 

The Enumeration policy performed the worst with an average 

time of 01:25:46.4. 
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B. Rebalancing Test 

After training, we tested the quality of the learned data 

by introducing turbulence and observing how quickly a 

greedy policy can use the learned data to rebalance. This 

tested how well  the learning policies react to unforeseen 

changes to the environment. Interestingly, The Greedy policy 

performed poorly with an average rebalancing time of 59.9 

seconds. This was due to the learning agent not exploring and 
learning enough of the environment to know what to do in the 

states introduced by instability. The Epsilon-Greedy (10%) 

performed even worse at an average time of 1 minute and 0.7 

seconds. Although the learning agent is able to balance during 

training, the learning agent would require significantly more 

training to reduce the rebalancing time. The trade-off there 

would be that more training would increase the amount of 

time required for adequate training.  The Exploratory and 

Enumeration policies performed the best averaging 18.3 and 

7.1 seconds respectively. The exploratory policy prioritizes 

exploring states and actions that have not been visited before. 

This adds some range to the set of states that get explored, 

while minimizing re-visiting states.  The Exploratory policy’s 

trait of switching to a greedy policy after enough information 

is known about a state, allowed the learning agent to move 

closer to the goal faster than Epsilon-Greedy policies. The 

Enumeration policy yielded a comprehensive dataset of every 

state and action. This produced a data model that was robust 
enough to handle turbulence well. 

 

C. Knowledge Map Visualization 

The Learning Egg web application includes a 

knowledge map, which is a 2-dimensional grid that shows a 

visualization of the coverage in knowledge. The map shows 

which platform position/speed states that the egg has been 

trained for. The x-axis represents the platform position, and 

the y-axis represents the platform speed.  

 

 
Fig 13: Knowledge Map Visualization 

 

Each grid cell represents the number of actions, at a specific platform position/speed state, that the learning agent has been 

trained for. 

 

 
Fig 14: Knowledge Map Grid Cell Color Mappings 

 

D. Extensibility 

The process for developing machine learning models 

that is outlined in this document was designed to be 

extensible. This means that it can be applied to other 

problems. The same principles used for The Learning Egg 

problem can be used to define the environment and learning 

policies for other problems. One example of how this 

approach can be applied would be a drone.  

 

The Learning Egg problem used the following data 

model to represent its environment. 

 

 
 

Platform Position Platform Speed Egg Position Reward 

Fig 15: Learning Egg Platform/Egg State Action Reward Data Model 
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Instead of balancing a platform, the goal for a drone 

would be to balance the drone based on position and speed. 

Instead of an egg moving, the drone’s propellers are moving. 

The drone could use a similar data model to The Learning 

Egg. 

 

 
 

Drone Position Drone Speed Propeller Position Reward 

Fig 16: Drone/Propeller State Action Reward Data Model 

 

 The following Outlines a Process for Developing a 

Machine Learning Model to Solve Problems Using 

Reinforcement Learning: 

 

 Define the problem and the goal 

 Define environment components (states, actions, rewards) 

 Define environment rules and constraints 

 Define a data model 

 Develop a data structure for the data model 

 Implement the environmental logic and policies in 

software 

 Train the learning agent to learn an optimal solution 

 

VI. CONCLUSION 

 
Machine learning is a useful tool for solving problems 

that manual or purely automated solutions cannot. In order to 

solve these problems, they will need to be mapped to a 

machine learning model. We have outlined an approach to 

building machine learning models using reinforcement 

learning that is extensible. Through simulations, we have 

observed the performance of various learning policies and 

approaches. We observed that the Exploratory policy 

performed well across the board. Due to its directive to 

explore the unknown, and maximize the reward once enough 

information is known, the policy allowed for adequate 
exploration, minimizing revisiting states. The policy also 

took a greedy approach once enough information was known 

about a state, which moved the egg and platform closer to the 

goal of being balanced, faster. It is important to select a data 

structure that optimizes performance and facilitates learning. 

This is why multi-dimensional arrays proved useful due to 

their fast lookup complexity of O(1). The Learning Egg 

problem provides an example of how using a learning policy 

that explores states and actions that have not been explored 

before, then switching to a deterministic policy can be 

effective. This paper gives insight into how to build a 

machine learning model, not only for The Learning Egg 
problem, but to solve a variety of problems. 
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