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Abstract:- This literature review delves into the 

utilization of computational intelligence techniques, such 

as Simulated Annealing (SA), Differential Evolution (DE), 

Heat Transfer Search (HTS), Chemical Reaction 

Optimization (CRO), Multi-Objective GA (MOGA), and 

Nondominated Sorting Genetic Algorithm II (NSGA II), 

for modeling and optimizing vapor absorption 

refrigeration systems. The inherent complexity of modern 

refrigeration systems, characterized by their multi-modal, 

non-linear, and time-consuming optimization problems, 

necessitates the application of advanced computational 

tools. These techniques have demonstrated success in 

overcoming the challenges posed by the intricate nature 

of refrigeration system optimization. Through trend 

analysis, the primary focus of optimization is identified as 

the COP, followed by considerations for total cost, 

exergetic and energetic efficiency, energy consumption, 

and cooling capacity. Computational intelligence methods 

prove effective in addressing these objectives. This review 

critically evaluates the outcomes of employing such 

techniques, emphasizing both advancements and 

shortcomings in existing methodologies. As the demand 

for energy-efficient refrigeration solutions grows, this 

comprehensive literature review contributes valuable 

insights into state-of-the-art computational intelligence 

approaches for optimizing vapor absorption refrigeration 

systems. The findings serve as a foundation for future 

research directions, underscoring the significance of 

intelligent optimization strategies in addressing the 

multifaceted challenges within the field of refrigeration 

technology. 
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I. INTRODUCTION 

 

The refrigeration sector plays a pivotal role in global 

energy consumption and environmental impact, with 

profound implications for industries worldwide. As societies 

become increasingly reliant on refrigeration for various 

applications, it is crucial to examine the broader 

consequences of this dependence. Refrigeration systems, 

essential for preserving and maintaining a wide range of 

products, contribute significantly to the escalating demand 

for electricity on a global scale. This surge in energy 

consumption is intricately linked to environmental concerns, 

as the refrigeration industry is a major contributor to both 

greenhouse gas emissions and ozone depletion potential. 

 

In the context of escalating environmental challenges, 

the 2015 Paris Conference Agreement emerged as a 

milestone in addressing the crisis. The agreement brought 
nations together to collectively combat climate change and 

limit global warming to well below 2 degrees Celsius. 

Amidst these concerns, optimizing refrigeration systems 

becomes imperative to reduce their adverse environmental 

impact. Computational intelligence approaches, including 

SA, DE, HTS, CRO, MOGA, and NSGA II, have emerged as 

powerful tools for enhancing the efficiency and sustainability 

of refrigeration systems. 

 

This paper aims to explore the intersection of 

refrigeration systems, their impact on worldwide electricity 
consumption, and their environmental footprint. By delving 

into the intricacies of computational intelligence techniques, 

we seek to highlight the potential of these approaches in 

optimizing refrigeration systems, contributing to the global 

effort in mitigating environmental crises outlined in the Paris 

Conference Agreement. 

 

II. VAPOR ABSORPTION 

REFRIGERATION SYSTEM 

 

The vapor absorption system is comprised of a binary 
mixture involving refrigerant and absorber constituents. 

Typically, the absorption process is characterized by an 

exothermic nature, wherein the absorber facilitates the 

absorption of liquid refrigerant through vaporization, thereby 

inducing a cooling effect. The VARS is conventionally 

constituted by key components including an absorber, 

condenser, evaporator, expansion valve, generator, pump, 

and rectifier. The operational sequence initiates with the 

provision of external heat to the generator, resulting in an 

elevation of temperature and pressure. Consequently, the 

strong solution liquid-state refrigerant undergoes a phase 

transition to the vapor state. The vaporized refrigerant 
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proceeds to the condenser, where it releases heat to the 

surrounding atmosphere and undergoes a transformation into 

the liquid phase. 

 

Subsequently, the refrigerant experiences further 

expansion in the expansion valve, leading to a reduction in 

both temperature and pressure. The low-temperature and 

low-pressure refrigerant entering the evaporator absorbs heat 
from the enclosed space, thereby generating a cooling effect. 

The absorber is instrumental in converting the refrigerant, 

having absorbed latent heat of evaporation, into a vapor state. 

This vapor then combines with a weak solution within the 

absorber before being pumped into the generator, thus 

completing the cycle. 

 

The inclusion of a rectifier subsequent to the generator 

serves the primary purpose of thoroughly eliminating any 

residual traces of water vapor present in the refrigerant before 

its entry into the condenser. 

 

 
Fig 1 Schematic of Vapor Absorption Refrigeration System 

 

The mathematical derivation of the Coefficient of 

Performance for absorption refrigeration can be expressed 

using the provided mathematical expression: 

 

                                                                       (1) 

 

Where COP = Coefficient of Performance. 

 

QE = Cooling Capacity obtained at the evaporator. 

 

QG = Heat supplied to the Generator. 

 

WP = Work input to the pump. 
 

 The Considerations for the Refrigerant in the Absorption 

Refrigeration System Encompass the Following 

Assumptions: 

 

 The refrigerant is required to exhibit chemical stability, 

non-toxicity, and non-volatility. 

 The refrigerant must possess a substantial heat of 

vaporization. 

 The mixture of refrigerant and absorber should 

demonstrate miscibility within the designated operating 

temperature range. 

 A considerable disparity in the boiling point temperatures 

of the refrigerant and absorber is preferred. 

 Transport properties influencing heat and mass transfer, 

including thermal conductivity, viscosity, and diffusion 

coefficient, should be conducive. 

 The refrigerants should manifest non-corrosive 

characteristics, environmental friendliness, abundance, 

and affordability. 
 

III. COMPUTATIONAL INTELLIGENCE 

METHODS FOR ENHANCED MODELING AND 

OPTIMIZATION OF VAPOR ABSORPTION 

REFRIGERATION SYSTEMS 

 

Computational Intelligence (CI) techniques encompass 

a diverse set of computational methodologies inspired by 

natural intelligence and adaptive systems. In the context of 

modeling and optimization of VARS, CI methods play a 

crucial role in enhancing efficiency, reliability, and 

performance. 
 

Vapor absorption refrigeration systems are complex and 

dynamic, involving numerous parameters and nonlinear 

relationships. Traditional analytical methods often struggle to 

capture the intricacies of these systems. This is where CI 

techniques shine, as they are designed to handle complex and 

uncertain systems, making them particularly well-suited for 

modeling and optimizing VARS. 

 

 Simulated Annealing (SA) 

Simulated Annealing (SA) is a stochastic optimization 
algorithm inspired by the annealing process in metallurgy, 

where a material is heated and then slowly cooled to remove 

defects and optimize its internal structure. Similarly, SA is 

used to find the global optimum of a function by iteratively 

exploring the solution space and accepting probabilistically 

worse solutions to escape local minima. In optimizing VARS 

using Simulated Annealing, the process involves several key 

steps. Firstly, an objective function is defined to assess 

system performance, considering factors like the COP, 

energy consumption, and exergetic efficiency. Next, a 

solution is represented by specifying values for parameters 

influencing the system, such as temperatures and pressures. 
The optimization process begins with an initial randomly 

generated solution and a set temperature, controlling the 

likelihood of accepting worse solutions. Iterations follow, 

where the solution is perturbed, exploring neighboring 

solutions. A cooling schedule gradually reduces the 

temperature, balancing exploration and exploitation. The 

Metropolis acceptance criterion is applied to determine 
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whether to accept a new solution, considering its impact on 

the objective function. A termination condition, like reaching 

a specific temperature or maximum iterations, ensures 

convergence. The final output represents an optimized 

configuration for the VARS based on the defined objective 

function. 

 

SA provides a robust and effective approach for 
tackling the complex, nonlinear, and multi-modal 

optimization challenges associated with VARS. Its ability to 

explore the solution space globally makes it a valuable tool 

for finding near-optimal solutions in a computationally 

efficient manner. 

 

Chen, Luo, and Yuan (2023) tackled the complex but 

promising challenge. A stochastic optimization technique for 

the synthesis of CRS is explored in the present study. Based 

on the designed superstructure for the CRS, a MINLP 

paradigm has been developed. The number of 

pressure/temperature levels for each sub-refrigeration system 

was repeatedly determined using an optimization framework 

that included a simulated annealing approach. In addition, the 

continuous variables in the system were optimized using a 

PSO approach. of designing a CRS while also taking heat 
integration between refrigerant and process streams into 

account. The efficacy of the proposed methodology was 

demonstrated through a case study involving the optimization 

of a CRS in an ethylene plant, resulting in a substantial 

21.89% reduction in the total annual cost. This outcome 

underscores the potential for significant cost savings and 

carbon emission reduction achievable through the proposed 

stochastic optimization approach. 

 

 
Fig 2 Schematic of the Simulated Annealing Technique 
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Mahadzir and Ahmed (2021) investigate the 

significance of multistage refrigeration systems in industrial 

applications, employing evolutionary computation techniques 

(PSO, GA, and SA) to optimize a two-stage vapor 

compression refrigeration system. The study aims to 

minimize energy consumption and maximize the system's 

COP. Design parameters are validated against literature data, 

showing acceptable results. Optimal solutions yield a 30.8% 
reduction in energy consumption and a nearly 77% increase 

in COP compared to the design basis. Enhanced optimization 

procedures prevent early convergence, and PSO proves to be 

more efficient in terms of computational effort, time, and 

implementation compared to GA and SA. 

 

Maakala, Järvinen, and Vuorinen (2018) focus on 

optimizing the heat transfer to superheaters in recovery boiler 

power plants. They introduce a numerical optimization 

framework addressing a key challenge in large-scale 

applications. The study employs a surrogate-based method, 

combining simulated annealing, local polynomial regression, 
and computational fluid dynamics. Key contributions include 

introducing the optimization framework, quantifying the 

geometry-heat transfer connection, and identifying optimal 

designs for existing recovery boilers. Results show a 5% 

increase in heat transfer rate with improved flow field 

uniformity, emphasizing the importance of minimizing 

separation vortices through geometric design. This study 

showcases the potential of optimization methods in large-

scale energy production applications for the first time. 

 

Chang et al. (2017) employed SA technique to 
effectively address the Lagrangian method's adaptability 

issues in handling non-convex functions within power 

consumption models or kW–PLR curves for the OCL 

problem. Choosing the chilled water supply temperature as 

the decoupled system variable, the study demonstrated that 

SA provided highly accurate results swiftly, making it 

suitable for efficient air conditioning system operation. In 

contexts where traditional centralized air conditioning 

systems lack substantial freezing capacity, have few units, 

and exhibit simpler operational methods with limited OCL 

consideration, SA proved effective in overcoming the 

Lagrangian method's limitations for optimal efficiency in the 
semiconductor industry. 

 

 Differential Evolution (DE)  

Differential Evolution (DE) is a population-based 

optimization algorithm particularly suitable for continuous, 

nonlinear, and multi-modal optimization problems. 

 

In optimizing VARS using the DE technique, the 

process involves key steps. Firstly, the solution space is 

defined by specifying upper and lower bounds for parameters 

like temperatures, pressures, and concentrations. An initial 
population of potential solutions is generated within this 

space, with each solution representing a set of parameter 

values. The DE algorithm employs a mutation operation, 

selecting three individuals from the population to create trial 

solutions, introducing diversity. A crossover operation 

combines these trial solutions with the existing population, 

determining the incorporation of trial parameters based on a 

predefined probability. The selection mechanism compares 

trial solutions with the current population, retaining those 

with superior fitness values. Termination criteria, such as a 

maximum number of iterations or convergence, determine 

when the search concludes. The objective function, 

encompassing factors like the COP and energy consumption, 

is evaluated for each individual and trial solution. The final 

population is analyzed to extract optimized parameter values, 
representing an enhanced configuration for the vapor 

absorption refrigeration system based on the best-performing 

solutions. 

 

DE is known for its robustness and ability to handle 

complex optimization problems. Its population-based nature 

and the interplay of mutation, crossover, and selection 

operations make it effective in exploring the solution space 

and converging to optimal solutions for VARS. 

 

 
Fig 3 Schematic of the Differential Evolution Technique 
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Kong et al. (2021) introduce a global optimization 

approach using the SADE algorithm to minimize energy 

consumption in a VCRS while meeting indoor cooling 

requirements. The study establishes a simplified hybrid 

VCRS model based on thermodynamics, heat transfer theory, 

and parameter regression. A global optimization problem is 

formulated considering component interactions, indoor loads, 

and outdoor conditions. The SADE algorithm is employed, 
yielding optimal settings. Simulation results demonstrate the 

strategy's effectiveness, achieving an average 15.57% energy 

saving on typical testing days. Notably, significant energy 

savings are observed during morning and evening periods 

with partial indoor cooling loads. Comparisons with DE and 

classical PSO algorithms reveal SADE's efficiency in 

reducing calculation time and avoiding local minima, 

providing an effective methodology for reducing air 

conditioning system energy consumption. 

 

Lin et al. (2019) employs a two-stage DE algorithm to 

optimize OCL problems in vapor compression refrigeration 
systems. The study includes two case studies involving six-

chiller and four-chiller systems. Using the SADE algorithm, 

the proposed method achieves an average energy saving of 

15.57% for the six-chiller system. Comparisons with DCSA, 

SA, and PSO show superior results for the two-stage DE 

algorithm. In the four-chiller system case study, the proposed 

method outperforms DCSA and other methods (genetic 

algorithm, PSO, DE, CSA under various cooling load 

conditions, demonstrating stability and effectiveness. 

 

Wang, Cai, and Yin (2017) propose a globally 
optimized operation strategy to reduce energy consumption 

in an LDAC system driven by a chiller and electric heater. 

Energy and heat transfer models are developed for system 

components, and a SADE algorithm is employed for 

optimization. The strategy, tested on a fabricated facility, 

achieves an 18.5% energy saving compared to conventional 

methods, making it suitable for energy reduction in existing 

LDAC systems in buildings. 

 

Lee et al., (2011) investigated optimal chiller loading 

for energy reduction using the DE algorithm, comparing its 

efficacy with the Lagrangian method, genetic algorithm, and 
particle swarm algorithm. Findings demonstrated DE's 

proficiency in identifying optimal solutions and 

outperforming other algorithms, particularly in addressing 

divergence issues at low demand. With specific parameters, 

DE exhibited competitive minimum energy consumptions 

with PSO in both cases, emphasizing its effectiveness in 

optimizing energy consumption, especially when the partial 

load ratio exceeded 60%. The study highlighted DE's 

consistent superiority in average energy consumption over 

PSO, contributing valuable insights into chiller loading 

optimization for enhanced energy efficiency. 
 

 Heat Transfer Search (HTS)  

Heat Transfer Search (HTS) is a nature-inspired 

optimization algorithm inspired by the heat transfer process 

in thermodynamics. 

 

In the optimization of VARS using the HTS technique, 

the process involves several key steps. The heat transfer 

process is initialized by defining the initial heat distribution 

within the system. Each potential solution is represented as a 

heat source corresponding to system parameters such as 

temperatures, pressures, and concentrations. Simulating heat 

transfer operations between these sources, the algorithm 

mimics the movement of heat within the system, with the 
intensity of transfer influenced by the fitness of solutions. 

Fitter solutions contribute more significantly to the heat 

transfer process. The algorithm facilitates exploration and 

exploitation of the solution space, discovering potential 

configurations and refining the search around promising 

regions. Fitness evaluation assesses each solution's 

performance based on the objective function, considering 

parameters like the COP and energy consumption. 

Termination criteria, such as reaching a maximum number of 

iterations or achieving convergence, determine when the 

optimization process concludes. The final distribution of heat 

within the system is analyzed to extract optimized parameter 
values, representing an improved configuration for the VARS 

based on the solutions with the best fitness. 

 

HTS leverages the principles of heat transfer to navigate 

the solution space, allowing for the exploration of potential 

configurations and the identification of optimal solutions for 

VARS. The algorithm's effectiveness lies in its ability to 

mimic the physical process of heat transfer to guide the 

search towards improved system performance. 

 

Mansuriya et al. (2020) examine an exhaust heat-driven 
ejector refrigeration system, incorporating thermo-economic 

considerations. Using the HTS algorithm, the system is 

optimized for COP and total annual cost. Design variables 

include generator, evaporator, and condenser temperatures. 

The study employs a 2-D shock circle model with R245fa 

refrigerant and presents multi-objective optimization results 

through the Pareto frontier. Analysis of varying nozzle throat 

diameter and ecological function on thermo-economic 

objectives is discussed. Sensitivity analysis explores the 

influence of decision variables on objectives, and exergo-

economic outcomes reveal the ejector and generator as major 

contributors to exergy destruction and total annual cost. At 
the optimal point, the system achieves a coefficient of 

performance of 0.3, a total annual cost of $25,903/year, and 

an optimized unit cost of $53.8/GJ with 10.5% exergy 

efficiency. 

 

In the study conducted by Patel et al., (2019) the 

optimization and comparative analysis of a cascade 

refrigeration system employing the refrigerant pairs NH3/CO2 

and C3H8/CO2 were undertaken. The investigation focused on 

the thermo-economic optimization of a cascade refrigeration 

system utilizing CO2 in the low-temperature circuit and NH3 
or C3H8 in the high-temperature circuit. The optimization 

process aimed at minimizing the total annual cost and exergy 

destruction of the system, considering four crucial operating 

parameters: evaporator temperature, condenser temperature, 

condensing temperature of the low-temperature circuit, and 

cascade temperature difference. To address the optimization 

problem, a HTS algorithm was employed, yielding Pareto-
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optimal points as the outcome. Comparative analysis of the 

refrigerant pairs (NH3/CO2 vs. C3H8/CO2) based on the 

obtained results indicated that the C3H8/CO2 pair exhibited a 

5.33% lower cost and a 6.42% higher exergy destruction in 

comparison to the NH3/CO2 pair. 

 

Pattanaik, Basu, and Dash (2019) propose the application 

of the heat transfer search (HTS) algorithm to address the 
intricate combined heat and power economic dispatch 

(CHPED) problem. This research incorporates considerations 

for the valve point effect, prohibited operating zones of 

traditional thermal generators, and transmission loss. The 

primary objective of solving the CHPED problem is to 

minimize the total fuel cost associated with electricity 

production and heat supply to meet load demand. HTS, a 

novel meta-heuristic optimization algorithm rooted in the 

principles of thermodynamics and heat transfer, is 

introduced. The efficacy of the HTS algorithm is validated 

through experimentation on four test systems. Comparative 
analysis with other evolutionary algorithms demonstrates that 

the suggested HTS algorithm outperforms in providing 

superior solutions. 

 

 
Fig 4 Schematic of the HTS Algorithm 
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Patel and Savsani (2015) introduce the Heat Transfer 

Search (HTS) algorithm, a novel global metaheuristic 

inspired by thermodynamics. Analogous to clusters of 

molecules, the algorithm represents a population engaged in a 

heat transfer process. Design variables correspond to 

molecule temperatures, and energy levels signify the 

objective function value. The search involves 'Conduction,' 

'Convection,' and 'Radiation' phases, with factors controlling 
exploration and exploitation. HTS is assessed on 24 CEC 

2006 benchmark problems, outperforming other algorithms 

in terms of solutions, success rate, and computational 

efficiency. Statistical analysis confirms its superiority in 

constrained optimization problems. 

 

 Chemical Reaction Optimization (CRO)  

Chemical reaction optimization is a nature inspired 

metaheuristic algorithm that draws inspiration from the 

principles of chemical reactions in order to optimize complex 

problems. 

 
In the optimization of VARS using the CRO technique, 

the process involves distinctive steps. Each potential solution 

is represented as a chemical species, with system parameters 

like temperatures, pressures, and concentrations depicted as 

chemical reactants. Chemical reaction operators, including 

'Chemical Reaction,' 'Molecule Diffusion,' and 'Chemical 

Attraction,' guide exploration and exploitation in the solution 

space. A population of molecules is initialized randomly, 

reflecting diverse potential solutions. The 'Chemical 

Reaction' operator combines information from different 

molecules to generate new solutions, influenced by their 
fitness. 

 

'Molecule Diffusion' allows for exploration by modeling 

the diffusion of molecules, diversifying solutions. The 

'Chemical Attraction' operator directs molecules towards 

promising solution regions, enhancing exploitation. Fitness 

evaluation assesses each molecule based on the objective 

function, including parameters like the COP and energy 

consumption. Termination criteria, such as reaching a 

maximum number of iterations or achieving convergence, 

determine when the optimization concludes. The final 

population of molecules is analyzed to extract optimized 

parameter values, representing an improved configuration for 

the vapor absorption refrigeration system based on the best-
performing solutions. 

 

CRO leverages the principles of chemical reactions to 

effectively explore and exploit the solution space. Its ability 

to simulate chemical reactions, molecule diffusion, and 

attraction operations contributes to its efficacy in optimizing 

VARS. 

 

Hadidi (2017) proposed a novel optimization approach 

for electrically serial two-stage thermoelectric refrigeration 

systems using the CRO algorithm. A comprehensive 

computer code demonstrated the method's performance in 
two distinct test cases. The key performance parameters, 

cooling capacity, and COP were selected as objective 

functions. Comparative analyses with an analytical method 

and a genetic algorithm showed substantial enhancements in 

cooling capacity, approximately 16.7% and 12%, 

respectively. Implementation of the CRO method resulted in 

a notable 4.7% improvement in the coefficient of 

performance compared to the analytical method and an 8% 

enhancement relative to the genetic algorithm in the second 

part of case study 1. Comparisons with the genetic algorithm 

in case study 2 further highlighted improvements in the COP 
and cooling capacity across different conditions. The 

consistent enhancement in the coefficient of performance and 

cooling capacity affirmed the accuracy and superiority of the 

CRO method for optimal thermoelectric refrigeration system 

design.  
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Fig 5 Schematic of the Chemical Reaction Optimization Technique 

 

Hadidi (2017) proposes an efficient optimization 

approach, using the CRO algorithm, for the design of 

thermoelectric refrigeration systems. Overcoming the 

limitations of traditional trial-and-error methods, the study 

applies the CRO algorithm to two case studies. The objective 

functions, cooling capacity, and COP are optimized, resulting 

in a 4% improvement in cooling capacity in case study 1 and 

a 4.7% enhancement in COP in case study 2 compared to 

genetic algorithm results. The research emphasizes the 

effectiveness of the CRO algorithm in optimizing electrically 

separated two-stage thermoelectric refrigeration systems, 
suggesting the need for more efficient algorithms in system 

design. The study also explores the impact of varying thermal 

resistance on cooling capacity, providing valuable numerical 

insights. The demonstrated improvement validates CRO as 

an effective optimization method for thermoelectric 

refrigeration systems, with potential for future thermo-

economic optimization studies. 

 

To solve flexible job-shop scheduling problems with 

maintenance activity constraints, Li and Pan (2012) 

developed an effective DCRO technique. The algorithm 

simultaneously reduces three different goals: the overall 

machine workload, the critical machine burden, and the 

maximum completion time (makespan). The DCRO has four 
enhanced elementary reactions and a well-thought-out 

crossover function, using chemical molecules to represent 

solutions. By taking into account a decoding mechanism for 
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maintenance activities, TS-based local search improves the 

exploitation process. Several nearby approaches further 

enhance the local search capabilities of the algorithm. 

Comparing the DCRO to top algorithms in the literature, 

experimental results on benchmark examples show the 

DCRO's extremely effective performance. 

 

CRO, a metaheuristic inspired by chemical reactions 
that seeks to identify global minima in optimization 

problems, is introduced by Lam and Li (2010). CRO is a 

successful metaheuristic because of its proven ability to solve 

NP-hard problems such as QAP, RCPSP, and CAP. CRO 

complies with the NFL theory, and matches others in general, 

but performs best when customized for particular issue types. 

Understanding the drawbacks of the current metaheuristics, 

CRO offers an innovative and fruitful solution. The basic 

form of CRO is presented in this study, with potential for 

further improvements via hybridization with other techniques 

to tackle a wider variety of issues and find global optima for 

issues that were previously considered "unsolved". 
 

 Multi-Objective Genetic Algorithm (MOGA)  

Multi-Objective Genetic Algorithm (MOGA) is an 

optimization algorithm that aims to find solutions to 

problems with multiple conflicting objectives. 

 

In the optimization of VARS using MOGA, the process 

involves several key steps. Multiple objective functions are 

defined to encompass various aspects of system performance, 

such as maximizing the COP and minimizing energy 

consumption while optimizing factors like exergetic 
efficiency and cooling capacity. Each potential solution is 

represented as a chromosome, with genes corresponding to 

system parameters. The population of chromosomes is 

initialized with random or predefined parameter values to 

encompass a diverse set of potential solutions. Fitness 

evaluation assesses each chromosome's performance based 

on the defined objective functions, resulting in a vector of 

objective values. Non-dominated sorting categorizes 

solutions into different Pareto fronts, revealing trade-offs 

between objectives. A selection mechanism favors solutions 

on the Pareto front, employing elitist strategies to preserve 

the best solutions. Crossover and mutation operations create 
new offspring solutions, introducing variability. A 

replacement strategy combines offspring and existing 

solutions to form the next generation. Termination criteria 

determine when the optimization process stops, considering 

factors like reaching a maximum number of generations, 

achieving convergence, or obtaining a diverse set of Pareto 

optimal solutions. Result analysis involves extracting Pareto 

optimal solutions from the final Pareto front, offering 

decision-makers a diverse range of alternatives for the 

optimized configuration of the VARS. 

 

 
Fig 6 Schematic of the Multi-Objective Genetic Algorithm 

Technique 
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MOGA effectively addresses the multi-objective nature 

of optimization problems, providing a set of solutions that 

represent the trade-offs between conflicting objectives in the 

context of vapor absorption refrigeration systems. 

 

Nedjah, De Macedo Mourelle, and Lizarazu (2022) 

investigate the feasibility of multi-objective optimization in 

refrigeration systems with cooling towers and chillers. The 
goal is to find operational setpoints balancing energy 

consumption reduction and tower effectiveness improvement 

for enhanced overall energy efficiency. The study employs 

evolutionary algorithms (SPEA2, NSGA-II, and Micro-GA) 

and analyzes Pareto fronts under two stopping criteria: fixed 

iterations (50) and fixed time (90 seconds). Results favor the 

SPEA2 algorithm with a 90-second stopping criterion. Future 

improvements could involve refining models for various 

chillers, exploring pump speed variations, incorporating 

frequency converters, estimating water consumption, and 

considering alternative optimization algorithms. 

 
Nasruddin et al. (2019) modeled a university building 

with radiant cooling and VAV systems, assessing annual 

energy consumption and thermal comfort (PPD). Utilizing a 

multi-objective optimization approach, combining ANN and 

MOGA, optimal building operation was determined. The 

ANN achieved precise predictions (RMSE: 0.3 for energy 

consumption, 1 for PPD). Multi-objective optimization 

significantly improved HVAC operation for thermal comfort 

while maintaining low annual energy consumption compared 

to the base case design. The Pareto front offered diverse 

design alternatives, providing insights for effective control 
strategies in HVAC systems and serving as a reference for 

solving complex optimization problems in building designs. 

 

In a different work, Sadeghi et al., (2015) designed an 

ejector refrigeration system using waste heat from a HCCI 

and performed multi-objective adjustment of energy 

efficiency and overall product cost of their system by 

employing the GA. With a 0.85% rise in the unit cost of the 

finished product, multi-objective optimization led to a 

15.18% increase in energetic efficiency. 

 

Jamali, Ahmadi, and Jaafar (2014) propose a novel 
combined cycle merging the Brayton power cycle and the 

ejector expansion refrigeration cycle, offering simultaneous 

heating, cooling, and power generation. Operated by low-

temperature heat sources with CO2 as the working fluid, the 

system achieves a 46% energy savings compared to separate 

generation of cooling, power, and hot water. The study 

includes a comprehensive parametric investigation, exergy 

analysis, and system optimization using a multi-objective 

evolutionary genetic algorithm. 

 

 Nondominated Sorting Genetic Algorithm II (NSGA II)  
The Nondominated Sorting Genetic Algorithm II 

(NSGA-II) is a multi-objective optimization algorithm that 

efficiently handles problems with multiple conflicting 

objectives. 

 

 

In the optimization of VARS using NSGA-II, a multi-

objective evolutionary algorithm, the process encompasses 

several key steps. Multiple objective functions are defined to 

capture diverse aspects of system performance, such as 

maximizing the COP, minimizing energy consumption, and 

optimizing exergetic efficiency. Each potential solution is 

represented as a chromosome, with genes corresponding to 

system parameters like temperatures and pressures. The 
population of chromosomes is initialized with random or 

predefined parameter values. Fitness evaluation assesses each 

chromosome's performance based on the defined objective 

functions, resulting in a vector of objective values. 

Nondominated sorting categorizes solutions into different 

fronts, revealing Pareto fronts that indicate trade-offs 

between objectives. Crowding distance assignment helps 

maintain diversity within each Pareto front. A selection 

mechanism prioritizes solutions on the Pareto front with 

lower crowding distances. Crossover and mutation operations 

create new offspring solutions, introducing variability. A 

replacement strategy combines offspring and existing 
solutions to form the next generation. Termination criteria 

determine when the optimization process stops, considering 

factors like reaching a maximum number of generations or 

achieving convergence. Result analysis involves extracting 

Pareto optimal solutions from the final Pareto front, offering 

decision-makers a diverse set of alternatives for the 

optimized configuration of the VARS. 

 

NSGA-II efficiently explores the trade-off solutions in 

the objective space, offering a diverse set of solutions for 

decision-makers to choose from in the context of VARS. 
 

Sai and Rao (2022) utilize optimization methods for 

STHE design cost reduction. Conventional techniques like 

PSO and ARGA face limitations such as lower convergence 

and susceptibility to local optima. This study proposes a 

hybrid approach, combining NSGA II and PSO, to enhance 

cost reduction in STHE design. The hybrid method 

incorporates total cost and overall heat transfer as objective 

functions for improved performance. NSGA II ensures robust 

exploration, while PSO exploits the best solution of NSGA 

II, escaping local optima. Tested on three cases, the hybrid 

NSGA II-PSO method outperforms existing optimization 
methods, achieving a 4.85% and 1.51% reduction in total 

cost for cases 1 and 2, respectively, compared to the ARGA 

method. 

 

Zendehboudi et al. (2019) extensively investigate 

R450A behavior in refrigeration systems and introduce a 

hybrid multi-objective optimization model, combining the 

response surface method and non-dominated sorted genetic 

algorithm II. Regression analysis confirms strong agreement 

between experimental data and quadratic polynomial models 

(coefficient of determination > 0.97). Optimal results for the 
first scenario include an 18.39% reduction in motor-

compressor electrical power consumption, a 53.51% decrease 

in discharge temperature, and a 215.57% increase in 

refrigerant mass flow rate. These improvements occur with 

specified changes in middle evaporator temperature, middle 

condenser temperature, superheating degree, and subcooling 

degree. 
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Keshtkar and Talebizadeh (2017) aimed to conduct a 

multi-objective optimization of a cooling water package, 

integrating exergetic, economic, and environmental (3E) 

analyses through the utilization of the NSGA-II. The study 

involved modeling several objective scenarios and decision 

factors within EES software, resulting in a collection of 

MINLP optimization problems. It primarily concentrated on 

the compression refrigeration cycle that supplies chilled 
water for equipment cooling. The study examined four 

distinct optimization scenarios, including multi-objective 

optimization and single-objective optimization for 

thermodynamic, economic, and environmental effects. By 

reducing exergy destruction from 264.8 kW to 127.6 kW and 

improving the performance coefficient from 3.872 to 7.088, 

multi-objective optimization was able to accomplish the most 

simultaneous satisfaction of 3E results, according to a 

comparative analysis. Furthermore, the cost of producing 

cold water dropped from 117.5 $/hr to 87.19 $/hr, and the 

amount of NOx emissions decreased from 4958 kg per year 

to 2645 kg per year. Multi-objective optimization was 
ultimately applied, and the refinery's overall cost was 

noticeably improved by 25.8%. 

 

Yang and Cheng (2014) introduce a novel multi-

objective global optimization method using a dynamic model 

of refrigerators and the Genetic Algorithm NSGA-II to 

enhance household refrigerator performance. The study 

optimizes a novel refrigerator with heat-storage condensers 

and a conventional refrigerator, minimizing total cost and 

energy consumption per 24 hours. Both refrigerators show 

improved performance after optimization. The novel 
refrigerator outperforms the conventional one, achieving 

energy savings of 20% to 26% under the same total cost and 

cost savings of $1.8 to $3.4 under the same energy 

consumption per 24 hours. 

 

IV. CONCLUSION 

 

In conclusion, this comprehensive review has elucidated 

the application of advanced computational intelligence 

approaches in the optimization of vapor absorption 

refrigeration systems. The studied techniques, including SA, 

DE, CRO, HTS, MOGA, and NSGA-II, have demonstrated 
remarkable efficacy in addressing the intricate challenges 

posed by the complex, nonlinear, and multi-modal nature of 

modern refrigeration systems. 

  
Fig 7 Schematic of  the Non Dominated Sorted Genetic 

Algorithm II Technique 
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The literature survey emphasized the significance of 

these computational techniques in achieving optimal 

configurations for VARS, with a focus on key performance 

indicators such as COP, energy consumption, exergetic 

efficiency, and cooling capacity. Notably, the application of 

these approaches has paved the way for substantial 

advancements in overcoming the environmental impact 

associated with refrigeration technologies, aligning with 
global initiatives such as the Paris Conference Agreement on 

environmental crisis mitigation. 

 

Each computational intelligence approach brings its 

unique strengths to the optimization process. Simulated 

Annealing, inspired by metallurgical annealing processes, 

offers a global search strategy, while Differential Evolution 

leverages population dynamics to navigate complex solution 

spaces. Chemical Reaction Optimization mimics chemical 

reactions to diversify exploration, and Heat Transfer Search 

simulates heat transfer processes to explore potential 

configurations. Multi-Objective Genetic Algorithm and 
Nondominated Sorting Genetic Algorithm II excel in 

handling multiple conflicting objectives, providing decision-

makers with Pareto optimal solutions and trade-offs. 

 

The convergence of these computational intelligence 

techniques has demonstrated their collective ability to yield 

optimal and sustainable solutions for vapor absorption 

refrigeration systems. As the global demand for energy-

efficient and environmentally friendly refrigeration 

technologies continues to escalate, the insights provided by 

this review pave the way for future research directions. The 
integration of these approaches, coupled with ongoing 

advancements in artificial intelligence and optimization 

algorithms, holds great promise for addressing the evolving 

challenges in the field and contributing to the realization of 

more sustainable refrigeration practices. 

 

FUTURE SCOPE OF WORK 
 

The exploration of computational intelligence 

approaches for the optimization of vapor absorption 

refrigeration systems has uncovered promising avenues for 

future research. The following outlines key areas that merit 
attention in advancing the field: 

 

 Hybridization of Techniques: 

Investigate the potential benefits of combining multiple 

computational intelligence techniques in hybrid frameworks. 

Hybridization can harness the strengths of different 

algorithms, offering enhanced optimization capabilities and 

potentially addressing challenges associated with specific 

techniques. 

 

 Machine Learning Integration: 
Explore the integration of machine learning algorithms, 

such as neural networks and deep learning, with 

computational intelligence techniques. This interdisciplinary 

approach may provide more adaptive and data-driven 

optimization strategies, particularly in addressing 

uncertainties and dynamic conditions in refrigeration 

systems. 

 Real-Time Implementation: 

Shift focus towards real-time implementation of 

optimization strategies. Developing algorithms that can adapt 

and optimize refrigeration systems dynamically in response 

to changing operational conditions will be crucial for 

enhancing energy efficiency and overall system performance. 

 

 Robustness and Scalability: 
Assess the robustness and scalability of existing 

computational intelligence techniques. Research efforts 

should aim to develop algorithms that can handle larger and 

more complex refrigeration systems, ensuring applicability to 

industrial-scale operations. 

 

 Multi-Objective Optimization Metrics: 

Further investigate the development of novel multi-

objective optimization metrics that align with specific 

industry requirements. Customized metrics could better 

capture the nuances of performance in vapor absorption 

refrigeration systems, leading to more tailored and effective 
optimization strategies. 

 

 Sensitivity Analysis and Uncertainty Modeling: 

Incorporate sensitivity analysis and uncertainty 

modeling techniques to enhance the reliability of 

optimization outcomes. Understanding the impact of 

uncertainties in parameters and environmental conditions will 

contribute to the robustness of the developed optimization 

frameworks. 

 

 Integration with IoT and Industry 4.0: 
Explore the integration of computational intelligence 

approaches with Internet of Things (IoT) technologies and 

Industry 4.0 principles. This integration can enable smarter, 

connected refrigeration systems that leverage real-time data 

and communication for adaptive and intelligent decision-

making. 

 

 Lifecycle Analysis and Environmental Impact: 

Extend the scope to include lifecycle analysis and 

environmental impact assessments. Beyond optimizing 

operational parameters, considering the broader 

environmental footprint of refrigeration systems will 
contribute to sustainable practices and align with global 

environmental goals. 

 

 Validation through Experimental Studies: 

Validate computational intelligence approaches through 

experimental studies and field trials. Real-world validation 

will enhance the applicability of optimized solutions and 

bridge the gap between theoretical developments and 

practical implementation. 

 

 Interdisciplinary Collaboration: 
Encourage interdisciplinary collaboration between 

experts in computational intelligence, refrigeration 

engineering, environmental science, and industrial 

practitioners. This collaborative approach can bring diverse 

perspectives to the optimization problem and foster holistic 

solutions. 
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By delving into these future research directions, the 

scientific community can contribute to the continued 

evolution of computational intelligence approaches, 

advancing the optimization of vapor absorption refrigeration 

systems towards greater efficiency, sustainability, and 

adaptability in the face of emerging challenges. 

 

APPENDIX 
 

 Acronyms 

 

 SA                Simulated Annealing. 

 DE                Differential Evolution. 

 SADE          Self Adaptive Differential Evolution. 

 HTS              Heat Transfer Search. 

 CRO             Chemical Reaction Optimization. 

 MOGA         Multi-Objective Genetic Algorithm. 

 NSGAII        Nondominated Genetic Algorithm II 

 COP              Coefficient of Performance. 

 CRS              Cascade Refrigeration System. 

 PSO              Particle Swarm Optimization. 

 EES              Engineering Equation Solver. 

 CI                 Computational Intelligence. 

 VARS          Vapor Absorption Refrigeration System. 

 HCCI            Homogenous Charge Compression Ignition. 

 MINLP         Mixed Integer Nonlinear Programming. 

 OCL             Optimal Chiller Loading. 

 LDAC           Liquid Desiccant Air Conditioning. 

 VAV             Variable Air Volume. 

 STHE            Shell and Tube Heat Exchanger. 

 ARGA          Adaptive Range Genetic Algorithm. 

 TS                 Tabu Search 

 DCRO          Discrete Chemical Reaction Optimization. 
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