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Abstract:-  One of the most prevalent diseases in the 

world is Alzheimer’s (AD). It is a neurological 

condition that can lead to cognitive decline and 

memory loss. Both the senior population and the 

prevalence of diseases affecting them have 

dramatically increased in recent years. It is critical to 

categorize the progression of Alzheimer’s disease. 

Alzheimer's disease (AD) is a complicated neurological 

ailment that progresses in different ways for each 

individual. In this study, we present a novel approach 

to personalised Alzheimer's disease progression 

prediction using machine learning techniques. Our 

goal is to create a model that can forecast the stage of 

the condition for specific individuals and classify them 

into one of four categories: Normal, Mild, Average, or 

Critical. Our method uses Convolutional Neural 

Networks (CNN) to extract characteristics from 

various MRI scans, capturing complex patterns in 

Alzheimer's progression. The CNN is extensively 

trained on a diverse dataset. Traditional classifiers 

such as Support Vector Machines (SVM) and Decision 

Trees supplement the CNN, improving the 

classification process. Furthermore, ensemble 

learning, specifically majority voting, harmonises 

predictions from CNN, SVM, and Decision Trees, 

increasing accuracy by using their individual strengths 

to predict Alzheimer's disease development. 

 

Keywords:- Convolutional Neural Networks (CNNs), 
Decision Trees, Image Preprocessing, Machine Learning, 

Support Vector  Machine (SVM), Ensemble Learning. 

 

I. INTRODUCTION 

 

Alzheimer's disease (AD) is a progressive 

neurological disorder characterised by cognitive decline, 

memory loss, and reduced everyday function. It is a huge 

global health concern, with millions of people afflicted by 

its crippling effects. AD appears in several stages, ranging 

from the early Normal stage to the Mild and Average 
stages to the advanced Critical stage, each with its own set 

of clinical characteristics and problems. This variability in 

course highlights the importance of personalised 

approaches to understanding and forecasting the disease's 

trajectory. 

 

Existing solutions for Alzheimer's progression 

prediction often face challenges in capturing the intricate 

nuances of individualized disease trajectories. 
Conventional methods may lack the granularity required 

for personalized assessments. Some approaches rely on 

clinical evaluations, while others utilize basic machine 

learning models. However, the complexities inherent in 

Alzheimer's progression demand more sophisticated 

techniques capable of handling diverse and detailed 

datasets, such as those derived from MRI images. 

 

In response to the various problems provided by 

Alzheimer's Disease (AD), our research calls for a novel 

and personalised strategy to disease progression prediction 
that makes use of machine learning. At the heart of our 

methodology is the Convolutional Neural Network 

(CNN), a powerful tool precisely created to thoroughly 

analyze MRI pictures. This CNN captures not just fine 

details, but also subtle patterns that indicate the 

progression of Alzheimer's disease. To improve the 

model's discernment, we incorporate classic machine 

learning classifiers like Support Vector Machines (SVM) 

and Decision Trees into our system. This combination 

seeks to leverage the characteristics of both deep learning 

and classical approaches, resulting in a more robust and 

nuanced categorization process. 
 

Furthermore, our methodology provides an ensemble 

learning paradigm that uses a majority vote strategy to 

align predictions from different models. This synergistic 

integration aims to improve the predictive accuracy of 

Alzheimer's disease development. By combining insights 

from CNN, SVM, and Decision Trees, our model develops 

a thorough grasp of the intricate interplay between 

numerous aspects in MRI images, resulting in more 

precise and informed predictions. The overarching goal of 

our research is to achieve substantial advances in 
personalised medicine. Through the development of this 

nuanced predictive tool, we hope to provide clinicians and 

researchers with a powerful tool for unravelling the 
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intricate trajectories of Alzheimer's disease at an 

individualized level, thereby improving our understanding 

and prediction capabilities for this complex 

neurodegenerative disorder. 

 

II. MACHINE LEARNING 

 

Machine Learning (ML) is a key field of artificial 
intelligence that allows computers to learn and make 

informed decisions from data patterns without the need for 

explicit programming. ML algorithms and models use data 

insights to improve performance and anticipate future 

outcomes. This technology has a wide range of applications, 

including image identification, natural language processing, 

recommendation systems, and even self-driving cars, which 

drives innovation across multiple industries. Machine 

learning is an extremely important field in today's digital 

world, serving as the foundation for data-driven decision-

making and automation. 

 
Machine Learning technology has proven useful in 

providing an immeasurable platform in the medical industry, 

allowing health care issues to be treated effortlessly and 

quickly. Disease Prediction is a machine learning-based 

system that largely operates depending on the symptoms 

provided by the user. The disease is predicted using 

algorithms that compare datasets to the user's symptoms. 

 

CNNA Convolutional Neural Network (CNN) is a deep 

learning method developed primarily for image processing 

and recognition. Compared to other classification models, 
CNNs require less preprocessing since they can learn 

hierarchical feature representations from raw input images. 

They excel in assigning priority to diverse objects and 

attributes in images using convolutional layers, which use 

filters to discover local patterns. 

 

CNN connectivity patterns are modelled after the visual 

cortex in the human brain, where neurons respond to specific 

regions or receptive fields in visual space. This architecture 

enables CNNs to accurately detect spatial relationships and 

patterns in images. CNNs learn progressively complicated 

features by stacking many convolutional and pooling layers, 
resulting in high accuracy in tasks such as image 

classification, object detection, and segmentation.Three 

Layers of CNN 

 

 
Fig 1  CNN 

 

Convolutional Layer: In a typical neural network each 

input neuron is connected to the next hidden layer. In CNN, 

only a small region of the input layer neurons connects to the 

neuron hidden layer. 

 

Pooling Layer: The pooling layer is used to reduce the 
dimensionality of the feature map. There will be multiple 

activation & pooling layers inside the hidden layer of the 

CNN. 

 

Fully-Connected layer: Fully Connected Layers form 

the last few layers in the network. The input to the fully 

connected layer is the output from the final Pooling or 

Convolutional Layer, which is flattened and then fed into 

the fully connected layer. 

 

 Alzheimer's Disease Progression Stages: 
 

 Normal:  

Individuals at this stage have typical cognitive function, 

with no obvious evidence of memory loss or impairment. 

There are no significant disruptions in regular activities or 

routines.The normal stage serves as a benchmark for illness 

progression assessments. 

 

 Mild Cognitive Impairment (MCI):  

Individuals in the MCI stage experience cognitive 

decline that exceeds what is typical for their age. Memory 

lapses become more noticeable, disrupting regular activities. 
MCI is classified as an intermediate stage between normal 

ageing and more severe cognitive loss. 
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 Moderate or Average Alzheimers: 

During this stage, cognitive impairment accelerates 

significantly. Memory loss worsens, affecting both present 

and old memories. Individuals may struggle to solve 

problems, make decisions, and complete ordinary tasks. 

Behavioral and personality changes may occur. 

 

 Severe Alzheimers:  
Individuals in the severe stage exhibit considerable 

cognitive impairment. Memory loss is widespread, with 

people frequently failing to recognize close family members 

or recall major life events. Communication skills degrade, 

and people may need help with daily tasks like eating and 

bathing. This stage marks a considerable deterioration in 

cognitive and functional ability. 

 

 
Fig 2 Stages 

 

III. CLASSIFICATION MODELS 

 
SVM Support Vector Machines (SVM) are an important 

component of our Alzheimer's disease progression prediction 

model, complementing the capabilities of Convolutional 

Neural Networks (CNN). SVM is capable of detecting 

complicated patterns in MRI images, making it an effective 

classifier for categorizing individuals into different 

Alzheimer's stages. SVM captures both linear and nonlinear 

correlations in our dataset by utilizing a varied range of 

kernels, including linear, polynomial, and radial basis 

function (RBF). The training method entails optimizing 

hyperparameters such as the regularization parameter (C) and 
kernel-specific parameters, with performance measured using 

conventional metrics such as accuracy, precision, recall, and 

F1-score. The interpretability of SVM findings, as well as 

their valuable contributions to the ensemble learning process, 

improve our model's overall prediction accuracy. 

 

Decision Trees play an important part in our 

Alzheimer's disease progression prediction model by 

identifying complicated interactions within MRI data. 

Decision Trees, when used as a standalone classifier, make 

the classification process more understandable and 

transparent. The model's tree structure, which is 

established by feature importance and branching criteria, 

helps us comprehend crucial indications of Alzheimer's 

progression. Decision Trees play an important role in the 

ensemble learning technique, working with Convolutional 

Neural Networks (CNN) and Support Vector Machines 

(SVM). Their forecasts are smoothly merged using 

majority voting, increasing the resilience of our model. 
Performance evaluation criteria, such as accuracy and 

contributions to overall ensemble accuracy, highlight the 

significance of Decision Trees in our holistic approach to 

personalised Alzheimer's disease progression prediction. 
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V. PROPOSED SYSTEM 

 

 
Fig 2 Proposed System 

 

 Step 1: Data Collection and Preparation: Gather 

datasets from various sources such as, Kaggle, 

ImageNet, and Open Images for training, validation, 

and testing the model. Criteria for dataset selection 
should include a high-quality MRI Image, distinct 

presentation of the features of the MRI image, and 

overall image quality. Split the dataset into training and 

testing sets, with a common ratio like 80% for training 

and 20% for testing. 
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 Step 2: Data Preprocessing: Label datasets, ensuring 

bounding boxes for CNN compatibility. Reshape 

images to uniform dimensions (e.g., 600 x 600 pixels) 

using tools like labelImg. Train the CNN Model by 

using the training dataset to automatically extract the 

hierarchical features from the input MRI image. Layers 

in the CNN will extract the low-level 

features(edges,textures) to high-level 
features(patterns,shapes).   

 Step 3: Classification using SVM and Decision Trees : 

3.1: Feature Reduction : Use the features extracted 

from the CNN as a starting point and then apply the 

dimensionality reduction techniques like Principle 

Component Analysis(PCA) before feeding the features 

into the SVM and Decision Trees Classifiers. 3.2: 

Classification: 3.2.1:SVM : Utilized the reduced 

features as input for SVM classification.3.2.2: 

Decision Trees : Can be directly use the features or can 

use the reduced features. 

 Step 4: Ensembling Methods (Voting): The classified 
results from each of those classifiers will be given as 

input to majority voting algorithms and aggregate the 

results. The results of majority voting algorithm will be 

used to performance evaluation of the model.Ensemble 

Model Output: Ensemble_Output = 

Majority_Voting(SVM_Output,DT_Output) 

 Step 5: Stage Prediction :5.1: Performance Evaluation: 

Evaluate the performance of the ensemble model using 

the metrics such as the accuracy, precision, recall, F1-

Score. 

 

 
 

 
 

 
 

 
 

 True Positive (TP): Instances that are positive and are 

correctly classified as positive. 

 True Negative (TN): Instances that are negative and are 

correctly classified as negative. 

 False Positive (FP): Instances that are negative but are 

incorrectly classified as positive. 

 False Negative (FN): Instances that are positive but are 

incorrectly classified as negative. 

 

 5.2: Alzheimers Stage Prediction : Predict the stage of the 
Alzheimers Disease based on the performance evaluation 

result.  

 

 

 

 

VI. CONCLUSION 

 

The project, “Personalized Alzheimer’s Disease 

Progression Prediction Using Machine Learning” is a 

pioneering effort aimed at addressing a critical need in the 

healthcare domain. Alzheimer’s disease is a growing global 

health concern, and early intervention is key to improving 

patient outcomes and advancing research in the field. This 
project combines cutting-edge technologies with a patient-

centered approach to provide personalized predictions 

regarding the progression of Alzheimer’s disease. The core of 

this project involves leveraging machine learning algorithms, 

including Convolutional Neural Networks (CNNs), Support 

Vector Machines (SVM), and decision trees, to analyze 

patient-specific data. This data includes MRI scans, clinical 

information, demographic details, and potential biomarker 

data. The algorithms process this information to make 

individualized predictions about the patient’s disease 

progression, including identifying the disease stage and 

assessing the risk of further advancement. Efficiency and 
optimization are central to the project, ensuring that the 

algorithms are computationally efficient and that the 

predictions are both accurate and timely. Data security and 

privacy measures are also a priority, safeguarding sensitive 

patient information. A user-friendly web application serves 

as the interface for both healthcare professionals and patients. 

It allows for seamless data input, interaction, and 

visualization of predictions. The project’s outcomes include 

not only personalized predictions but also actionable 

recommendations for treatment and clinical monitoring. By 

providing healthcare professionals and patients with valuable 
insights into the disease’s progression, this project empowers 

them to make informed decisions, plan for the future, and 

potentially slow the disease’s advance. 
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