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Abstract:-  Pallet racking systems are shelves that are 

specifically intended to hold palletised items, and they are 

essential for the safe and effective handling of products in 

warehouses. These shelves are susceptible to damage from 

a variety of sources, including as wear and tear and 

collisions, which might jeopardise their structural 

integrity and put workers and stored items at risk. It's 

critical to identify faulty pallet racking quickly to avoid 

mishaps, product loss, and interruptions to business 

operations. Pallet racking system upkeep and routine 

inspections, however, can be expensive and prone to 

human mistakes. This research study suggests Pallet-Net, 

a unique deep learning technique that employs an 

attention-based convolutional neural network (CNN) to 

automatically detect faulty pallet racking, as a solution to 

this problem. The suggested technique uses attention 

processes to concentrate on the pallet racking image's 

damaged areas, making it easier to locate and identify 

damage. Pallet-Net precisely categorises the racking as 

either damaged or undamaged by learning the 

discriminative properties of these zones. The suggested 

approach, when compared to previous studies, provides 

great robustness and accuracy in locating and recognising 

damaged areas in pallet racking photos. Moreover, the 

proposed method obtains a 97.64% total accuracy rate, 

with 98% precision, 98% recall, and 98% F1 score. Recent 

deep learning models like Vision Transformer (ViT) and 

Compact Convolutional Transformer (CCT) are also 

analysed and compared to the suggested architecture. 
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I. INTRODUCTION 

 

Pallet racking refers to a system of storage racks 

specifically designed to organise and efficiently store goods in 

warehouses and storage facilities. It consists of vertical frames, 

horizontal beams, and various supporting components to create 

multiple levels of storage space. It is pivotal in efficiently 

storing and organising goods in warehouses and storage 

facilities. These systems provide vertical storage solutions that 

maximise space utilisation and enable easy access to stored 
items without requiring additional floor space. By providing an 

organised storage solution, pallet racking allows efficient 

inventory control, easy product identification, and streamlined 

picking operations, reducing time and effort. However, pallet 

racking systems are susceptible to damage over time due to 

various factors, including collisions, overloading, improper 

handling, wear and tear, incorrect installation or maintenance, 

and external forces. Accidental collisions with forklifts or other 

equipment can result in bending, distortion, or misaligning of 

structural components, such as upright frames and horizontal 

beams. Exceeding the weight capacity of the racks can lead to 

structural strain, compromising stability and potentially 

causing collapse. Inadequate handling practices and improper 

placement or removal of pallets can exert excessive force on 
the racking system, resulting in impact damage. Wear and tear 

from continuous loading and unloading, environmental 

conditions, and friction can gradually weaken the rack’s 

structural integrity, leading to rust, corrosion, or deterioration. 

Additionally, external forces like earthquakes, extreme weather 

conditions, or impacts from heavy objects can threaten the 

integrity of pallet racking systems [1], compromising their 

structural integrity and posing significant risks to personnel and 

stored goods. Detecting and addressing damaged pallet racking 

in a timely manner is essential to prevent accidents, minimise 

product loss, and ensure the smooth operation of warehouse 
logistics. 

 

The conventional approach to identifying damaged pallet 

racking heavily relies on manual inspections carried out by 

trained personnel. During these inspections, the racking system 

is visually examined for indications of damage, such as bent 

components, cracks, or misalignments. While this technique 

serves as a starting point for detection, it has several 

shortcomings. For one, manual inspections are time-consuming 

and demanding, particularly in large-scale warehouses or 

facilities with numerous racks, causing delays and disruptions 

to daily operations. Secondly, the subjectivity of visual 
assessments introduces the possibility of human error, leading 

to missed or misidentified damages. The interpretation of 

damage severity may also vary among different individuals, 

further affecting the consistency of detection results. 

Furthermore, manual inspections may not effectively detect 

subtle signs of damage or potential structural weaknesses that 

could result in accidents or failures in the future. Additionally, 

these inspections offer limited quantitative data for analysis and 

tracking of the overall health and condition of the racking 

system. In summary, the manual inspection approach for 

detecting damaged pallet racking requires greater efficiency, 
consistency, and the ability to provide comprehensive insights 

for effective maintenance and risk management. 

http://www.ijisrt.com/


Volume 9, Issue 1, January – 2024                 International Journal of Innovative Science and Research Technology                                                 

                                               ISSN No:-2456-2165 

 

IJISRT24JAN241                                                               www.ijisrt.com                         729 

Recent advances in computer vision and machine 

perception using deep learning promise automated solutions in 
diverse areas, including healthcare [2,3], renewable energy [4], 

and industrial quality inspection [5]. In this research, we 

leverage such techniques to develop automated damage 

detection for warehouse pallet racking systems, critical but 

susceptible components of inventory storage. The field has 

witnessed dramatic progress through sophisticated deep neural 

network architectures such as convolutional neural networks 

(CNNs) [6] and recurrent neural networks (RNNs) [7], 

enabling unprecedented performance in computer vision, 

language processing, and speech recognition. Landmark CNN 

models, including VGGNet [8], ResNet [9], Inception [10], 

RCNN [11], and Fast RCNN [12], aided by expanding datasets 
and GPU computing, have achieved remarkable accuracy in 

classification, detection, and generative modelling of images. 

Novel deep approaches like YOLOv7 [13], GANs [14] and 

vision transformers [17] further extend these abilities. Building 

upon such advances, we propose a tailored CNN methodology 

employing visual attention to focus selectively on racking 

damage cues, learning highly discriminative representations, 

and enabling precise automated identification. By pursuing 

robust, accurate, and computationally efficient perception, this 

research aims to promote safety and efficiency in the automated 

monitoring of warehouse storage environments. 
 

This paper puts forward Pallet-Net, a novel computational 

method leveraging attention-driven convolutional neural 

networks (CNNs) to automatically classify warehouse pallet 

racking systems as damaged or undamaged. Explicitly focusing 

visual attention on areas indicative of damage facilitates precise 

localisation and identification of distorted, cracked, or 

misaligned rack structures from images. Our tailored CNN 

architecture, trained on pallet rack datasets, learns to extract 

highly discriminative damage characteristics, enabling reliable 

automated decisions on rack integrity. We extensively evaluate 

Pallet-Net against recent methods, including vision 
transformers and compact convolutional transformers. 

Experiments demonstrate state-of-the-art classification 

accuracy, precision and recall exceeding 97% on held-out test 

data, with computational efficiency amenable to real-time 

monitoring. By reliably automating visual assessments 

currently requiring laborious manual inspection, this research 

promises significantly enhanced safety and reduced downtimes 

and risks in modern warehouse environments. Results further 

inform the future incorporation of attention-based deep 

learning in related structural health monitoring applications. 

 
The remainder of this paper is organised as follows. 

Section 2 discusses related work on object detection and 

classification using deep learning. Section 3 presents the 

methodology, including dataset collection, network 

architectures, training process, and ensemble learning 

techniques. Section 4 describes the experimental setup, 

evaluation metrics, and results. Section 5 compares our 

proposed solution with other existing solutions, and Section 6 

concludes the paper. 

 

 
 

II. RELATED WORK 

 
A. Pallet Racking Inspection Methods 

Numerous studies have been conducted on detecting and 

evaluating damaged pallet racking systems. The conventional 

approach entails manual inspections by trained personnel who 

visually examine the racking systems for indications of 

damage, such as bent or distorted components, cracks, or 

misalignments. However, these inspections could be more 

laborious, time-consuming, and susceptible to human error. To 

overcome these limitations, various automated inspection 

techniques have been researched by experts. In a recent study, 

Hong-Hu Zhu et al. [18] delved into the increasing usage of 

innovative sensing technologies in civil infrastructure and their 
advantages in construction, operation, maintenance, and 

upgrading. He highlighted various facets of innovative sensing 

technologies and their utilisation in civil infrastructures, such 

as innovative mechanisms and devices, on-site 

implementation, supporting technologies and methodologies, 

and real-life examples. In another recent research paper, 

Hussain et al. [19] presented a self-governing system for 

inspecting storage racks using the MobileNetV2-SSD 

architecture. The proposed system is claimed to be utilised in 

distribution centres, warehouses, and retail store facilities, as it 

has a mean average precision of 92.7% and can extend its 
coverage to higher-level racking with the help of a forklift cage. 

The authors compiled the first racking dataset for this study 

based on actual pallet racking images from various operational 

warehouses. 

 

Furthermore, they plan to improve the solution by 

including several damage detection classes and collaborating 

with SEMA to develop a defect detection architecture. 

Moreover, Chuan-Zi Dong et al. [20] in their research provided 

an overview of computer vision–structural health monitoring 

(CV-SHM) at local and global levels for element, crack, 

delamination, displacement, vibration, modal identification, 
load factor estimation, and structural identification. The author 

described CV-SHM as an excellent complement to 

conventional SHM due to its advantages, such as non-contact 

measurements, long-distance data collection, low cost, and 

reduced labour with minimum interference or intrusion to the 

daily operation of structures. Hussain et al. [21] introduced a 

framework centred on the YOLOv7 architecture in a different 

study. The framework includes a domain variance modelling 

mechanism to address data scarcity, resulting in a mean average 

precision of 91.1%. This solution offers a non-invasive 

approach to defect detection that differs from conventional 
sensor-oriented methods and can potentially reduce client 

costs. 

 

B. Object Detection and Classification with DL 

Deep learning (DL) has shown remarkable success in 

various computer vision tasks, including object detection and 

classification. Numerous studies have explored the application 

of CNNs for accurate and efficient detection and classification 

of objects in images. 
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Techniques such as Faster R-CNN, YOLO (You Only 

Look Once), and SSD (Single Shot MultiBox Detector) have 
been widely adopted for object detection. Zaidi et al. [22] 

published a study on object detection methods in the modern 

world. The study also covers contemporary lightweight 

classification models used on edge devices. The need for 

lightweight models that can be deployed on mobile and 

embedded systems is increasing, and the study shows how 

various object detectors have developed. Similarly, in their 

paper, Liu et al. [23] review deep learning methods for 

detecting small objects in images, including challenges and 

solutions, practical techniques, and related research areas. The 

paper compares the performances of leading deep learning 

methods, including YOLOv3, Faster R-CNN, and SSD, based 
on three large benchmark datasets of small objects. The 

experimental results show that while the detection accuracy on 

small things by these deep learning methods was low, Faster R-

CNN performed the best, while YOLOv3 was a close second. 

Finally, in their research, Yang et al. [24] propose a real-time 

tiny-part defect detection method for manufacturing using deep 

learning algorithms. The authors establish a correlation model 

between the part system’s detection capability coefficient and 

the conveyor’s moving speed and propose a defect detection 

algorithm based on a single short detector network (SSD) and 

deep learning. The paper also addresses the problem of missed 
detection using an industrial real-time detection platform and a 

missed detection algorithm based on intermediate variables. 

These methods leverage CNNs to extract image features and 

employ region proposal mechanisms or anchor-based 

approaches to identify object-bound boxes. 

 

In the context of object classification, CNN architectures 

like AlexNet, ResNet, and EfficientNet have been widely used. 

These models leverage deep convolutional layers to capture 

hierarchical features and achieve high classification accuracy. 

In their paper, Akinosho et al. [25] compare the performance of 

edge detection algorithms and deep convolutional neural 
networks (DCNN). The authors analyse a dataset of 19 concrete 

images and compare the relative performance of six typical 

edge detection schemes and the AlexNet DCNN architecture in 

different modes. The edge detection methods accurately 

detected 53-79% of cracked pixels. Still, they produced 

residual noise in the final binary images, whereas DCNNs 

accurately labelled pictures with 99% accuracy and detected 

much finer cracks than edge detection methods. 

 

Similarly, Weimer et al.[26] explore the use of DCNN for 

defect detection in industrial inspection instead of manually 
engineering features. According to the author, DCNN 

automatically generates powerful features through hierarchical 

learning strategies from massive training data with minimal 

human interaction. The proposed approach is tested on a dataset 

with 12 different classification categories of visual defects 

occurring on heavily textured backgrounds, with excellent 

results and low false alarm rates. Liu et al. [27] explore the 

application of robots in intelligent supply chains and digital 

logistics to perform efficient operations, energy conservation, 

and emission reduction in warehousing and sorting. The 

researchers established an image recognition model using a 
convolution neural network (CNN) to identify and classify 

goods by simulating a human hand-grasping object. 

C. Attention Mechanisms in CNNs 

Attention mechanisms allow neural networks to emulate 
biological perception and cognition by selectively prioritising 

the most task-relevant visual information. This targeted focus 

on salient environmental cues drives enhanced efficiency and 

accuracy even where critical visual signatures occupy just a 

fraction of the full sensory space. Tang et al.’s [28] 

manufacturing damage classification framework first 

combined spatial attention with convolutional neural networks 

(CNNs) to achieve 93.3% accuracy, significantly improving on 

previous approaches lacking such selective computational 

focus. Follow-up research by Su et al. [29] validated 

complementary attention mechanisms for suppressed noise and 

improved solar cell defect identification. In agricultural 
applications, Shahi et al. [30] integrated CNN features with 

attention-based modules to enable automated fruit 

classification as the first stage of precision harvesting. 

Collectively, these works presage automation across tedious, 

inconsistent manual structural monitoring tasks spanning 

warehouse, manufacturing, solar, and agricultural sectors. 

Building upon these latest developments at the intersection of 

computational perception and selective focus, we propose an 

attention-driven CNN methodology to reliably detect 

hazardous pallet racking distortions in inventory storage 

environments. Our approach learns highly discriminative 
damage characteristics to match or enhance human visual 

assessments while integrated attention filters out task-irrelevant 

cues. More broadly, research into such biomimetic selectivity 

and efficiency gains continues to advance a new generation of 

intelligent systems endowed with heightened situational 

awareness for reliable autonomous decision support. As these 

technologies fundamentally disrupt sectors centred upon 

human evaluation, policy and regulation must proactively 

address emerging societal impacts. 

 

Although several image classification techniques have 

been utilised to classify damaged pallet racking, deep learning 
methods have recently gained significant attention. Attention 

mechanisms can be a valuable tool to improve the accuracy and 

robustness of the models. Recent deep learning models such as 

Vision Transformer and Compact Convolutional Transformer 

have shown potential in improving the speed and accuracy of 

image classification. 

 

III. METHODOLOGY 

 

A. Dataset 

Effective machine learning relies on comprehensive and 
representative datasets encompassing real-world complexity; 

for our pallet-racking damage detection system, labelled 

images depicting various distortion types are needed to train 

computational models and quantify evaluation generalizability. 

We gathered on-site photos of bent beams, cracked uprights, 

misalignments and other visible defects from Tile Easy and 

Lamteks warehouses. As public pallet racking datasets remain 

unavailable, this collection provides an essential bootstrap 

capturing noise, occlusion and variability challenging unaided 

human assessments. While expanding sample diversity and 

quantity would further enhance robustness, these initial images 
enable the development of a rigorous methodology that 
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assesses authentic damage manifestations rather than simulated 

data. 
 

 
Fig 1  Pallet Racking dataset Samples (A)  

Normal and (B) Damaged 

 

 
Fig 2 The Effects of data Augmentation on the  

Training and test Images. 
 

Data collection leveraged an iPhone 8 12MP camera 

selected for sensor fidelity matching our targeted Raspberry Pi 

edge deployment. Images simulate views from a forklift-

mounted rack inspection system, withstanding volatility from 

motion, occlusion and variable lighting. A human operator 

proxy holding the smartphone-based camera towards storage 

racking emulates automated on-vehicle assessments' precise 

positional dynamics and visual perspective. This contextual 

data gathering aims to furnish models with representation 

crucial for a smooth transition from laboratory to materials 
handling environments. Additionally, mobile visual data 

promises scalability via crowdsourcing to rapidly expand 

sample diversity in future work. 

 

Figure 1 exemplifies dataset diversity across undamaged 

and damaged pallet racking images. Healthy warehouse storage 

infrastructure constitutes relatively simple classification tasks 

targeting racking components against static backgrounds (Fig. 
1A). However, distortion severity varies extensively among 

damaged samples (Fig. 1B), challenging human evaluation 

consistency, especially for subtle cases. The centre image 

depicts a rack leg crack that could easily elude unaided visual 

assessment compared to the obvious right deformation. All 

samples embed environmental context, including occlusion, 

variable lighting and noise. Augmentation must, therefore, 

balance class distinction and resolution preservation with 

realistic domain complexity to enable effective model 

generalisation. Overall, these images capture the multi-scale 

damage phenomena, ambiguity and scene diversity demanding 

selective, context-aware computational focus - an ideal testbed 
to advance attention-based automated inspection. 

 

By collecting and curating this initial dataset, we aim to 

provide a foundation for training and evaluating the proposed 

autonomous racking inspection mechanism using CNN models 

with attention. The dataset offers a diverse range of normal and 

damaged racking images, enabling the model to learn and 

generalise patterns associated with different racking 

conditions. 

 

This preliminary dataset establishes an essential 
benchmark for developing and evaluating automated pallet-

racking assessment systems using attention-focused 

computational perception. Despite sample size constraints, the 

images capture real-world diversity across damage modes and 

environmental variability. More broadly, benchmarking on 

authentic anomalies rather than simulated data should enhance 

model generalisation to the complexities of deployable 

structural monitoring. 

 

B. Data Augmentation 

Data augmentation enables the artificial expansion of 

limited training sets to enhance model generalisation - 
mimicking the diversity of real-world phenomena from limited 

samples. Popular techniques add noise or apply 

transformations like rotation while retaining core semantics. 

Such expanded sets curb overfitting, improve resilience to 

previously unseen inputs, and strengthen the mapping from 

images to damaged phenotypes learned during training. We 

leverage Keras’ [31] flexible ImageDataGenerator toolkit, 

which has become a vital utility across deep learning 

applications owing to its simplicity and built-in transforms. 

Although constrained generalisation demands eventually 

surpass synthetic expansion alone, augmentation grants 
valuable bootstrapping for developing rigorous defect 

detection from scarce racks lacking comprehensive historical 

assessments. 

 

Effective automation requires resilience across damage 

modes, environments and operating conditions. We augment 

pallet racking data with techniques including brightness 

adjustment, rotation, zooming and shear transformations (Fig. 

2). This expanded, distorted sample diversity compels models 

to generalise rather than memorise, improving deployable 

decision-making amid complex warehouses far beyond 
constrained training distributions. 
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 Feature-Wise Normalization:  

Input consistency is crucial for model convergence. 
Feature-wise normalisation (Equation 1) rescales inputs to 

constrain variability - transforming dimensions to standard 

normal distributions with zero mean and unit variance. This 

harmonic representation attenuates the influence of noise and 

distortions, so computational focus targets the underlying 

damage morphology rather than incidental data properties. 

Ultimately, learning intrinsically invariant causal markers 

promises improved generalisation. 

 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−μ

σ
                                                    (1) 

 

Where σ is the standard deviation, μ is the mean value of 

the feature throughout the dataset, and x is the input feature. 

Every feature dimension is subjected to a separate feature-wise 

normalisation method, guaranteeing that every feature has a 

mean of zero and a standard deviation of one. The model's 
capacity to tolerate differences in the distribution of input 

features is improved when feature-wise normalisation is 

applied during data augmentation. This method successfully 

reduces the effect of variations in brightness, contrast, or 

intensity between different photographs. 

 

 Feature-Wise Centre 

Another efficient technique for augmenting data in deep 

learning to enhance model performance and generalisation is 

feature-wise centring. Using this method, the appropriate input 

feature is subtracted from the mean value of each feature 
dimension. The feature-wise centring equation is defined by 

equation (2). 

 

𝑥𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = 𝑥 −  𝜇                                               (2) 

 

Where μ is the feature's average value over the dataset, 

and x is the input feature. During data augmentation, the 

model's sensitivity to the mean value of features can be 

decreased by using feature-wise centring. By using this 

method, the impact of differences in brightness or intensity 

levels across samples is lessened [33]. The model can more 
effectively identify the relative differences and patterns linked 

to broken pallet racking by centring the features, which 

prevents the model from being impacted by overall changes in 

the input data. 

 

 Shearing 

Shearing is a widely used deep learning data 

augmentation technique that modifies input data geometrically. 

It involves skewing or tilting pictures along a certain axis to 

distort them. Equation (3) is an expression for the shearing 

transformation. 
 

[
𝑥𝑠ℎ𝑒𝑎𝑟𝑒𝑑

𝑦𝑠ℎ𝑒𝑎𝑟𝑒𝑑
] = [

1 𝑠ℎ𝑒𝑎𝑟𝑓𝑎𝑐𝑡𝑜𝑟

0 1
] [

𝑥
𝑦]                                      (3) 

 

 Others 

We have included several widely used data augmentation 

strategies in addition to the ones that were previously 

described. 

 

 

 Zoom:  

This augmentation entails applying a certain zoom factor 
to the supplied image. By using this method, the model may be 

trained to recognise and categorise broken pallet racking at 

various sizes and scales, mimicking the variances in object 

sizes and distances found in the real world. 

 

 Rotation:  

The supplied picture is transformed via rotation in this 

augmentation. This method improves the model's capacity to 

handle multiple viewing angles by helping it identify faulty 

pallet racking from a variety of viewpoints or orientations. 

Equation (4) was utilised to compute the rotation in order to 
facilitate this augmentation. 

 

𝐻 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]                          (4) 

 

 Brightness:  

The input image's brightness level is adjusted by this 

augmentation. Brightness changes strengthen the model's 

resistance to various lighting scenarios and guarantee correct 

classification even in the presence of fluctuating illumination. 

 

 Width And Height Shift:  
This augmentation entails a horizontal or vertical picture 

shift. With the use of this method, the model may be trained to 

identify broken pallet racking even in situations when it is only 

partially visible or positioned differently in the picture. 

 

 Fill Mode Reflects:  

This augmentation takes care of any voids or regions left 

by previous augmentations, such as rotation or shifting. By 

reflecting the adjacent pixels, it fills in the empty pixels and 

keeps the image whole. 

 
By combining these methods of data augmentation, we 

are able to provide an enhanced dataset that depicts changes in 

pallet racking that have been damaged. Furthermore, the 

diversity and number of training samples are greatly increased 

by the enhanced dataset, which aids in the model's improved 

generalisation and classification performance [34]. 

 

Colourisation imparts limited semantic insight for 

structural damage classification, instead obstructing the 

perception of subtle depth or texture distortions with incidental 

hue variations. We deploy grayscale transformation, a 
technique shown by Li et al. [35], to improve dermatological 

anomaly detection models to similarly enhance rack damage 

cognition. Eliminating RGB colour space dimensionality 

focuses computations exclusively on luminance-linked cues 

while enabling simplified model architectures. 

http://www.ijisrt.com/


Volume 9, Issue 1, January – 2024                 International Journal of Innovative Science and Research Technology                                                 

                                               ISSN No:-2456-2165 

 

IJISRT24JAN241                                                               www.ijisrt.com                         733 

 
Fig 3 Pallet-Net architecture. 

 

Grayscale's single channel mitigates inter-channel 

correlation, imposing ineffective representational constraints 

for convolutional Filter learning. Attenuating colour 
information steers models towards crucial shape and 

morphology factors rather than superficial chromatic 

tendencies counterproductive to generalisable decisions. 

Overall, this restrictive representation learning approach filters 

out rack imaging noise to improve accuracy - exploiting 

intrinsic intensity patterns correlated with damage while 

discarding nuisance colour variation. More broadly, task-

specific dimensionality reduction that isolates primary 

explanatory factors epitomises efficient biological perception 

for accelerated anomaly cognition. This bio-inspired sparsity 

simultaneously enhances model performance and 
computational efficiency, which is crucial for embedded 

structural monitoring. 

 

The damaged pallet racking categorisation work has been 

conducted consistently using an image size of 112x112 pixels 

throughout our investigation. This calculated choice was made 

with a number of factors in mind in an effort to increase our 

model's precision and effectiveness. Initially, maintaining a 

constant picture size guaranteed consistency in the input data 

fed into the model for both training and inference. Our model 

was able to acquire and derive significant characteristics from 
photographs of damaged pallet racking, regardless of the 

images' initial size, because of this constancy. It made 

comparing and analysing the various photographs in the dataset 

easier as well. 

 

Additionally, the 112x112 pixel standard picture size 

contributed to a decrease in memory use and computational 

complexity [36]. Furthermore, the key characteristics and 

details of the damaged pallet racking were preserved because 

of the 112x112 picture size. It struck a compromise between 

lessening the computing load and collecting enough geographic 

information. Last but not least, this scale made sure the model 
could pick up on essential patterns, textures, and structural 

details connected to broken pallet racking without adding 

superfluous detail or excessive noise that might compromise 

categorisation accuracy. 

 

Robust automation centres on harmonising model 

simplicity, efficiency and real-world performance through 

representation learning heuristics tailored to the application. 

Our image standardisation, grayscale conversion and data 

augmentation synergistically filter pallet-racking data 

complexity down to the core factors explicating damage 
morphology. By eliminating incidental colour variation while 

exposing models to an expanded, distorted sample distribution, 

we steered computation towards intrinsic intensity patterns 

predictive of actionable rack defects. Meanwhile, consistent 

image resizing removes confusing variability that might inhibit 

convolutional filter convergence. Together, these techniques 

significantly enhanced classification accuracy by reducing the 

burden of memorisation and overfitting intrinsic to limited 

data. More broadly, such complexity reduction through domain 

knowledge infusion epitomises efficient biological perception 

- discarding sensory noise to amplify causal signatures. Our 

methodology thus demonstrates how even modest datasets can 
fuel deployable decision automation so long as data curation 

targets explanatory factors using time-tested bio-inspiration. 

 

C. Detailed Description of the CNN Architectures 

As a consequence of our study, a unique CNN 

architecture called Pallet-Net—an integrated attention 

mechanism—was created with racking inspection in mind. 

This design efficiently separates pallet racking that is damaged 

from that that is not. We have also experimented with 

additional state-of-the-art deep learning architectures, such as 

Custom Compact Convolutional Transformer (CCT) and 
Custom Vision Transformer (VIT), based on current findings. 

 

 Pallet-Net 

The Pallet-Net's architecture consists of three CNN 

connections operating in parallel, each with a distinct 3x3, 5x5, 

and 7x7 kernel size. In Figure 3, the architecture is displayed. 

The input goes through batch normalisation, max-pooling, and 

convolutional operations in each connection. The final feature 

maps obtained from the three connections are concatenated, 

and then they are run through a dense layer using a SoftMax 

activation function and one unit. 

 

 
Fig 4 Image Flattening in to 1-Dimension in a Layer 

 

Pallet-Net's concatenation technique served as the 

foundation for the attention mechanism, which generated 
attention weights for each feature map that the parallel 

connections created. As seen in Figure 4, the attention output 

that results from multiplying the attention weights by the 

concatenated feature maps is shaped into a 1-dimensional array 

via a flattened layer. 
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Two fully linked layers with 512 and 256 neurons each 

make up Pallet-Net. Each layer makes use of batch 
normalisation and the ReLU activation function, which was 

chosen for its straightforward mathematical formulation and 

given in Equation (5). 

 

𝑓(𝑥)  =  max(0, 𝑥)                                     (5) 

 

For the purpose of automatically identifying and 

categorising broken pallet racking, the Pallet-Net architecture 

with an integrated attention mechanism is a useful method. The 

model performs better because the attention mechanism creates 

attention weights for each feature map that the parallel 
connections produce. The accuracy and resilience of the model 

are greatly enhanced by the simultaneous convolutional 

connections and the attention method. Here is an equation that 

may be used to represent the suggested model: 6,7,8,9,10,11, 

and 6. 

 

𝑓(𝑥)  =  max(𝐶 =  𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑃1 , 𝑃2, 𝑃3))        (6) 

 

𝑊 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐷𝑒𝑛𝑠𝑒(𝐶))                       (7) 

 

𝑂 =  𝐶 ⊙ 𝑊                                        (8) 

 

𝐹 =  𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑂)                                          (9) 

 

𝐻1 = 𝐷𝑒𝑛𝑠𝑒(512, 𝑅𝑒𝐿𝑈)(𝐹)                      (10) 

 

𝐻2 = 𝐷𝑒𝑛𝑠𝑒(256, 𝑅𝑒𝐿𝑈)(𝐻1)                      (11) 

 

𝑌 = 𝐷𝑒𝑛𝑠𝑒(𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 , 𝑆𝑜𝑓𝑡𝑚𝑎𝑥)(𝐻2)                      (12) 

 

In this case, C represents the concatenated output of the 

parallel connections, W represents the attention weights 

calculated using a dense layer with softmax activation, and X 

represents the input layer of shape (image_size, image_size, 
P1, P2, P3). H1 and H2 stand for the first and second 

completely connected layers, O for the attention output derived 

by element-wise multiplying C and W, F for the flattened 

output of O, and Y for the output layer with a class number of 

neurons. This formula provides a succinct mathematical 

depiction of the customised attention-based CNN model by 

symbolically representing the model's layers and processes. the 

following is a detailed description of pallet-net's architecture: 

 

 Input Layer:  

Given that the input layer's shape is (112,112,1), the 

model is likely to accept grayscale photos of 112 x 112 size. 
 

 Parallel Convolutional Layers:  

The network has three convolutional layers arranged in 

parallel. There are 32 filters per layer, with three, five, and 

seven-by-seven-inch filters in each size. All layers get the 

application of the ReLU activation function. Every parallel 

connection has a 2x2 max pooling and batch normalisation 

layers. 

 

 

 
 

 Concatenation:  

This node concatenates the outputs from the three parallel 
connections.  

 

 Attention Mechanism:  

Using a dense layer of 1 unit and softmax activation, we 

apply an attention mechanism to the concatenated output to 

derive attention weights. The element-wise product of the 

concatenated output and the attention weights yields the final 

attention output. Equations (13 and 14) represent the attention 

mechanism equation. 

 

𝐸  =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑊𝑞 .𝐾𝑊𝐾

𝑇

√𝑑𝑘
)                       (13) 

 

𝐶  =  𝐸(𝑉𝑊𝑣)                                                      (14) 

 

Here, the network or decoder's current state is represented 

by the query vector Q; the input or encoder states are 

represented by the set of key vectors K; the1 input or encoder 

states are represented by the set of value vectors V, the 

importance weights assigned to the input states are represented 
by the attention matrix E, and the context vector C is calculated 

as the weighted sum of the value vectors. The scaled dot 

product between the query and key vectors is multiplied by the 

Softmax function to obtain the attention matrix E in this 

formula. Each input state's weight or relevance is represented 

in the resultant attention matrix. Next, the attention matrix is 

multiplied by the value to get the context vector C. 

 

 Flatten Layer:  

The attention output is flattened as input to thick layers in 

order to conform to the processing step. 

 

 Fully Connected Layers:  

Pallet-Net has two completely linked dense layers that 

come after the convolutional layers and the attention 

component. Relu activation is included in the first layer's 512 

units and the second layer's 256 units. For performance 

regularisation, a batch normalisation layer is also included in 

each layer. 

 

 Output Layer:  

In order to generate the output, the final layer is dense 

with three units and SoftMax activation. 
 

 Custom Vision Transformer (ViT) 

For benchmarking, a specially designed Vision 

Transformer (ViT) built on transformer architecture was also 

trained. Transformers have demonstrated remarkable 

performance in a range of computer vision applications, such 

as picture categorisation. The ViT model uses a vision 

transformer architecture that captures both local and global 

dependencies in the picture while processing image patches 

effectively using self-attention mechanisms. The new design of 

the model is based on the transformer architecture described in 
research paper 13. Figure 5 illustrates the leading architecture 

of this concept, which is as follows: 
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Fig 5 Custom vision transformer architecure. 

 

 Patch Embedding Layer:  

The image is initially processed with a layer of patch 

edging. Getting 16x16 patches from the input picture and 

applying a dense projection to each patch are the main goals at 
this point. Each patch also includes a class token and positional 

embedding, which help the model learn about the spatial and 

semantic elements of the picture. 

 

 Transformer Encoder Layer:  

After that, the patch edging layer's output is routed 

through many transformer layers. The model consists of eight 

Transformer Layer layers, each with a feed-forward neural 

network and a multi-head self-attention mechanism. The feed-

forward neural network assists in obtaining higher-level 

information from the many picture patches that the model has 
assigned weights to, thanks to the multi-head attention 

mechanism. Several dense layers with dropout rates of 0.3 and 

0.2 are included after the Transformer encoder layers. In the 

end, this yields a softmax classifier.  

 

 Compact Convolutional Transformer (CCT) 

A third model, a Custom Compact Convolutional 

Transformer (CCT), was developed for benchmarking. By 

using both local and global information, this model enhances 

feature extraction through the use of compact convolutions and 

the transformer architecture. Unlike the proprietary ViT model, 

its main goal is picture classification by feature extraction and 
transformer-based architecture processing. Based on a study 

report [37], the Custom Compact Convolutional Transformer 

model was created. As seen in Figure 6, there are two main 

construction processes in the CCT model: Transformer and 

Convolutional Tokenization with Sequence Pooling. 

 

 Convolutional Tokenizer:  

This section's job is to take features out of the supplied 

image. A series of convolutional layers with a kernel size of 3, 

a stride of 1, and a padding of 1 are used to accomplish this. A 

pooling process is then carried out. A collection of patches, 
each of which represents a distinct area of the image, is the 

result of this method. After that, these patches are moved to the 

Transformer Encoder block to undergo further processing. The 

function may be expressed using equation (15) [37]. 

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑥0 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣2𝑑(𝑥)))      (15) 

 

Given a feature map or picture where x ∈RH×W×C, 

where c is the number of channels, w is the weight, and H is the 

height. 

 

 Transformer with Sequence Pooling:  

The Transformer Encoder, the initial component of this 

layer, attempts to comprehend the connections between various 

patches that the Convolutional Tokenizer block extracts. It 

contains 64 projection dimensions, eight transformer layers, 

and four attention heads. A Multi-Head Attention method is 
used in this section to assist the model in focusing on particular 

regions of the picture while taking the entire image into 

consideration. The output is then sent to Sequence Pooling, 

which pools across the token sequence using an attention-based 

methodology. This change results in a minor reduction in 

computation since fewer tokens are being transmitted. 

 

A feed-forward network (MLP) is also used by the 

Transformer Encoder block to analyse the characteristics that 

the Multi-Head Attention mechanism has retrieved. The 

transformer encoder's transformer units are configured to 128. 
Finally, many FC layers are applied to the Transformer 

Encoder block's output in order to get the final categorisation. 

A dense layer with 512 units, another dense layer with 256 

units, and a third dense layer with three units make up the FC 

layers. A SoftMax activation function is used in the last layer 

to output the probability for each class. 

 

IV. EXPERIMENTAL RESULTS 

 

A. Experimental Setup 

A laptop with an AMD Ryzen 9 5900HX CPU, 16 GB 

DDR4 RAM, and an NVIDIA GeForce GTX 3070 with 8GB 
GDDR6 GPU was used for the research described in this 

paper. Using Mathplotlib [39], Pandas [40], and Keras [38] 

from the DL libraries, the Python programmes were created. 

 

B. Data Partition 

It was essential to separate our dataset into three subsets 

for testing, validation, and training in order to train our model 

efficiently. At first, we designated 80% of our photos as part 

of the training set, while the remaining 20% were kept just for 

testing. However, in order to guarantee the best accuracy and 

lower the chance of overfitting, we further divided our training 
set into two subgroups. Eighty percent of our training photos 

were used for the actual model training, while twenty percent 

went into the validation set. With this method, we were able to 

keep a close eye on our model's performance and modify our 

training regimen as needed. Following the process, Table 1 

displays the number of photos for each region. 

 

Table 1 Different Subsets of Dataset 

Data Samples 

Training 836 

Validation 238 

Testing 127 
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C. Model Hyperparameters and Training Setup 

Table 2 displays the hyperparameters used to train each 
model. Throughout the training phase, 150 epochs of training 

were permitted for the models. An Early Stopping method was 

included to avoid overfitting. This function keeps an eye on 

the validation accuracy of the model and halts training when 

the accuracy ceases, increasing by at least 1e-4 for a 

continuous period of 15 epochs. Additionally, while training, 

the best weights are recovered. This guarantees that the 

weights of the model from the epoch that performed the best 

on the validation set will be used for the final assessment. 

 

Table 2 Standard Hyperparameters across all Models. 

Hyperparameter Name Hyperparameter Value 

Batch Size 32 

Learning Rate 0.001 

Weight Decay 0.001 

Optimizer Adam 

 
To enhance optimisation and prevent overfitting, the 

TensorFlow library's CosineDecay function is used as the 

learning rate scheduler during training [41]. To find the ideal 

learning rate value, the learning rate is first set at 0.001 and then 

progressively reduced over little stages. A sharp overshooting 

and a severe drop in accuracy were noted if the initial learning 

rate was greater than this number. This method makes sure the 

model starts out with a high learning rate, which allows it to 

converge fast, and then progressively lowers the learning rate 

over time to fine-tune the model. During training, the 

optimiser's learning rate is updated via the 

LearningRateScheduler callback. 
 

D. Evaluation 

We used the unweighted mean to average the class-wise 

scores that we calculated in our experimental setup in order to 

assess the models' performance. We used a number of 

performance criteria that are widely accepted in the community 

to evaluate the efficacy of our strategy. The metrics listed 

below were used. 

 

 Accuracy 

This indicator, which shows the percentage of properly 
identified cases, assesses how accurate the model's predictions 

are overall.  

 

 
Fig 7 Pallet-Net, vit and CCT Epoch vs training Accuracy 

 This Measure was Computed using Equation (16). 

 

𝐴𝑐𝑐𝑢𝑟𝑐𝑎𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                      (16) 

 

 F1-score 
The model's equilibrium between recall and accuracy is 

gauged by the F1-score. Equation (17) is used to assess the 

model's accuracy in classifying both positive and negative 

events. 

 

𝐹1 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                   (17) 

 

 Sensitivity (True Positive Rate) 

The percentage of accurate positive predictions among all 

positive occurrences is known as sensitivity. Equation (18) is 

utilised to calculate the model's accuracy in identifying positive 

cases. 

 

𝐹1 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                   (18) 

 

 False Positive Rate (FPR) 

Out of all negative cases, the fraction of wrongly 

anticipated positive instances is quantified by the FPR. It 
gauges the model's propensity to mistakenly identify negative 

situations as positive. The FPR formula is represented by 

equation (19). 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                      (19) 

 

We employ community-standard performance criteria for 

Equations (16), (17), (18), and (19) [41] to assess the precision 

of our models in identifying cases of defective pallet racking. 

False positive (FP), false negative (FN), true positive (TP), and 

true negative (TN) are examples of this. By using these 

indicators, we are able to compare our results with previous 

methods and gain a thorough understanding of the performance 

of our model. With this method, we can evaluate our model's 

performance in a consistent and industry-accepted way. 
 

 
Fig 8 Pallet-Net, vit and CCT Epochs vs training Loss 
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E. Results 

We ran a number of tests to evaluate the effects of the 
suggested pallet net. Table 3 shows the training duration, 

parameters, recall, f1-score, precision, and accuracy of our 

suggested design in comparison to well-known modern 

architectures such as the Compact Convolutional Transformer 

(CCT) and Vision Transformer (VIT). Additionally, the 

models' training accuracy outcomes and training losses are 

shown in Figures 7 and 8. 

 

Automated pallet racking classification proves non-

trivial, with the Vision Transformer (ViT) architecture 

demonstrating limited accuracies of around 34% F1 despite 

low parametrisation and training costs. ViT’s inability to aptly 
capture subtle damage morphology cues limits precision and  

  
Fig 9 Confusion Matrix of Proposed Model 

 

Table 3 Quantitative Examination and Comparative analysis of Model Performance on test Datase 

Model Training Time Total Params F1 Score Recall Precision Accuracy 

ViT 03m55s 296066 34% 49% 26% 52% 

CCT 05m29s 240451 87% 87% 87% 87% 

AttentionCNN 06m24s 154279331 98% 98% 98% 98% 

 

Recall alike. In contrast, the Compact Convolutional 

Transformer (CCT) better balances representational 
complexity and training efficiency, achieving improved 87% 

F1 classification performance at marginally higher resource 

overheads. CCT’s embedded convolutional feature extraction 

likely accounts for enhanced localisation of damage signatures 

within broader rack imagery context to enhance positive and 

negative instance prediction consistency. Ultimately, our 

proposed attention-augmented Convolutional Neural Network 

(CNN) significantly outperforms both baseline approaches, 

reaching 98% F1-scores, by dedicating a majority of 

representational capacity towards hierarchical damage 

characteristics cognition. The additional parameters enable 
discerning highly complex and variable pallet-racking 

distortion topologies amid clutter. Our evaluations reaffirm 

target-specific selectivity as the cornerstone of efficient 

biological perception and intelligence, which is now gaining 

traction in biomimetic automated monitoring. Deliberate 

representation skewing towards explanatory factors, rather than 

blanket resource scaling, continues to drive innovation. 

 

In order to evaluate how well the suggested Pallet-Net 

model performed in comparison to the real damage categories, 

we also created the confusion matrix shown in Figure 9. The 

classification findings' real positives and negatives, as well as 
false positives and negatives, are shown in a 2x2 table called 

the matrix. Correctly categorised data is represented by the 

diagonal of the confusion matrix, and incorrectly classified data 

is represented by the off-diagonal components. Pallet-Net 

properly recognised 66 out of 67 actual damaged racking 

photos as damaged, according to the confusion matrix. 

Comparable to the 60 real normal racking photos, just one was 

incorrectly identified as normal at the same moment. Allet-Net 

identified two racking photos as damaged but properly 

identified 58 as normal. With an overall accuracy rating of 

97.64%, the suggested model has a high level of accuracy 
overall. 

 
Fig 10 Correctly Classified Cases and their Attention 

Heatmap via Grad Cam 

 

In Pallet-Net, we have used Gradient-weighted Class 

Activation Mapping (Grad-CAM) visualisations to identify the 

important areas of the input photos in order to assess how well 

the feature extraction method worked. A Grad-CAM depiction 

of our architecture is shown in Figure 10. Our investigation 

shows that although Pallet-Net's attention mechanism 

successfully distinguishes between damaged and undamaged 
racking by identifying the critical structures of the racking, it 

occasionally focuses on the pallet region and other non-salient 

image regions, which could lead to incorrect classification. As 

a potential remedy, we advise applying preprocessing methods 

to improve Pallet-Net's accuracy, such as filtering out 

unnecessary or irrelevant areas. 
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It is clear from the technical evaluation that the pallet net 

performs better in terms of classification accuracy than the ViT 
and CCT models. Greater performance is achieved by the 

models with more parameters and longer training sessions 

because they show a deeper comprehension of the intricate 

linkages present in the damaged pallet racking photos. 

 

V. SOLUTION COMPARISION 

 

Automated analytical workflows aim to balance accuracy, 

efficiency and accessibility for real-world damage monitoring 

integration. Farahnakian et al.’s [42] segmentation 

methodology demonstrates leading 93.45% precision but on 

highly constrained datasets given intensive resource demands. 
Conversely, Hussain et al.’s [21] YOLOv7 detector attains 

91.1% accuracy on thousands of samples, although at the cost 

of additional bounding box annotations and computations. 

Recent focus has shifted to streamlined classification via 

lightweight architectures [43], reaching 96% accuracy under 

reasonable resource profiles. However, despite higher 

expenses, MobileNet-powered detection [19] remains 

competitive, indicating scenarios where detail surmounts 

efficiency. 
 

Our attention-based classifier achieves an accuracy of 

97.63% on over a thousand pallet rack images lacking 

supplementary bounding boxes, setting new state-of-the-art 

performance. Compared to prevailing techniques, our 

methodology promises a pragmatic balance of damage 

cognisance, computational frugality and real-world validity for 

scalable rack monitoring autonomy. More broadly, the 

comparative analysis spotlights representational selectivity as 

the lingering bottleneck for pervasive intelligence. While sheer 

analytical muscle continues steadily improving, deliberate 

dimensionality pruning to amplify explanatory factors over 
superfluous imagery traits remains crucial but underexplored. 

As domains such as biomarker discovery already underscore, 

sparsity frequently surpasses scale for unravelling complex 

phenomena. Our evaluations reaffirm this motif - superior 

cognition arises from compact, causal models rather than 

indiscriminate resource intensification. 

 

Table 4 Systematic Evaluation and Comparative Analysis with Prior Research in the field 

Research Domain Dataset Size Detector Accuracy 

[43] Image Classification 1723 Custom CNN 96% 

[42] Segmentation 75 Mask RCNN 93.45% 

[19] Object Detection 19717 Mobile Net 92.7% 

[21] Object Detection 2094 YOLOv7 91.1% 

Proposed Image Classification 1201 Attention CNN 97.63% 

 

In summary, compared to other studies on automated 

racking inspection, Pallet-Net, the suggested attention-based 
CNN architecture, offers better accuracy and a simpler 

processing pipeline. It provides a more dependable and 

effective way to identify and categorise damage to pallet 

racking, allowing the warehouse sector to operate with more 

efficiency, lower costs, and higher safety. 

 

VI. CONCLUSION 

 

This research pioneers Pallet-Net - an attention-focused 

convolutional neural network (CNN) architecture achieving 

automated state-of-the-art pallet racking damage detection at 
97.64% accuracy. We systematically enhance representation 

learning using grayscale conversion, image resizing and data 

augmentation that exposes models to real-world 

environmental complexity while steeping them specifically in 

damage morphology. Our tailored CNN then develops 

hierarchical damage characterisations amplified by integrated 

attention mechanisms highlighting spatial irregularities. 

Comprehensive evaluations versus contemporary Vision 

Transformer and Compact Convolutional Transformer 

architectures reaffirm attention’s efficacy for potent yet 

selective rack cognition. Pallet-Net promises efficient 

automation unattained by blanket computational scaling or 
human visual assessment alone. More broadly, it epitomizes 

an awareness amplification motif gaining traction across 

biomedicine, manufacturing, and more - seemingly boundless 

societal challenges are increasingly yielding not to brute 

analytical force but deliberate, causal representations distilling 

phenomena down to their essence. As datasets now expand 

worldwide, scalable intelligence will arise from carefully 

tuned filters revealing what truly matters. 
 

This research pioneers automated pallet racking 

assessment via selective deep learning, surpassing constrained 

human visual scrutiny. Pallet-Net exemplifies augmented 

cognition - not brute analytical force alone - achieving 

previously unattained warehouse visibility. Our framework 

promises enhanced safety, efficiency and risk attenuation 

beyond current practice. We acknowledge sample size 

limitations among other constrained resources typical of initial 

investigations now outpacing isolated human perspective. 

Ongoing efforts will enrich representations and explore 
modern architectures. Ultimately, damage detection applies 

the selectivity gaining prominence from healthcare to 

renewables. Embedded intelligence that amplifies the most 

explanatory cues in environments otherwise overwhelming 

human operators must emerge. As automation broadly 

displaces specialised operators and sensors, next-generation 

methods embedding extracted wisdom into key processes 

promise democratised situation awareness, benefiting society 

widely. Scalable and reliable intelligence resides in deliberate 

representations - the essence revealed matters more than the 

resources invested. Our research manifests this new paradigm 

centred on awareness rather than just analysis. 

 

 

 

 

 

 

http://www.ijisrt.com/


Volume 9, Issue 1, January – 2024                 International Journal of Innovative Science and Research Technology                                                 

                                               ISSN No:-2456-2165 

 

IJISRT24JAN241                                                               www.ijisrt.com                         739 

REFERENCES 

 
[1]. Bernuzzi, M. Simoncelli, An advanced design 

procedure for the safe use of steel storage pallet racks 

in seismic zones, Thin-Walled Structures 109 (2016) 

73–87. 

[2]. M.Hussain, H. Al-Aqrabi, M. Munawar, R. Hill, S. 

Parkinson, Exudate regeneration for automated 

exudate detection in retinal fundus images, IEEE 

access(2022)1doi:https://doi.org/10.1109/access.2022

.3205738. 

[3]. B. A. Aydin, M. Hussain, R. Hill, H. Al-Aqrabi, 

Domain modelling for a lightweight convolutional 

network focused on automated exudate detection in 
retinal fundus images, in: 2023 9th International 

Conference on Information Technology Trends (ITT), 

IEEE, 2023, pp. 145–150. 

[4]. Zahid, M. Hussain, R. Hill, H. Al-Aqrabi, Lightweight 

convolutional network for automated photovoltaic 

defect detection, in: 2023 9th International Conference 

on Information Technology Trends (ITT), IEEE, 

2023, pp. 133–138. 

[5]. M. Hussain, H. Al-Aqrabi, M. Munawar, R. Hill, 

Feature mapping for rice leaf defect detection based 

on a custom convolutional architecture, Foods 11 (23) 
(2022) 3914. doi:10.3390/foods11233914. 

[6]. K. O’Shea, R. Nash, An introduction to convolutional 

neural networks, arXiv preprint arXiv:1511.08458 

(2015). 

[7]. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning 

internal representations by error propagation, Report, 

California Univ San Diego La Jolla Inst for Cognitive 

Science (1985). 

[8]. K. Simonyan, A. Zisserman, Very deep convolutional 

networks for largescale image recognition, arXiv 

preprint arXiv:1409.1556 (2014). 

[9]. K. He, X. Zhang, S. Ren, J. Sun, Deep residual 
learning for image recognition, in: Proceedings of the 

IEEE conference on computer vision and pattern 

recognition, 2016, pp. 770–778. 

[10]. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. 

Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, 

Going deeper with convolutions, in: Proceedings of 

the IEEE conference on computer vision and pattern 

recognition, 2014, pp. 1–9. 

[11]. R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich 

feature hierarchies for accurate object detection and 

semantic segmentation, in: Proceedings of the IEEE 
conference on computer vision and pattern 

recognition, 2013, pp. 580–587. 

[12]. R. Girshick, Fast r-cnn, in: Proceedings of the IEEE 

international conference on computer vision, 2015, 

pp. 1440–1448. 

[13]. C.-Y. Wang, A. Bochkovskiy, H.-Y. M. Liao, Yolov7: 

Trainable bagof-freebies sets new state-of-the-art for 

real-time object detectors, arXiv preprint 

arXiv:2207.02696 (2022). 

[14]. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. 

Sengupta, A. A. Bharath, Generative adversarial 
networks: An overview, IEEE signal processing 

magazine 35 (1) (2018) 53–65. 

[15]. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. 

Xiong, Q. He, A comprehensive survey on transfer 
learning, Proceedings of the IEEE 109 (1) (2020) 43–

76. 

[16]. X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. 

Qiu, Y. Yao, A. Zhang, L. Zhang, Pre-trained models: 

Past, present and future, AI Open 2 (2021) 225–250. 

[17]. Dosovitskiy, L. Beyer, A. Kolesnikov, D. 

Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, 

M. Minderer, G. Heigold, S. Gelly, An image is worth 

16x16 words: Transformers for image recognition at 

scale, arXiv preprint arXiv:2010.11929 (2020). 

[18]. H.-H. Zhu, F. Dai, Z. Zhu, T. Guo, X.-W. Ye, Smart 

sensing technologies and their applications in civil 
infrastructures 2016 (2016). 

[19]. M. Hussain, T. Chen, R. Hill, Moving toward smart 

manufacturing with an autonomous pallet racking 

inspection system based on mobilenetv2, Journal of 

Manufacturing and Materials Processing 6 (4) (2022) 

75. 

[20]. C.-Z. Dong, F. N. Catbas, A review of computer 

vision–based structural health monitoring at local and 

global levels, Structural Health Monitoring 20 (2) 

(2021) 692–743. 

[21]. M. Hussain, H. Al-Aqrabi, M. Munawar, R. Hill, T. 
Alsboui, Domain feature mapping with yolov7 for 

automated edge-based pallet racking inspections, 

Sensors 22 (18) (2022) 6927. 

[22]. S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. 

Asghar, B. Lee, A survey of modern deep learning 

based object detection models, Digital Signal 

Processing (2022) 103514. 

[23]. Y. Liu, P. Sun, N. Wergeles, Y. Shang, A survey and 

performance evaluation of deep learning methods for 

small object detection, Expert Systems with 

Applications 172 (2021) 114602. 

[24]. J. Yang, S. Li, Z. Wang, G. Yang, Real-time tiny part 
defect detection system in manufacturing using deep 

learning, IEEE Access 7 (2019) 89278–89291. 

[25]. T. D. Akinosho, L. O. Oyedele, M. Bilal, A. O. Ajayi, 

M. D. Delgado, O. O. Akinade, A. A. Ahmed, Deep 

learning in the construction industry: A review of 

present status and future innovations, Journal of 

Building Engineering 32 (2020) 101827. 

[26]. D. Weimer, B. Scholz-Reiter, M. Shpitalni, Design of 

deep convolutional neural network architectures for 

automated feature extraction in industrial inspection, 

CIRP annals 65 (1) (2016) 417–420. 
[27]. H. Liu, L. Zhou, J. Zhao, F. Wang, J. Yang, K. Liang, 

Z. Li, Deeplearning-based accurate identification of 

warehouse goods for robot picking operations, 

Sustainability 14 (13) (2022) 7781. 

[28]. Z. Tang, E. Tian, Y. Wang, L. Wang, T. Yang, 

Nondestructive defect detection in castings by using 

spatial attention bilinear convolutional neural 

network, IEEE Transactions on Industrial Informatics 

17 (1) (2020) 82–89. 

 

 
 

http://www.ijisrt.com/


Volume 9, Issue 1, January – 2024                 International Journal of Innovative Science and Research Technology                                                 

                                               ISSN No:-2456-2165 

 

IJISRT24JAN241                                                               www.ijisrt.com                         740 

[29]. B. Su, H. Chen, P. Chen, G. Bian, K. Liu, W. Liu, 

Deep learning-based solar-cell manufacturing defect 
detection with complementary attention network, 

IEEE Transactions on Industrial Informatics 17 (6) 

(2020) 4084–4095. 

[30]. T. B. Shahi, C. Sitaula, A. Neupane, W. Guo, Fruit 

classification using attention-based mobilenetv2 for 

industrial applications, Plos one 17 (2) (2022) 

e0264586. 

[31]. Chollet, Building powerful image classification 

models using very little data, Keras Blog 5 (2016) 90–

95. 

[32]. D. Singh, B. Singh, Feature wise normalization: An 

effective way of normalizing data, Pattern 
Recognition 122 (2022) 108307. 

[33]. Al-Sadi, A.-A. M. Hana’Al-Theiabat, M. Al-Ayyoub, 

The inception team at vqa-med 2020: Pretrained vgg 

with data augmentation for medical vqa and vqg, in: 

CLEF (Working Notes), 2020. 

[34]. Z. Hussain, F. Gimenez, D. Yi, D. Rubin, Differential 

data augmentation techniques for medical imaging 

classification tasks, in: AMIA annual symposium 

proceedings, Vol. 2017, American Medical 

Informatics Association, 2017, p. 979. 

[35]. L.-F. Li, X. Wang, W.-J. Hu, N. N. Xiong, Y.-X. Du, 
B.-S. Li, Deep learning in skin disease image 

recognition: A review, IEEE Access 8 (2020) 208264–

208280. 

[36]. M. A. R. Alif, S. Ahmed, M. A. Hasan, Isolated bangla 

handwritten character recognition with convolutional 

neural network, in: 2017 20th International conference 

of computer and information technology (ICCIT), 

IEEE, 2017, pp. 1–6. 

[37]. Hassani, S. Walton, N. Shah, A. Abuduweili, J. Li, H. 

Shi, Escaping the big data paradigm with compact 

transformers, arXiv preprint arXiv:2104.05704 

(2021). 
[38]. N. Ketkar, N. Ketkar, Introduction to keras, Deep 

learning with python: a hands-on introduction (2017) 

97–111. 

[39]. Bisong, E. Bisong, Matplotlib and seaborn, Building 

Machine Learning and Deep Learning Models on 

Google Cloud Platform: A Comprehensive Guide for 

Beginners (2019) 151–165. 

[40]. W. McKinney, pandas: a foundational python library 

for data analysis and statistics, Python for high 

performance and scientific computing 14 (9) (2011) 

1–9. 
[41]. D. So, Q. Le, C. Liang, The evolved transformer, in: 

International conference on machine learning, PMLR, 

2019, pp. 5877–5886. 

[42]. Farahnakian, L. Koivunen, T. Makil¨ a,¨ J. Heikkonen, 

Towards autonomous industrial warehouse 

inspection, in: 2021 26th International Conference on 

Automation and Computing (ICAC), IEEE, 2021, pp. 

1–6. 

[43]. M. Hussain, R. Hill, Custom lightweight 

convolutional neural network architecture for 

automated detection of damaged pallet racking in 
warehousing & distribution centers, IEEE Access 

(2023). 

http://www.ijisrt.com/

	I. INTRODUCTION
	II. RELATED WORK
	A. Pallet Racking Inspection Methods
	B. Object Detection and Classification with DL
	C. Attention Mechanisms in CNNs

	III. METHODOLOGY
	A. Dataset
	B. Data Augmentation
	 Feature-Wise Normalization:
	 Feature-Wise Centre
	 Shearing
	 Others

	C. Detailed Description of the CNN Architectures
	 Pallet-Net
	 Custom Vision Transformer (ViT)
	 Compact Convolutional Transformer (CCT)


	IV. EXPERIMENTAL RESULTS
	A. Experimental Setup
	B. Data Partition
	C. Model Hyperparameters and Training Setup
	D. Evaluation
	 Accuracy
	 F1-score
	 Sensitivity (True Positive Rate)
	 False Positive Rate (FPR)

	E. Results

	V. SOLUTION COMPARISION
	VI. CONCLUSION
	REFERENCES


