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FALL and RISE of Matrix Mechanics 
 

Dr. Ismail Abbas 
 

Abstract:- In 1925, W. Heisenberg, Max Born and 

Pascual Jordan introduced the first so-called matrix 

mechanics (HMJ theory) to study the fine structure of 

the Bohr hydrogen atom. 
 

However, in the early 1930s, the equivalence 

between the HMJ theory and the Schrödinger equation 

was denied and the HMJ theory fell. 
 

In 2020, a new theory of matrix mechanics 

emerged, called b-matrix chains, and has been 

successfully applied to different 3D situations in classical 

physics as well as quantum mechanics. 
 

In this paper we study the application of new 

matrix theory to the initial value problem in the 3D heat 

diffusion equation as well as to quantum particles in a 

3D cube where the numerical results are strikingly 

accurate. 
 

The similarity of the matrix techniques applied in 

both cases suggests that nature has only one face to show 

in classical and quantum physics. 
 

I. INTRODUCTION 
 

In 1925, W. Heisenberg, Max Born and Pascual Jordan 

introduced so-called matrix mechanics (HMJ theory) to 

study the fine structure of Bohr hydrogen atom. HMJ theory 

succeeded in finding quantum numbers such as l,m,s in 

addition to the principal quantum number n. 
 

HNJ proposed a square matrix generally having 

complex entries which was considered a matrix formulation 

of QM and obviously the first mathematical formulation of 

quantum mechanics. It is conceptually autonomous and 
logically coherent [2]. 

 

In 1927 the well-known Schrödinger equation SE 

appeared with the Bohr/Copenhagen interpretation. 
 

SE, with the Copenhagen interpretation of quantum 

mechanics, has dominated the field since the 1930s. 
 

In the years 1927 to 1930, the equivalence between 

HMJ theory and SE theory was supported by rigorous 

mathematical proofs, with the exception of the extended 

concept regarding the quantum superposition of the wave 
function resulting from the interpretation of 

Bohr/Copenhagen where the HBJ takes late. 
 

Unlike HBJ, Schrödinger equation perceived the field-

like continuity of some key microphysical phenomena, such 
as the interference phenomena of a coherent electron beam 

in double-slit experiments. 
 

In the late 1930s there was much debate about the 

equivalence of HMJ's and Schrödinger's equation until the 
performance of a double-slit interference experiment which 

clearly showed that the theory of HMJ fell short of SE 

theory with respect to the principle of superposition. 
 

Furthermore, HBJ theory has never addressed the 

description of macroscopic physical phenomena and is 

therefore considered incomplete. 
 

In other words, HMJ theory is incomplete because it 

cannot solve classical physics problems such as the thermal 

diffusion equation. 
 

As a result, the HMJ and SE equivalence has been 

debunked and considered a myth in the interpretation of 

double-slit interference experiments. 
 

This is what we call the fall of Matrix Mechanics 

almost a century ago. 
 

However, In 2020, a new theory of matrix mechanics 

MM emerged and successfully applied to different areas of 

classical physics in addition to quantum mechanics. 
 

This is what we call the renaissance or rise of matrix 

mechanics. 
 

The new matrix mechanics (MM) procedure is called 

B-matrix chains and is abbreviated as BMM. 
 

The important inherent depth difference between HBJ 

and BMM matrix mechanics is that BMM theory is more 
comprehensive. 

 

HBJ is a lifeless mathematical description in 3D+t 

space while matrix chain technique B is a living natural 
statistical system capable of evolving natural situations in 

4D x-t unit space. 
 

In other words, in the HBJ technique, the time step dt is 

fixed arbitrarily and not quantified as in the case of the 
BMM technique. 

 

The Schrödinger equation and HBJ matrix mechanics 

operate in a separable 3D+t space, so HBJ and SE theories 

can be seen, in some way, as a subset of SE and not the other 
way around. 

 

In this article, we explain how to apply the new BMM 

technique to show the temporal evolution of initial value 

problems in two 3D situations namely: 

 Heat diffusion in a metal cube, 

 Energy states of a quantum particle in a closed box. 
 

The analysis and numerical results show that the same 
inputs of 3D matrix chains are used in both classical physics 

(i) and quantum mechanics (ii). 
 

The similarity between classical physics and quantum 

physics has also been demonstrated in previous 
articles[3,4,5]. 
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This means that nature has a face to show in classical 

and quantum physics. 
 

The transition matrix B and hence BMM is well 

defined and has been successfully applied to different areas 

of classical physics such as Poisson and Laplace PDE, heat 

diffusion equation, theory and design of the audio. rooms, 

Limited integration in 1D, 2D, 3D    ,etc. [6,7,8,9]. 
 

Furthermore, the extension of BMM to find a 

numerical statistical solution of the time-independent 

Schrödinger equation in 1D, 2D and 3D was also recently 

described and the numerical results were surprisingly 

accurate [3,4,5]. 
 

An important reason to replace the Schrödinger 

equation with the equivalent B-matrix mechanics is that 

you move from the domain of SE where many questions 

remain unanswered to the domain of statistical matrix 

equations where almost all questions have answers. 
 

The extension of physical matrix mechanics to the 

solution of Schrödinger equation requires strict adherence to 

certain fundamental limits that apply to the entire BMM 

theory. 
 

Additionally, the application of the concept of physical 

B-transition matrix chains (B-matrix mechanics) to the 

solution of both classical physics problems and Schrödinger 

equations requires the introduction of certain physical terms 

or concepts and basic mathematics which we leave briefly 

explained in the following hypotheses: 

 Square matrices are a subset of mathematical matrices, 

and physical square matrices that have physical meaning 

(such as the transition matrix B) and favored for defining 

matrix mechanics are a subset of square matrices. 

 What is a numerical and/or statistical solution! 
 

The numerical solution replaces the analytical solution 

of the time-dependent PDE by discretizing space and time 

into dx and dt and replacing the differentials dy/dx by 

[y+dy-2y +y-dy]/2dx and d ^2 y/dx ^ 2 by [y+dy-2y +y-

dy]/dx^2. etc. 
 

In other words, the numerical solution method reduces 

the PDE to a system of algebraic equations via the finite 

difference method FDM. 
 

On the other hand, computational methods such as 

(FDM) are not necessary in transition matrices of statistical 

solutions since FDM techniques inherently exist in statistical 

chains of transition matrices. 
 

 Statistical transition matrices B and chains of statistical 

transition matrices exist and define a distinguished kind 

of matrix mechanics. Its modeling works effectively to 

find the evolution of energy density in partial differential 

equations. 
 

We currently know two, namely the mathematical and 

statistical transition matrix of Markov and the physical 

transition matrix B which is the subject of this article. 
 

It is worth mentioning that in Markov matrix chains we 

do not care about the energy density, boundary conditions, 

source term, average properties of the medium, etc., whereas 

in the case of matrix chains B, we do it. 
 

 When a physical statistical transition matrix chain B for 

the energy density U(x,y,z,t) exists then it can be defined 

by the recurrence relation, 
 

U (x, y, z, t+ dt) = B. U(x,y,z,t) 
 

Note that the transition matrix B should have a place 

for the boundary conditions BC and the source term S which 

are essential in the solution of the heat diffusion equation as 

well as the Schrödinger equation. 
 

As a result, a chain transition matrix B emerges and 

must be able to describe the solution trajectory for the 

energy density U through its own solution space for any 

given time evolution in 4-D unitary xt space. Also note that 

the string transition matrix B describes the energy density in 

classical physics problems and the square of the wave 

function ψ2(r) in quantum mechanics problems. 

 Classical macroscopic statistics and quantum 

microscopic statistics are subject to the same physical 

transition matrix B. which means that nature only has 

one face to show. 

 In the matrix chain solution for the time-dependent 

energy density U(x,y,z,t) the real time t is completely lost 

and replaced by N.dt where N is an integer describing 

the number of iterations and dt is an inherent time step or 

jump in time. 
 

Time is replaced by the number of repetitions of the 

physical process N. 
 

It is also worth mentioning that discretizing time t into 

forbidden and allowed where t = N dt and N is an integer is 

itself a quantification of time. Apparently, this condition 

replaces Bohr's hypothesis of energy quantification in 1913. 
 

 The matrix solution for the energy density U(x, y, z, t) in 

the time-dependent and time-independent PDEs appears 

as a matrix equation. 
 

This is exactly what one would expect from a matrix 
mechanics technique. 

 

Not all matrix equations “resulting from the solution of 

PDE via the transition matrix B” are eigenvalue equations. 

For example, the matrix equation of the numerical solution 
of the heat diffusion equation results in a matrix system of 

non-homogeneous first-order linear algebraic equations 

while the matrix equation of the numerical solution of the 

Schrödinger equation is homogeneous and results in an 

eigenvalue problem. . Several eigenvalues have their 

corresponding eigenvectors. The time-dependent and time-

independent Schrödinger equations are in-depth examples of 

eigenvalue equations in quantum mechanics, with their 

eigenvalues corresponding to the allowed energy levels of 

the quantum system. Generally speaking, in the statistical 

transition matrix B, the eigenvalue is the dominant 
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eigenvalue (eigenvalue of the maximum absolute value) 

equal to 1. 
 

 What is the time-dependent Schrödinger equation and 

what is the time-independent Schrödinger equation? 
 

The time-dependent equation is iℏ(dψ/dt)= Ĥψ,  
 

and the time-independent equation is Eψ = Ĥψ. 
 

Which show that the Schrödinger equation is a second 

order linear PDE in what is called the wave function ψ(x,t) 

and constitutes a means of probabilistically describing the 

temporal evolution of energy, of the momentum and position 

of quantum particles in space. His time-independent 
equation for ψ(x) describes the equilibrium state that occurs 

when evolutionary time tends to infinity. It should be noted 

that another way to describe the dynamics of quantum 

particles is to use statistical transition matrices (New Matrix 

Mechanics) which completely ignore the Schrödinger 

equation and the wave function ψ as if they do not had never 

existed in the same way as we solve the heat diffusion 

equation. without going through thermal EDP. 
 

This is obviously ψ2 and not ψ itself 

 In addition, the method of separating variables 

W(x,y,z,t)=X(x)Y(y)Z(z) f(t)  is also not necessary 

because it is intrinsically included in the 4D unit space 

inseparable x-t from the strings of matrix B. 

 The numerical method (technique) of Monte Carlo is 

closest to the Cairo technical method and matrix 

mechanics. However, the numerical Monte Carlo method 
is a bit old and requires generating a random numerical 

variable thousands of times. This makes the 

interpretation of its numerical results long and tedious. 

 The determinant of the quantum transition matrix 

Q=B+V(x,y,z) must be equal to zero to identify the 

homogeneous system which gives rise to the eigenvalue 

problem. 
 

In other words, a determinant equal to zero means that 

a matrix is a singular matrix. A matrix is singular if it has no 

inverse, which means it cannot be used to solve systems of 

linear equations. 
 

 In the problem of eigenvalues in matrix chains B, the 

dominant or maximum eigenvalue =1. 

 Finally, let us emphasize again that today we only know 

a kind of physical transition matrix and a kind of 

mechanical matrix which is the transition matrix B 

resulting from the so-called Cairo technique. 
 

But why does the matrix mechanics introduced by the 

transition matrix chains B allow a better understanding of 

theoretical physics? 
 

The Schrödinger equation describes how a particle's 

wave function ψ(x, y, z) explores 3D space as a function of 

time t. 
 

Three-dimensionality is the fundamental intrinsic lack 

of SE. 
 

We logically assume that SE is, in some way, a subset 

of matrix mechanics and not the other way around. It would 

be absurd to expect that the missing physical elements of the 

SE would be completed by the SE itself. 
 

II. THEORY 
 

In the Cairo techniques approach, the time-dependent 

solution of the PDE of energy density U(x,t) is given by 

[6,7,8,9], U(x, t)=D(N) . (b + S) + IC. B^N. . . . . (1) 
 

Where S is the vector of the source/sink term and IC is 

the vector of the initial conditions. 
 

Equation 1 is used as a time-dependent statistical 

equivalence matrix that can be used in the solution of 
classical physics problems such as thermal conduction PDE 

and it is also proposed to find a solution to the 3D 

Schrödinger equation . 
 

It should be noted that equation 1 contains a term 

due to the initial state conditions described by IC. B^N 

which is expected to decrease exponentially with time 

because the modulus of matrix B is less than 1. 
 

This term tends to zero with time in non-isolated 

systems of classical physics such as the heat diffusion 

equation, but not in isolated quantum mechanical systems 

such as described by the time-dependent Schrödinger 

equation. 
 

For isolated quantum mechanical systems as 

described by the time-dependent Schrödinger equation, the 

matrix B is completed by the voltage matrix V(x,y,z) and 

therefore does not tend to zero with time. 
 

Note that equation 1 is the solution of U(x,t) in a 4D 

unit space xt where the real time t is completely lost and 

replaced by a dimensionless integer N. 
 

Again, the integer N is the number of iterations which 

is the number of time steps or time jumps dt. 
 

Equation 1 is very important because it defines the 
spatio-temporal evolution of the energy density U in space 

and time in matrix form. Furthermore, equation 1 is the 

solution source of matrix mechanics in classical and 

quantum physics. 
 

In fact, Equation 1 is the fundamental idea of B-matrix 

mechanics. 
 

The application of equation 1 to the solution of 

quantum mechanical problems has been successfully carried 
out in 1D, 2D and 3D situations [3,4,5] where the solution 

process must be carried out in consecutive steps. 

 We first assume an intrinsic and/or extrinsic landscape 

potential V(x,y,z) which must be symmetrical and imply 

a zero BC potential. 

 We assume that the matrix B(x,y,z) must be completed 

by a diagonal matrix V(x,y,z) representing the source 

term S, that is to say 
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S(x,y,z,t)=Constant. V(x,y,z,t) . . . .. (2) 
 

Where S is a source/sink term. 
 

The constant of equation 2 is found by trial and error 

such that the determinant of [B + V(x,y,z,t).I] is equal to 
zero (rule 12 of section I) and is explained in more detail in 

section III (numerical results). 
 

Equation 2 is a breakthrough because it characterizes 

the physical domain of validity of SE and suggests a 
statistical solution to 3D Schrodinger equation that 

circumvents SE itself. 
 

Note that there is a simple way to solve the matrix 

statistical equivalence of SE, i.e. 
 

U(x, t)=D(N) . (b + S) + IC. B^N. . . . . . (1) 
 

This involves assuming in advance the potential 

landscape V (x, y, z) first, then working backward to find the 

eigenvalues and eigenvectors of the energy. This can also be 

a way to resolve the SE, while it's easier to go back and look 

for a solution. 
 

This is exactly what happens even when solving the 

1D, 2D and 3D Schrödinger equation via B-matrix statistical 

chains [3,4,5], while it is better to first assume the potential 

landscape before solve. 
 

We also know that the solution of matrix chains B 

bypasses SE and therefore may be, in some way, more 

informative than SE itself, a claim which will be explored in 

more detail when describing solutions to time dependent 

Schrödinger's equations in 4D.  

 

It is worth mentioning that B-matrix string theory is 

not entirely new and has been working effectively in 

different fields of classical physics since 2020 [6,7,8,9]. 
 

The ultimate goal of B-matrix mechanics is to find 

the adequate numerical solution to physical problems in 

almost all areas of classical physics as well as those of the 

Schrödinger equation by expressing the relevant physical 

quantities in a unit x-t space. 
 

In order not to worry too much about the details of the 

theory, let's move on to the following numerical results. 
 

III. NUMERICAL RESULTS 
 

A. III-A 

A Heat diffusion equationInitial value problem, 
 

T(x,y,z,t=0) =constant or unity. 
 

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]T 
 

Required to find T(x,y,z,t=0) at any time t<0. 
 

 Step 1 

Construct the transition matrix B with fixed RO 

corresponding to the adequate thermal diffusion coefficient 
D of the material tested. 

 

We assume here that RO = 0.2, which corresponds to 

the thermal diffusivity of high purity aluminum metal. 
 

The 3D transition matrix B(27x27) for RO=0.2 is given 

by, 

 

0.20 0.6/8 0.00 0.6/8 0.000 0.00 0.00 0.00 0.00 0.6/8 0.00     0 0.00 0.00   0.00   0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 

0.6/8 0.20 0.6/8 0.00 0.6/8 0.00 0.00 0.00 0.00 0.00 0.6/8 0.000 0.000 0.000 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.000 0.000 0.000 0.000 

0.0 0.6/8 0.20   0.0   0.0 0.6/8   0.0   0.0 0.00 0.00 0.00 0.6/8 0.00   0.0    0.0    0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 

0.6/8 0.000 0.00 0.20 0.6/8   0.0 0.6/8   0.0 0.00   0.0 0.00   0.0 0.6/8 0.00   0.00   0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00   

0.0   0.0   0.0 

0.00 0.6/8   0.0 0.6/8 0.20 0.6/8 0.00 0.6/8 0.00 0.00 0.00 0.00 0.00 0.6/8   0.00   0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 

0.00 0.00 0.6/8 0.00 0.6/8 0.20 0.00   0.0 0.6/8 0.00 0.00 0.00 0.00 0.00 0.6/8    0.0   0.0   0.0 0.00   0.0   0.0   0.0   0.0   0.0   0.0 

0.00   0.0 

0.0   0.0 0.00 0.6/8   0.0   0.0   0.2 0.6/8   0.0   0.0   0.0 0.00 0.00 0.00   0.00 0.6/8   0.0   0.0 0.00 0.00 0.00   0.0   0.0 0.00 0.00 

0.00 0.00 

0.0   0.0 0.00 0.00 0.6/8 0.00 0.6/8 0.20 0.6/8   0.0   0.0   0.0   0.0   0.0    0.0   0.00 0.6/8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 

0.0 0.00 0.00 0.00 0.00 0.6/8   0.0 0.6/8 0.20   0.0 0.00 0.00 0.00 0.00   0.00   0.00 0.00 0.6/8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00   0.0 

0.6/8 0.00 0.00 0.00 0.00   0.0   0.0   0.0   0.0 0.20 0.6/8 0.00 0.6/8   0.0    0.0    0.0   0.0   0.0 0.6/8   0.0   0.0   0.0 0.00 0.00 0.00   

0.0   0.0 

0.0 0.6/8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.6/8 0.20 0.6/8   0.0 0.6/8   0.00   0.00 0.00 0.00 0.00 0.6/8   0.0   0.0   0.0 0.00 0.00 

0.00 0.00 

0.0 0.00 0.6/8 0.00   0.0 0.00 0.00 0.00 0.00 0.00 0.6/8 0.20 0.00 0.00 0.6/8    0.0 0.00 0.00 0.00   0.0 0.6/8 0.00   0.0 0.00   0.0   

0.0   0.0 

0.0   0.0   0.0 0.6/8   0.0   0.0   0.0   0.0   0.0 0.6/8   0.0   0.0 0.20 0.6/8   0.00 0.6/8   0.0   0.0   0.0   0.0   0.0 0.6/8   0.0   0.0   0.0   

0.0   0.0 
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0.0   0.0   0.0   0.0 0.6/8   0.0   0.0   0.0   0.0   0.0 0.6/8   0.0 0.6/8 0.20 0.6/8   0.00 0.6/8   0.0   0.0 0.00   0.0 0.00 0.6/8 0.00 0.00 

0.00 0.00 

0.0   0.0   0.0   0.0   0.0 0.6/8   0.0   0.0   0.0   0.0   0.0 0.6/8   0.0 0.6/8   0.20    0.0   0.0 0.6/8   0.0   0.0 0.00   0.0   0.0 0.6/8   0.0   

0.0   0.0 

0.0   0.0   0.0   0.0   0.0   0.0 0.6/8   0.0 0.00   0.0 0.00   0.0 0.6/8   0.0    0.0   0.20 0.6/8   0.0   0.0   0.0   0.0   0.0   0.0   0.0 0.6/8   

0.0   0.0 

0.0   0.0   0.0   0.0   0.0   0.0   0.0 0.6/8   0.0   0.0   0.0   0.0   0.0 0.6/8    0.0 0.6/8 0.20 0.6/8   0.0   0.0   0.0 0.00 0.00 0.00 0.00 

0.6/8   0.0 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.6/8 0.00 0.00 0.00   0.0 0.00 0.6/8    0.0 0.6/8 0.20 0.00 0.00 0.00 0.00   0.0 0.00 0.00 

0.000 0.6/8 

0.00 0.00 0.00   0.0 0.00 0.00 0.00 0.00 0.00 0.13   0.0 0.00 0.00 0.00   0.00   0.00 0.00 0.00 0.20 0.6/8 0.00 0.6/8 0.00 0.00 0.00 

0.00 0.00 

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00   0.00   0.00 0.00 0.00 0.6/8 0.20 0.6/8   0.0 0.6/8 0.00 0.00 

0.00   0.0 

0.00 0.00 0.00 0.00 0.00   0.0 0.00 0.00   0.0   0.0 0.00 0.6/8 0.00 0.00   0.00    0.0 0.00 0.00 0.00 0.6/8 0.20   0.0 0.00 0.6/8 0.00 

0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00   0.0   0.0 0.00 0.00 0.6/8 0.00   0.00   0.00 0.00 0.00 0.6/8 0.00 0.00 0.20 0.6/8 0.00 0.6/8 

0.00   0.0 

0.0 0.00   0.0   0.0 0.00   0.0   0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.6/8   0.00    0.0   0.0   0.0 0.00 0.6/8   0.0 0.6/8 0.20 0.6/8 0.00 
0.6/8 0.00 

0.00   0.0 0.00 0.00 0.00 0.00   0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.6/8   0.00 0.00 0.00 0.00 0.00 0.6/8 0.00 0.6/8 0.20 0.00   

0.0 0.6/8 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00   0.00   0.13 0.00 0.00 0.00 0.00 0.00 0.6/8 0.00 0.00 0.20 

0.6/8 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00   0.00   0.00 0.13   0.0 0.00 0.00 0.00 0.00 0.6/8 0.00 0.6/8 

0.20 0.6/8 

0.0 0.00 0.00 0.00 0.00   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.00    0.0   0.0 0.6/8   0.0   0.0 0.00 0.00 0.00 0.6/8 0.00 

0.6/8 0.20 
 

We call this matrix M1. 
 

 Step 2 

Use equation 1 with the substitution, b=0 and S=0. 
 

Equation 1 reduces to, 

U(x,y,z,t)=B^N. U(x,y,z,t=0) 
 

The numerical results of temperature T as a function of 
dimensionless time t=N are presented in Table I. 

 

Table I. temperature T (x,y,z,t)  against time N 

N=0 

T= 
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 
 

What is the temperature distribution under initial 

conditions t=0. 

N=1 
T= 

{0.425, 0.5, 0.425, 0.5, 0.575, 0.5, 0.425, 0.5, 0.425, 

0.5, 0.575, 0.5, 0.575, 0.65, 0.575, 0.5, 0.575, 0.5, 0.48, 

0.555, 0.425, 0.5, 0.575, 0.5, 0.48, 0.555, 0.425] 

N=2 

T= 

0.198 0.25  0.198 0.25  0.314 0.25

  0.198   

0.198 0.25   0.314 0.318 0.25 0.318  

0.389..etc..  

N=3 

T=  

[0.096, 0.127, 0.096, 0.127,  0.167, 0.127, 0.096 , 
0.127, 0.096, 0.131, . 127 , 0.127,  0.168 ,  0.229   .. etc..,  

 

Note that throughout the previous cooling curve where 

all 27 nodes evolve towards zero temperature, the central 

node 14 is always at the maximum temperature. 
 

Figure 1 shows the numerical results presented in Table 

I for the nodes on axes 5,14,23. 
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Fig. 1: Numerical results of the temperature T on the axis of the metal cube at different times N. 

 

B. III-B: Quantum particle in the 3D dimensional box 

One of the important applications in quantum mechanics 

is the total energy distribution of a quantum particle in the 

3D dimensional box. 
 

 Step 1 

Similar to the heat diffusion equation, we start with the 

3D transition matrix B with the only change that RO = 0 and 

not 0.2. 
 

We call this matrix M2. 
 

 Step 2 

Construct the quantum transition matrix Q with fixed RO 

= 0 as explained in reference 5. 
 

Again, the transition eigenmatrix Q is given by, 

Q = B + C. V(x,y,z).I 
 

The constant C is a function of the size and shape of 

the matrix B and can be easily found by trial and error if we 

know that: 

 Determinant [Q}=0. 

 V(x,y,z) is symmetrical with respect to the center of 

mass of the geometric shape which here coincides with 

node 14. 
 

Here the quantum transition matrix Q is given by, 
 

 

3/16  1/6  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0

  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 1/6 4/16  1/6  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0  0.0

  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  1/6 3/16  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0

  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 1/6  0.0  0.0 4/16  1/6  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0

  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
 0.0  1/6  0.0  1/6 6/16  1/6  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6  0.0

  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0  1/6  0.0  1/6 4/16  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6

  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0  1/6  0.0  0.0 3/16  1/6  0.0  0.0  0.0  0.0  0.0  0.0  0.0

  1/6  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  1/6  0.0  1/6 4/16  1/6  0.0  0.0  0.0  0.0  0.0  0.0

  0.0  1/6  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0  1/6  0.0  1/6 3/16  0.0  0.0  0.0  0.0  0.0  0.0

  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 1/6  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 4/16  1/6  0.0  1/6  0.0  0.0

  0.0  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 
 0.0  1/6  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1/6 6/16  1/6  0.0  1/6  0.0

  0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1/6 4/16  0.0  0.0  1/6

  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0  0.0 
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 0.0  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0 6/16  1/6  0.0

  1/6  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6  0.0  1/6 8/16  1/6

  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6  0.0  1/6 6/16

  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0

 4/16  1/6  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0 
 0.0  0.0  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6  0.0

  1/6 6/16  1/6  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1/6  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6

  0.0  1/6 4/16  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1/6 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0

  0.0  0.0  0.0 3/16  1/6  0.0  1/6  0.0  0.0  0.0  0.0    0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0  0.0

  0.0  0.0  0.0  1/6 4/16  1/6  0.0  1/6  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0  0.0

  0.0  0.0  0.0  0.0  1/6 3/16  0.0  0.0  1/6  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0
  0.0  0.0  0.0  1/6  0.0  0.0 4/16  1/6  0.0  1/6  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1/6  0.0

  0.0  0.0  0.0  0.0  1/6  0.0  1/6 6/16  1/6  0.0  1/6  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1/6

  0.0  0.0  0.0  0.0  0.0  1/6  0.0  1/6 4/16  0.0  0.0  1/6 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0

  1/6  0.0  0.0  0.0  0.0  0.0  1/6  0.0  0.0 3/16  1/6  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0

  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6 0.00  1/6 4/16  1/6 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0

  0.0  0.0  1/6  0.0  0.0  0.0  0.0  0.0  1/6  0.0  1/6 3/16 
 

We call this matrix M3. 
 

 Step 3 

Use equation 1 with the substitution, b=0 and S=0. 
 

Equation 1 reduces to, 
 

U(x,y,z,t)=Q^N. U(x,y,z,t=0) 
 

The numerical results of the total quantum energy as a 

function of time N are presented in Table II. 
 

Table II. Energy density U (x,y,z,t)  against time N 
N=0 

U(x,y,z)= 

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 
 

What is the temperature distribution under initial 

conditions t=0. 

N=1 

U(x,y,z)= 

[11/16 11/12 11/16 11/12 29/24 11/12 11/16 11/12 
11/16 11/12 29/24 11/12 29/24 3/2 29/24 11/12 29/24 11/12 

11/16 11/12 11/16 11/12 29/24 11/12 11/16 11/12 11/16] 

N=2 

U(x,y,z)= 

930611/1769472 284309/331776 930611/1769472 

284309/331776 487973/331776 284309/331776 

930611/1769472 284309/331776 930611/1769472 

284309/331776 487973/331776 284309/331776 

487973/331776 35113/13824 487973/331776 

284309/331776 487973/331776 284309/331776 

930611/1769472 284309/331776 930611/1769472 

284309/331776 487973/331776284309/331776 

930611/1769472 284309/331776 930611/1769472 
N=3 

U(x,y,z)= 

0.526, 0.857, 0.526, 0.857, 1.471, 0.857, 0.526, 0.857, 

0.526,0.857, 1.471, 0.857, 1.471, 2.540, 1.471, 0.857, 1.471, 

0.857,0.526, 0.857, 0.526, 0.857, 1.471, 0.857, 0.526, 0.857, 

0.526  

 

(PDF) FALL and RISE of Matrix Mechanics. Available 

from: 

https://www.researchgate.net/publication/377220714_FALL

_and_RISE_of_Matrix_Mechanics [accessed Jan 08 2024]. 
 

When the above results are validated via the 

conditions, i,ii, they showed excellent agreement, which 

means that the mechanics of matrix B are almost exact. 
 

Figure 2 shows the numerical results presented in Table 

II.
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Fig. 2: Numerical results for the energy of quantum particles in a box at different times N. 

 

IV. CONCLUSION 
 

It is possible to extend physical transition matrix 

chains or B-matrix mechanics to the solution of the time-
dependent Schrödinger equation. 

 

The present study shows that the same statistical chains 

of the B matrix can be applied to the solution of the 3D heat 

equation as well as to that of the Schrödinger equation. 
 

This means that nature only has one face to show in 

classical and quantum physics. 
 

We present the solution for two illustrative situations, 

namely the initial-valued thermal diffusion problem and the 

equilibrium energy distribution for a given initial state of a 

quantum particle in a three-dimensional box where the 

numerical results are excellent precision. 
 

Note: In the previous calculations, the author used his 

own double precision algorithm as explained in ref. 12. 
 

No ready-made algorithms such as Python or MATLAB 

are required. 
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