
Volume 9, Issue 8, August – 2024                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                              https://doi.org/10.38124/ijisrt/IJISRT24AUG1536 

   

 

IJISRT24AUG1536                                                           www.ijisrt.com                   2065 

Exploring the Non-Invasive Methods of Brain-

Computer Interface: A Comprehensive  

Review of their Advances and Applications 
 

 

Harsha S. Krishna 

Tbilisi State Medical University 

Tbilisi, Georgia 

 

Salama Pulikkal 

Tbilisi State Medical University 

Tbilisi, Georgia 

 

Abstract:- The brain-computer interface technology 

allows the human brain to control external devices 

directly without using the brain’s output channels or 

peripheral nerves. It helps individuals with motor 

impairments to use mechanical and external devices to 

communicate with the outside world. Non-invasive BCIs 

allow communication between the human brain and 

external devices without the need for surgeries or invasive 

procedures. Methods like EEG, MEG, fMRI, and fNIRS 

are used. EEG enables the acquisition of electrical activity 

along the scalp by measuring voltage fluctuations and 

neurotransmission activity in the brain. The electrodes 

are attached to a cap-like device and are placed on the 

scalp to record the electrical current generated by the 

brain. Unlike MEG, which necessitates specially 

constructed rooms, EEG is portable. Lab-grade EEG is 

expensive but cheaper than other forms of BCI. MEG 

uses magnetometers to measure magnetic fields produced 

by electric currents occurring naturally in the brain. 

MEG is better than EEG at measuring high-frequency 

activity. MEG signals are less distorted by the skull layer. 

FMRI records blood oxygen level-dependent (BOLD) 

signals with high spatial resolution across the entire 

brain. It does this by tracking the hemodynamic response, 

which is the increase in blood flow to active brain areas. 

It does this using the principle of nuclear magnetic 

resonance, where hydrogen atoms in water molecules in 

the blood emit signals when subjected to a strong 

magnetic field. It has an advantage over EEG due to its 

superior spatial specificity and resolution. FNIRS 

measures the blood flow and oxygenation in the blood 

associated with neural activity. It gains insight into the 

brain's hemodynamic response, which is essential for 

understanding neural functioning during BCI tasks. 
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I. INTRODUCTION 
 

Brain-computer interfaces present an innovative fusion 

of neuroscience, engineering, and computer science, aiming to 

create a direct communication pathway between the brain and 

external devices. These applications have the potential to 

reform various fields, from medicine and rehabilitation to 

gaming and beyond. While invasive BCIs involve surgical 

implantation of electrodes within the brain, non-invasive 

methods are more appealing due to their lower risk profiles 

and border accessibility. 

 
Non-invasive BCI depends on external sensors to detect 

neural activity without the need for surgical intervention. 

These technologies capture brain signals through the scalp or 

other peripheral points and translate them into commands that 

can control computers, prosthetics, and other external devices. 

The main modalities in non-invasive BCIs include 

Electroencephalography (EEG), Functional magnetic 

resonance Imaging (FMRI), Functional Near Infrared 

Spectroscopy (FNIRS), and Magnetoencephalography 

(MEG). Each of these methods has unique advantages and 

challenges, influencing their application in different domains. 
This comprehensive review explores the various non-invasive 

BCI technologies, inquiring about their underlying principles 

and potential applications. 

 

II. BCI 

 

Brain-computer interface or brain-machine interface is a 

technology that allows humans to interact with external 

devices by measuring and analyzing the signals produced by 

the central nervous system (CNS) and accomplishes the 

user’s intention without using the brain's normal output 

channels like peripheral nerves or muscles. They analyze 
real-time electroencephalographic or other 

electrophysiological measures of brain activity, such as 

electrical signals recorded from the scalp, cortical surface, or 

within the brain, and translate them into commands. It helps 

individuals with motor impairment to use mechanical and 

external devices to communicate with the outside world. BCI 

creates a real-time interaction between the user and the 

world. [12] 
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Various neuroelectric signals have been utilized to 

trigger or cease the operation of external devices or 
computers encompassing EEG oscillations, 

electrocorticograms (ECoGs) recorded from implanted 

electrodes, event-related potentials (ERPs) like the P300 and 

slow cortical potential (SCP), as well as short latency 

subcortical potentials and visually evoked potentials. Among 

these BCIs can be of two types: dependent BCI and 

independent BCI. [9] 

 

Dependent BCI (e.g. visually evoked potentials) relies 

on brain activity, such as EEG signals, to convey messages 

but does not utilize the brain's conventional output pathways 
for message transmission. Independent BCI (e.g. P300, mu 

and beta rhythms, etc.) in contrast, operates autonomously 

from the brain's conventional output pathways, eliminating 

reliance on peripheral nerves and muscles.  

 

The notion that BCI is just a ‘mind reading’ system is 

wrong. It does not just passively observe brain activity 

through electrophysiological signals to discern an individual's 

desires. BCIs transform electrophysiological signals, initially 

reflective of central nervous system activity, into actionable 

outcomes: messages and commands that influence the 

external environment. Unlike traditional neuromuscular 
channels relying on feedback for successful operation, BCIs 

replace nerves and muscles with signals translated by 

hardware and software. 

 

One of the most important aspects of BCI is its 

feedback mechanism. A system that just reads and analyzes 

the brain signals without giving the user feedback on his/her 

actions is not BCI. The user obtains feedback on this 

generated output, subsequently impacting the user's brain 

activity and influencing subsequent outputs. 

 
A. Parts of a BCI 

The first part of a BCI is signal acquisition. It consists of 

two phases: feature extraction and translation. For feature 

extraction, the goal is to measure the characteristics of signals 

that encode the desired output. These features encompass 

various measures, ranging from simple, such as amplitudes of 

specific evoked potentials (e.g., P300) or rhythms (e.g., 

sensorimotor rhythms) in EEG, to more intricate measures 

like firing rates of individual cortical neurons and spectral 

coherences. For optimal Brain-Computer Interface (BCI) 

performance, the feature-extraction process within the signal 
processing phase must concentrate on identifying features 

specifically linked to the relevant output (e.g., the intended 

letter for spelling) and ensure accurate extraction of these 

distinctive features. The second phase of BCI signal 

processing involves translating signal features into device 

commands through a dedicated translation algorithm. Brain 

signal characteristics, such as rhythm amplitudes or neuronal 

firing rates, are converted into commands specifying outputs 

like letter selection, cursor movement, or prosthesis operation. 

Translation algorithms vary in complexity, ranging from 

simple ones like linear equations to sophisticated models like 

neural networks or support vector machines. An effective 
translation algorithm ensures that the user can control the 

selected features within a range that covers the entire 

spectrum of device commands.   
 

The second part of a BCI would be its output device. 

The output device in current Brain-Computer Interfaces 

(BCIs) typically involves a computer screen where users 

select targets, letters, or icons displayed on it. Various 

methods, such as flashing letters, indicate the selection 

process. Some BCIs offer additional interim output, like 

cursor movement towards the selected item before finalizing 

the choice. This output not only represents the intended 

outcome of BCI operation but also serves as feedback for the 

brain to enhance communication accuracy and speed. 
 

B. Types of BCI 

The three main types of BCI as described by Wolpaw 

are EEG-based BCI, ECoG-based BCIs, and Intracortical 

BCIs. In addition to the fundamental distinction between 

dependent and independent BCI, they can be also 

differentiated by whether they use invasive or non-invasive 

recording methods. They can also be classified by using the 

type of potential they use, that is if they use evoked or 

spontaneous potentials. Some BCIs can also use both non-

invasive and invasive methods and both evoked and 

spontaneous potentials simultaneously. Here we focus more 
on their classification based on the type of recording. 

 

There are three types of BCI based on how they record 

the signals. They are: 

 Invasive - Invasive BCI necessitates a surgical procedure 

to implant electrodes beneath the scalp to transmit brain 

signals. Its primary benefit lies in delivering highly precise 

data acquisition. 

 Partially invasive - Partially invasive BCI devices are 

surgically placed within the skull but remain external to 

the brain tissue, rather than being situated within the 
cerebral cortex. 

 Non-invasive - Noninvasive BCIs gather data through 

sensors positioned on or in proximity to the head. These 

BCIs do not necessitate any surgical procedures for the 

implantation of recording equipment, and they steer clear 

of any discomfort or risky techniques. 

 

III. NON-INVASIVE BCI 

 

A. EEG 

Electroencephalography (EEG) uses different types of 
electrodes to detect and record electrical activity generated by 

the brain. It is done by measuring the brain’s electrical activity 

caused by the flow of electrical currents during the synaptic 

excitation of the dendrites by the electrodes that are placed on 

the scalp. This system provides a connection between the 

brain and the external device, enabling the researchers to 

analyze the biological signals. These signals provide 

information on the driving mechanism of the brain, 

recognizing various neurological disorders and the exploration 

of cognitive processes such as memory perception and 

attention. 
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In EEG the signals are recorded without invading brain 

tissue by placing electrodes on the surface of the scalp. These 
electrodes extract the signals which vary with the position of 

the electrodes from the brain using them for further pre-

processing. The signal amplitude recorded by the EEG will be 

much smaller than that measured by the invasive electrodes 

due to the interference caused by the cranium, skin tissue, and 

hair. 

 

The choice of electrode type depends on factors such as 

the intended application, signal quality requirements, and 

comfort for the user. Some common types of electrodes used 

in EEG are wet electrodes, dry electrodes, non-contact 
electrodes, and common contact dry electrodes. [46] 

 

Precise identification and analysis of EEG signals 

requires a thorough understanding of their complex and 

theoretical properties. The process of analyzing EEG data 

involves four important steps i.e.; preprocessing, feature 

extraction, feature collection, and classification. Each step 

plays an important role in converting raw EEG signals into 

meaningful information. 

 

 Pre-Processing of EEG data  

Signals in the non-invasive BCI have less clarity because 
the electrodes are not placed directly on the desired part of the 

brain. Therefore the removal of unwanted signals, noise, and 

artifacts is necessary. This step includes decomposing or noise 

reduction of the obtained signal to enhance the EEG signal. 

The widely used technique for removing noise from different 

types of signals is the use of filters. [21] Bandpass filtering 

can effectively reduce noise in EEG recordings, particularly 

from eye blinking, heart functioning, muscle artifacts, and 

non-physiological artifacts from power lines. EEG signals can 

be isolated into different frequency bands where each specific 

band is more prominent in certain states of mind. [21]      
 

 Feature Extraction 

 This decision should be made on which features to 

extract from the signals in which the noise and artifacts have 

been removed and then to set data that will be used as input to 

a neural network [21]. The process involves cleaning EEG 

data, extracting key features, and estimating power 

distribution across different frequency bands. Time-frequency 

analysis, often using wavelet transforms, reveals changes in 

EEG power over time, revealing transient brain events and 

oscillatory responses. EEG signals are classified based on 
their frequencies into the delta, theta, alpha, beta, and gamma. 

Event-related potentials are extracted by averaging EEG 

epochs time-locked to specific stimuli or events, enabling 

cognitive and motor-process studies. The spectrogram is a 

feature that helps analyze the EEG signal in both frequency 

and power domains, which is essential since the EEG has 

different frequencies at different points in time. 

 

 Feature Collection 

Feature selection is important to acquire the signal 

characteristics that best depict EEG signals to be labeled 

within a wide range of extracted features. It reduces data 
features without altering properties but eliminates some based 

on certain conditions. Features selection helps reduce data size 

for classification modules by selecting features that contribute 

substantially to the outcome class after feature extraction. The 
importance of feature selection is shown in the following 

points [41] 

 Reducing feature numbers allows monitoring relevant 

features to targeted preference states. 

 Less reductant data reduces overfitting and noise-based 

prediction 

 Reducing feature number reduces optimization parameters 

reducing overtraining 

 Features selection improves classification performance 

with less misleading data and high-frequency  

 
Feature selection methods can be classified based on the 

number of variables giving two classes: univariate and 

multivariate. Univariate methods consider the input features 

one by one. Multivariate methods consider whole groups of 

characteristics together. 

 

 Classification 

The last step of EEG involves classifying the EEG 

patterns into different brain states or conditions through 

machine learning algorithms. Support Vector Machines 

(SVM) is a powerful machine learning algorithm that has 
been widely used for the classification of EEG signals. SVMs 

are adaptable and show efficiency in managing high-

dimensional data and nonlinear relationships. K-Nearest 

Neighbors (k-NN) is a versatile and another widely used 

machine learning algorithm. It is a simple and intuitive 

classification approach that does not require any assumptions 

about the underlying data distribution. Artificial Neural 

Networks (ANNs) are powerful tools for EEG classification, 

learning to recognize complex patterns by adjusting 

connection strengths between artificial neurons. [30] 

 

These above-mentioned classifies can be either stable or 
unstable. Stable classifies exhibit low complexity and they do 

not affect their performance with small variations. For 

example, k Nearest Neighbors (kNN) is a common stable 

classifier whereas unstable classifiers have higher complexity 

and exhibit changes with minor variation in the performance. 

For example, linear support vector machine (SVM), multi-

layer perceptron (MLP), and bilinear recurrent neural network 

(BLR-NN). 

 

Overall, classification algorithms can be categorized 

based on different characteristics and properties, providing a 
wide range of options for various applications. 

  

 Applications 

EEG-based BCI applications are utilized in various 

fields, including medical, entertainment, art, and non-medical 

areas, such as developing devices to monitor employee 

alertness levels. Medical applications include communication 

aids, neurophysiology, rehabilitation, gaming, entertainment, 

neuroscience, education, and human-computer interaction. 

EEGs can help individuals with motor disabilities 

communicate, control prosthetic limbs, and train cognitive 

functions. They can also aid stroke rehabilitation by providing 
real-time feedback and encouraging brain activation. BCIs can 

also help individuals with attention, memory, and executive 
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functions and help individuals with attention-

deficit/hyperactivity disorder (ADHD) learn self-regulation 
techniques for stress reduction and relaxation. They help 

individuals with anxiety and mood disorders modulate their 

brain activity patterns, potentially leading to symptom 

reduction. BCIs can also be used in gaming and interactive art 

installations, blurring the boundaries between art, technology, 

and neuroscience. They are valuable tools for studying brain 

function, cognitive processes, and neural correlates of 

behavior. 

 

B. MEG 

Magnetoencephalography (MEG) is a neuroimaging 
technique that measures noninvasively the magnetic field 

generated by the electrical activity of neurons in the brain. 

The MEG-based BCI utilizes these magnetic signals to allow 

communication and control between the brain and external 

devices. The first MEG signal was measured in 1986 by the 

physicist David Cohen using an induction coil made of copper 

as a detector. Later, superconducting quantum interference 

devices (SQUID) developed by James Edward Zinnerman 

were used as the state of art MEG sensors. The use of SQUID 

has increased the signal-to-noise ratio (SNR) of the MEG 

signals and acquired the MEG signals without signal 

averaging. The first whole-head SQUID array was developed 
in the 1990s and recent commercial MEG equipment, several 

sensors are placed on the head in a helmet model that 

enhanced the measurement and the special resolution of the 

MEG signals. Modern MEG systems now have 306 sensors, 

including magnetometers and gradiometers within one 

element, which improves signal-to-noise, ambient noise 

suppression, and suppression of nearby artifacts produced by 

stimulators like vagus nerve stimulators, cardiac pacemakers, 

and deep-brain stimulators. Optically pumped magnetometers 

(OPMs) have been developed to overcome certain SQUID 

limitations. MEG offers superior temporal and spatial 
resolution compared to other neuroimaging methods, allowing 

for brain dynamics capture even at sub-millisecond scales, 

and is not distorted by the high conductivity difference 

between skull and scalp. 

 

 Signal generation 

 MEG is a neurophysiological signal primarily generated 

by cortical pyramidal neurons, which transmit signals via 

action potentials. When the membrane potential exceeds a 

threshold, neurotransmitters are released into the synaptic 

cleft, binding to the postsynaptic neuron's receptors. This 
results in ion channel opening and membrane potential 

changes. This leads to a graded postsynaptic potential along 

the dendrite and related intracellular currents. In a presynaptic 

axon, the generated magnetic fields cancel each other out, and 

the extracellular electric and magnetic fields attenuate rapidly 

as a function of distance. In the postsynaptic dendrite, the 

intracellular current flows in one direction, producing a 

magnetic field that can be measured outside the cell. Currents 

related to postsynaptic potentials are slower and easier to 

measure. The MEG signal reflects the net magnetic field of 

tens of thousands of postsynaptic currents, with MEG being 

most sensitive to currents oriented parallel to the scalp, 
corresponding to current sources in the walls of sulci where 

apical dendrites are tangential to the scalp. 

 Physics and instrumentation 

 Magnetic fields measured by MEG are typically 100-
500 fT (femtotesla) weaker than Earth's magnetic field, 

making them sensitive to external interference. To detect 

neural signals, measurements must be conducted with highly 

sensitive sensors in a magnetically shielded room. SQUIDs 

are kept below critical temperature by embedding them in a 

large dewar containing liquid helium for maintaining 

superconductivity. In SQUID-MEG, magnetic fields are 

picked up by flux transformers, which can be configured as 

magnetometers or gradiometers. Magnetometers measure the 

magnetic flux component perpendicular to their surface, while 

gradiometers measure the gradient between their two loops. 
Magnetometers are sensitive to both deep and superficial 

sources, while gradiometers are most sensitive to nearby 

superficial sources. The measured magnetic field induces a 

current in the flux transformer circuit, which is converted into 

magnetic flux through the SQUID loop. The SQUID converts 

the flux to a voltage, which is amplified and digitized.  

 

 Data analysis 

MEG analysis is crucial for reducing artifacts from both 

the subject and the environment. Signal space separation 

(SSS) is a powerful method for artifact removal, utilizing the 

physical properties of magnetic fields to separate signal and 
noise subspaces. However, it cannot suppress physiological 

processes like cardiac and muscle artifacts or eye blinks. To 

suppress artifacts, multi-channel signals can be decomposed 

into additive subcomponents using principal component 

analysis (PCA) or independent component analysis (ICA). 

 

To increase the signal-to-noise ratio (SNR), raw MEG 

data can be filtered before further analyses. Band-pass 

filtering includes only the frequencies corresponding to the 

neural activity of interest in the passband. Spatial filtering 

creates linear combinations of sensor-level signals to 
maximize the SNR of the signal of interest. Supervised 

machine learning methods like common spatial patterns (CSP) 

and linear discriminant analysis can project data effectively 

between classes of interest. 

 

Beamformers can be used to suppress activity 

originating outside the signal source if the location is known 

in advance. They are based on a spatial filter that selectively 

blocks contributions from all other sources except the 

predefined source. Averaging over epochs is often used to 

increase SNR in offline analyses, but it is not feasible in real-
time signal analysis due to increased feedback latency. In 

SMR modulation analysis, averaging in frequency or time-

frequency domains can reveal SMR modulation over epochs, 

sessions, and subjects. 

 

 Applications 

MEG is a valuable neuroimaging tool for identifying 

epileptic foci, preoperative evaluation for brain surgery 

candidates, and therapeutic planning for mental disorders like 

epilepsy, autism, schizophrenia, stroke, head trauma, and drug 

administration. Its first therapeutic setting was demonstrated 

for epilepsy patients. In epilepsy, certain areas of the brain 
produce abnormal electrical signals, which then generate 

magnetic signals that can be detected by MEG [18]. When 
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epileptiform spikes first appeared, MEG was utilized to locate 

their sources and track how quickly they traveled to the 
opposite hemisphere since it has better special accuracy and 

less distortion than EEG signals. Numerous origins of 

epileptic activity as well as different types of epilepsy have 

been found. With the use of a deep learning model, chronic 

brain cell-damaging conditions such as schizophrenia were 

detected. MEG can identify electrophysiological markers for 

schizophrenia by examining disturbances in oscillatory wave 

patterns. Resting state MEG has been used to study 

schizophrenia, suggesting neural abnormalities in 

synchronized oscillatory activity correlate with the 

pathophysiology of the disease. EEG studies have identified 
an increase in delta, theta, and beta waves and a decrease in 

alpha power patterns in Schizophrenic patients.[18] MEG is a 

non-invasive tool for diagnosing symptoms of Parkinson's 

disease (PD) due to its high temporal resolution. It can study 

neural activity and brain connectivity in patients with PD. 

MEG has been used to detect thalamocortical dysrhythmia, 

responsible for neurogenic pain, tinnitus, Parkinson's disease, 

or depression, under resting state conditions. Autism patients 

exhibit impaired activity in the gamma frequency band, while 

severe ASD patients show higher activity between the left and 

right temporo-parieto-occipital regions. Children with ASD 

are sensitive to illegal speech sequences during 504.63 Hz 
MEG recording. ASD patients have low social behavior and 

communication due to lower gamma band coherence in 

angular and middle temporal cortical regions. A connectivity-

based laterality model was used to study the connectivity of 

the hemisphere containing the epileptic focus in white matter 

fibers of mTLE (mesial Temporal lobe epilepsy) patients. The 

importance of language mapping with MEG was also studied, 

highlighting the need for localization and lateralization with 

changes in language networks and identifying speech and 

social communication cortices in the brain. 

 
C. FMRI 

Functional magnetic resonance imaging (fMRI) is a 

non-invasive BCI with high spatial resolution and moderate 

temporal resolution. FMRI records brain signals by analyzing 

the vascular activity of the brain which corresponds to the 

electrical activity of the brain. It utilizes blood oxygen level-

dependent (BOLD) signals and can access the whole brain 

with high spatial resolution. Electrical activity from the brain 

recorded by EEG and BOLD were found to be highly 

correlated.  

 
Unlike EEG-BCI and its ambiguous localization of 

brain activity, fMRI-BCI can use brain activity in very 

specific areas of the cortical and subcortical parts of the 

brain. It offers the capability of real-time visualization and 

analysis of whole brain images. Subjects using fMRI-BCI 

can learn voluntary regulation of specific brain areas like the 

supplementary motor area (SMA), the posterior part of the 

superior temporal gyrus, the parahippocampal place area 

(PPA), the anterior cingulate cortex (ACC), insula, Broca’s 

area, and amygdala. 

  

An fMRI-BCI system is a closed-loop system consisting 
of four major subsystems: signal acquisition, signal 

preprocessing, signal analysis, and signal feedback. These 

subsystems are typically installed and operated on separate 

computers connected via a local area network (LAN) to 
optimize system performance. 

 

 Signal Acquisition 

Whole brain images are acquired using an echo planar 

imaging (EPI) sequence, where the brain is divided into 

slices. The hemodynamic response due to the BOLD effect 

(blood oxygen level-dependent) is measured, reflecting 

neurovascular response to brain activity. Several factors 

affecting signal acquisition significantly impact real-time 

performance. These factors include static magnetic field (B0) 

strength, spatial resolution, temporal resolution, echo time, 
and magnetic field inhomogeneities. While high spatial 

resolution is preferred for detailed imaging, increasing spatial 

resolution can lead to reduced signal-to-noise ratio (SNR) 

and longer acquisition times. Therefore, a balance must be 

struck between spatial resolution, SNR, and acquisition time 

to optimize the performance of the fMRI-BCI system. 

 

 Signal Preprocessing 

In the fMRI-BCI system, the signal preprocessing 

component plays a crucial role in enhancing the quality of 

acquired images before further analysis. This component 

retrieves the reconstructed images from the signal acquisition 
part through a local area network (LAN) and conducts 

various preprocessing steps. Some common methods of 

signal preprocessing in fMRI-BCI include head motion 

correction and physiological noise correction. Head motion is 

a significant challenge in fMRI as it can lead to artifacts that 

interfere with the detection of neural signal changes. Two 

main types of head motion correction methods have been 

developed: retrospective and prospective. Retrospective 

correction involves realigning data to a reference image, 

while prospective correction adjusts scanning parameters 

before image acquisition based on tracking the moving 
anatomy. Breathing and cardiac activity can introduce 

physiological noise in fMRI data, potentially affecting the 

accuracy of the BOLD signal measurements. Changes in 

respiratory patterns and volume, as well as fluctuations in 

CO2 levels due to breathing, and pulse, can lead to BOLD 

signal variations. While techniques exist to remove 

cardiorespiratory artifacts during offline analysis, these 

methods have not been adapted for real-time fMRI 

processing. A recent development by van Gelderen et al. 

involves a real-time shimming method to compensate for 

fluctuations in the main magnetic field induced by 
respiration. Implementing such techniques in fMRI-BCI 

systems could help correct physiological artifacts and noise, 

especially crucial at higher static magnetic field strengths 

where physiological noise becomes more prominent. 

 

 Signal Analysis 

The signal analysis subsystem performs statistical 

analysis and generates functional maps using methods such 

as subtraction of active and rest conditions, correlation 

analysis, multiple regression, general linear model (GLM), 

and pattern classification to analyze brain activity patterns. 

Two types of analyses can be done: univariate and 
multivariate analysis. 
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 Signal Feedback 

Feedback is presented to the subject through various 
modalities like acoustic and visual cues. Different 

visualization methods are used, such as functional maps, 

continuously updated curves of mean activity in selected 

regions of interest (ROI), graphical thermometers showing 

activity levels in ROIs, and even virtual reality interfaces. 

The timing of feedback presentation is crucial for learning 

voluntary control of brain activity. Training individuals to 

self-regulate brain activity can be achieved through feedback 

of specific brain signals in functional magnetic resonance 

imaging-based brain-computer interfaces (fMRI-BCI). This 

feedback not only provides information on the blood-oxygen-
level-dependent (BOLD) signal but also serves as a reward 

mechanism. Effective learning is facilitated by providing 

contingent feedback promptly after a response, with a high 

probability of occurrence. fMRI-BCI can operate in both 

feedback mode, focusing on self-regulation, and non-

feedback mode, for applications like brain state detection 

such as lie detection. Various techniques are employed to 

identify, compute, and present feedback to the subject. 

 

 Applications 

The primary focus of fMRI-BCI and real-time fMRI 

systems in various studies has been on training individuals, 
both healthy subjects and patients, to intentionally regulate 

specific brain regions to explore their behavioral 

implications. [37] There have been studies [33] and 

subsequent investigations highlight the potential of fMRI-

based brain-computer interfaces (BCIs) in clinical 

applications, particularly in the context of chronic pain 

management and emotional regulation. In the initial study by 

de Charms et al., the researchers aimed to determine whether 

training individuals to modulate activity in the rostral part of 

the anterior cingulate cortex (rACC), a region associated with 

pain processing, could influence pain perception. They 
trained healthy volunteers and chronic pain patients to 

intentionally control rACC BOLD activation using real-time 

fMRI feedback, which altered their perception of pain from 

thermal stimuli, a specificity confirmed by control 

experiments showing no similar effects with other feedback 

conditions. In a subsequent study, the application of fMRI-

BCI in training psychopathic subjects to self-regulate the left 

anterior insula showed promising results, suggesting the 

potential for clinical rehabilitation in various conditions such 

as movement disabilities post-stroke, chronic pain 

management, and treatment of emotional disorders like 
depression and anxiety by addressing abnormal brain 

activity. 

 

 FMRI BCI can also be used for: 

 Language processing:  In the study by Rota et al., the 

researchers investigated the human capacity for 

differential self-regulation of Blood Oxygen Level 

Dependent (BOLD) activity recorded locally in Broca's 

area (BA 45). The study's results demonstrated that up-

regulation of the right BA 45 correlated with improved 

emotional prosody identification. This suggests that 

individuals trained to voluntarily modulate activity in 
Broca's area showed enhanced performance in 

recognizing emotional prosody, highlighting the potential 

for self-regulation in linguistic processing areas. 
 

 Neuroplasticity of motor systems: In the context of 

neuroplasticity and functional reorganization for recovery 

after neurological diseases such as stroke, real-time fMRI 

feedback offers a potential avenue. In the study by 

Sitaram et al., four healthy volunteers were trained to 

control the Blood Oxygen Level Dependent (BOLD) 

response of the Supplementary Motor Area (SMA). The 

offline analysis revealed significant activation of the 

SMA with training. Interestingly, there was also a distinct 

reduction in activation in the surrounding areas, 
suggesting that volitional control training can specifically 

focus activity in the region of interest. 

 

 Visual: fMRI-BCI to investigate the relationship between 

brain activity and conscious perception during binocular 

rivalry, specifically focusing on the perception of faces 

and houses. The experiment consists of three stages: 

pretest, volitional control training, and posttest. By 

combining fMRI-BCI with binocular rivalry, the 

proposed experiment seeks to explore the role of specific 

brain regions, such as the FFA, in modulating conscious 
perception of faces. The ability to volitionally control 

brain activity could provide insights into the neural 

mechanisms underlying visual perception. 

 

There are also psycho-physiological treatments of 

fMRI- BCI. For Stroke rehabilitation, Treating chronic pain, 

treating emotional disorders, Psychopathy, and social phobia. 

In the psychiatric domain, fMRI has played a crucial role in 

advancing our understanding of psychopathology by 

revealing neural correlates of various mental health 

conditions. In neurology, fMRI has become a cornerstone 

technique for mapping neuroplasticity, aiding in the recovery 
process from conditions like stroke, and assisting in 

presurgical planning for tumor and epilepsy surgeries 

 

D. FNIRS 

Functional near-infrared spectroscopy (fNIRS) is a 

relatively new BCI modality that uses near-infrared-range 

light to measure the concentration changes of oxygenated 

hemoglobin (HbO) and deoxygenated hemoglobin (HbR). 

The primary motor cortex and the prefrontal cortex are the 

predominant brain regions utilized in fNIRS-based BCIs. 

Motor imagery tasks are favored over motor execution tasks 
in the motor cortex to circumvent potential proprioceptive 

feedback. In contrast, the prefrontal cortex offers a notable 

advantage for fNIRS applications due to the absence of hair, 

enabling effective detection of cognitive tasks such as mental 

arithmetic, music imagery, and emotion induction. 

 

FNIRS quantifies variations in blood flow within the 

local capillary network, reflecting neuronal activity. 

Employing near-infrared light emitter-detector pairs with 

multiple wavelengths, the method involves the transmission 

of light through the scalp and brain tissues, subjecting 

photons to multiple scattering. Subsequently, the photons 
exiting the cortical region carry data regarding the dynamic 

concentrations of oxygenated (HbO) and deoxygenated 
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(HbR) hemoglobin. The relationship between the intensities 

of exiting and incident photons is computed using the 
modified Beer-Lambert's law. [20] This calculation enables 

the assessment of changes in HbO and HbR concentrations 

along the path of the photons. 

 

Brain-computer interfaces (BCIs) utilize brain signals to 

gather information about the user's intentions. When 

developing an fNIRS-based BCI system, the initial step 

involves acquiring appropriate brain signals. The primary 

motor cortex and the prefrontal cortex are the most 

commonly targeted brain regions for signal acquisition. 

Signals related to motor execution and motor imagery tasks 
are typically obtained from the motor cortex, while tasks like 

mental arithmetic, mental counting, music imagery, and 

landscape imagery are associated with the prefrontal cortex. 

 

The primary motor cortex activities are considered 

advantageous for functional Near-Infrared Spectroscopy 

(fNIRS) Brain-Computer Interface (BCI) applications due to 

their natural ability to provide BCI control over external 

devices and their potential benefits for neurorehabilitation. 

The two most common activities acquired from the motor 

cortex are motor execution and motor imagery. 

 Motor Execution: Involves physically moving a body part 

to activate the motor cortex, which triggers muscular 

tensions through muscular actions. Tasks like finger 

tapping, hand tapping, arm lifting, knee extension, and 

hand grasping have been utilized in previous studies. 

 Motor Imagery: Refers to mentally imagining the 

movement of one's body part without actual muscular 

involvement. Motor imagery tasks include imagining 

actions like squeezing a ball, finger-tapping sequences, 

feet tapping, hand grasping, wrist flexion, and elbow 

movements. Unlike motor execution tasks, motor imagery 

signals are free of proprioceptive feedback. 
 

On the other hand, prefrontal cortex activities are also 

favored for fNIRS-BCI due to their lower susceptibility to 

motion artifacts and signal attenuation caused by hair 

slippage. These activities are particularly effective for motor-

function-related disabilities. Common prefrontal activities 

include mental arithmetic, music imagery, mental counting, 

and landscape imagery. 

 

Various emitter-detector configurations have been 

utilized in these brain regions, with the emitter-detector 
distance playing a crucial role in fNIRS measurements. For 

instance, increasing the emitter-detector distance results in 

greater imaging depth. 

 

The fNIRS signals obtained may exhibit different types 

of noise, including instrumental noise, experimental errors, 

and physiological noise. As instrumental noise and 

experimental errors are unrelated to brain activities, it is 

advisable to eliminate them before transforming the raw 

optical density signals into changes in HbO and HbR 

concentrations using the modified Beer-Lambert law. 

Physiological noise include heartbeats, respiration, blood 
pressure, etc. They can be removed by using bandpass 

filtering, advanced filtering methods, ICA, and PCA. 

Instrumental noise in fNIRS signals stems from hardware 

components or environmental factors, introducing high-
frequency disruptions in the recorded data. To mitigate this 

noise, a low-pass filter with a defined cutoff frequency (e.g., 

3-5 Hz) can be employed to filter out the high-frequency 

components linked to instrumental noise. Furthermore, 

reducing fluctuations in external light can also play a role in 

significantly decreasing instrumental noise levels. 

 

Experimental errors in fNIRS data, such as motion 

artifacts resulting from head movements that displace 

optodes, can cause abrupt changes in light intensity, leading 

to spike-like noise in the recorded signals. Various correction 
methods have been proposed in scientific literature to address 

these motion artifacts and rectify experimental errors. [12] 

 

 Applications  

In recent years, remarkable strides have been achieved 

in the realm of fNIRS-BCI research; however, its 

applications have predominantly been tailored for training 

and demonstration purposes. The efficacy of fNIRS-BCI 

encounters challenges in real-world scenarios due to a slow 

information transfer rate and elevated error rates. Notably, 

testing often transpires in controlled laboratory environments, 

where user concentration on mental tasks is facilitated, 
contrasting with the more demanding nature of 

concentration-dependent tasks in real-life situations, such as 

motor imagery and mental arithmetic. 

 

Within the domain of neuro-rehabilitation, fNIRS-BCI 

emerges as a potential tool for restoring lost motor and 

cognitive functions in individuals affected by stroke or spinal 

cord injury. Unlike EEG, which faces limitations in precise 

localization and subcortical accessibility, fNIRS, being low-

cost, portable, and less sensitive to motion artifacts, offers an 

attractive alternative. Studies [25], [27] and [28] demonstrate 
the potential of fNIRS-based neurofeedback in regulating 

hemodynamic responses, especially in motor imagery and for 

stroke patients. 

 

Communication applications of BCI, specifically for 

individuals with motor disorders like ALS and spinal cord 

injury, are highlighted. fNIRS-BCI system for binary 

communication based on prefrontal activations, achieving 

approximately 82% accuracy.[29] Furthermore, fNIRS-BCI 

finds significance in motor restoration/rehabilitation, where 

control commands generated can be employed for prosthetic 
limb or wheelchair control. Applications in environment 

control, entertainment, and potential use in brain-controlled 

video games are also explored. 

 

Moreover, the application of functional Near-Infrared 

Spectroscopy (fNIRS) in BCI aligns with neuro ergonomics, 

enabling real-time assessment of mental workload and 

conditions. Studies employing fNIRS-BCI have identified 

three distinct levels of workload in tasks such as air traffic 

control [6], attention deficit tasks [15], and drowsiness 

detection in drivers [24]. Additionally, for cognitive and 

motor function restoration in stroke patients, neurofeedback 
processes utilizing fNIRS-BCI have been explored [28]. 
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These processes involve subjects regulating hemodynamic 

responses to facilitate self-regulation of brain activity. 
  

A notable advantage of fNIRS lies in its complementary 

integration with other modalities without introducing 

additional artifact noise in the readings, and vice versa. One 

commonly pursued combination is fMRI–fNIRS, capitalizing 

on the fact that fMRI setups struggle with experiments 

involving subjects in sitting or standing positions. 

 

Additionally, fMRI lacks accessibility to working body 

parts for real-time control readings. Although fMRI provides 

highly accurate readings, to address these limitations without 
sacrificing benefits, an fNIRS setup can be coupled with the 

existing setup. Furthermore, fNIRS has been integrated with 

the EEG modality, creating a distinct neuromonitoring 

platform for investigating neurovascular coupling 

mechanisms. A modified version of fNIRS known as 

broadband-NIRS has been specifically applied in this 

context, utilizing Finite Impulse response functions within 

the General Linear model. This implementation has 

demonstrated the capability to measure hemodynamic and 

metabolic activity in the occipital cortex. [25] 

 

FNIRS-BCI systems are extremely portable, providing 
flexibility in various settings, and have high experimental 

flexibility, allowing for versatile applications in research. 

However, one drawback of fNIRS-BCI is its slow 

information transfer rate, limiting its real-world applications. 

FNIRS-BCI systems may exhibit high error rates, impacting 

their reliability in certain contexts. FNIRS is a low-cost 

alternative to fMRI, making it more accessible for various 

applications. Its portable nature allows for usage in diverse 

settings, including ambulances, enhancing its practical 

applications. FNIRS holds great potential for neurofeedback 

studies. Understanding these pros and cons is crucial for 
optimizing fNIRS-BCI applications in different research and 

practical scenarios. 

 

IV. CONCLUSION 

 

In conclusion, the varied array of non-invasive methods 

of BCI have emerged as a promising application in the field of 

neuroscience that represents a significant advancement in 

bridging the gap between the human brain and external 

devices. These systems present a safe and accessible means of 

exploiting brain activity for various applications, ranging from 
controlling prosthetic devices to enhancing communication 

for individuals with disabilities. While each method has its 

strengths and limitations, together they contribute to the field 

of neuroscience with immense potential for improving 

human-computer interaction and advancements in healthcare 

practices. As research continues to evolve, the future of non-

invasive BCIs holds great promise for unlocking new 

possibilities in technology and neuroscience. 
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