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I. INTRODUCTION 

 

 Background: 

Consider a simple, connected graph, G, having vertex 

group V(G) = {va1, va2, . . ., vap} and edge group E(G) with 

|E(G)| = q. Whenever any two vertices say x and y are part 

of V(G) and share an edge, they are represented by xy ∈ 

E(G). The degree of the vertex x in the vertex group V(G) is 

defined as the count of edges that are connected to x, 

represented or denoted as degG(x). Throughout this study, 

we adopt standard references for terms and symbols. 

 

In the realm of molecular graph theory, molecular 

arrangement is commonly represented by molecular graphs 

to analyse various properties of chemical compounds 

theoretically. A crucial concept in this field is the molecular 
structure index, a graph invariant that correlates physio-

chemical properties with numerical values. Utilizing 

adjacency, degree, and distance matrices from graph theory, 

one can elucidate the structural features of molecules, 

leading to the development of vertex degree-based 

topological indices and distance-based topological indices 

[5,6,8,9,10]. The application of molecular structure indices 

is integral to elucidating structure-property relationships and 

other relevant properties [1,7,11]. 

 

The initial Zagreb indices, Namely the Ist Zagreb Index 

and IInd Zagreb index were first introduced as components of 
a topological formula to calculate the total π-energy of 

conjugated molecules by Gutman et al [1]. These indices 

play a crucial role as fundamental branching indices. Their 

utility extends across various fields, notably in QSPR 

(Quantitative Structure-Property Relationships) and QSAR 

(Quantitative Structure-Activity Relationship) studies, 

where they have been extensively applied and analyzed. 

 

The Ist and IInd Zagreb Indices of Graphs are defined as 

follows: 

 

𝑀1(𝐺) = ∑ [𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)]𝑥𝑦∈𝐸(𝐺)   or ∑ 𝑑𝐺
2 (𝑥)𝑥∈𝑉(𝐺) , 

  

𝑀2(𝐺) = ∑ [𝑑𝐺 (𝑥). 𝑑𝐺 (𝑦)]
𝑥𝑦∈𝐺

 

 
Drawing inspiration from the definitions of the Zagreb 

indices and their broad applications, V.R. Kulli introduced 

the first and second Gourava indices of a molecular graph in 

[2] as outlined below: 

 

𝐺𝑂1(𝐺) = ∑𝑥𝑦∈𝐺  [{(𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)} + 𝑑𝐺 (𝑥). 𝑑𝐺 (𝑦)] , 

 

𝐺𝑂2(𝐺) = ∑𝑥𝑦∈𝐺  [{(𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)}. 𝑑𝐺 (𝑥). 𝑑𝐺 (𝑦)] 

 

Exploring a finite simple graph, denoted as G, 

comprising p vertices and q edges. The sets of vertices are 

symbolized by V(G) and sets of edges in G are symbolised 

E(G). The complement of G, designated as  G̅  is a simple 

graph sharing the same vertex group V(G). In  G̅, two 

vertices x and y are termed adjacent, linked by an edge xy, 

solely if they are not adjacent in G. Hence, xy ∈ E (( G̅)) if 

and only if xy ∉ E(G). (This definition excludes loops 

in G̅ ). It's evident that E(G) ∪ E ( G̅) = E(Kp), and the count 

of edges in the complement graph is denoted by |E ( G̅)| = 
p(p−1)

2
− q.. The degree of a vertex x in G is represented by 

d(x); accordingly, the degree of the same vertex in ( G̅) is 

expressed as dG̅(x)=p−1− (dG(x)). The subscript G can be 

removed when the referred graph is evident from the 

context. 

 

The Zagreb indices can be understood as the additive 

and multiplicative contributions of pairs of adjacent vertices 

to weighted variations of Wiener numbers and polynomial 

[12]. Intriguingly, it has been found that analogous 

contributions from non-neighbouring pairs of vertices 

become notable while calculating the weighted Wiener 

polynomials of specific composite graphs [13]. These 
contributions, spanning across the edges of the complement 

of G, are referred to as Zagreb co-indices. To formally 

define the first Zagreb coindex of a graph G. 
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𝑀̅1(𝐺) = ∑ [𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)]
𝑥𝑦∉𝐸(𝐺)

 

 

𝑀̅2(𝐺) = ∑ [𝑑𝐺 (𝑥). 𝑑𝐺 (𝑦)]
𝑥𝑦∉𝐸(𝐺)

 

The formal presentation of these new invariants was 

introduced in [13], anticipating that they would enhance our 

capability to measure the impacts of pairs of non-adjacent 

vertices on different characteristics of molecules. In this 

article, we delve into the computation of Gourava Co-

indices, defined as follows: 

 

𝐺𝑂̅̅ ̅̅
1(𝐺) = ∑𝑥𝑦∉𝐸(𝐺) [{(𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)} + 𝑑𝐺 (𝑥). 𝑑𝐺 (𝑦)] 

 

𝐺𝑂̅̅ ̅̅
2(𝐺) = ∑𝑥𝑦∉𝐸(𝐺) [{(𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)}. 𝑑(𝑥). 𝑑𝐺 (𝑦)] 

 

II. BASIC PROPERTIES OF ZAGREB CO-INDICES FROM [14] 

 

 Result 1. Assuming a Simple Graph G Having p Vertices, q Edges, then 

 

𝑀1( 𝐺̅) =  𝑀1(𝐺) + 2(𝑝 − 1)( 𝑞 ̅̅ ̅ − 𝑞) 

 
 Proof: 

 

 𝑀1( 𝐺)̅̅ ̅̅ ̅̅ =  ∑ 𝑑 𝐺̅̅̅
2 (𝑢)𝑥∈𝑉( 𝐺̅̅̅)  =∑ (𝑝 − 1 − (𝑑𝐺 (𝑥))2

𝑢∈𝑉(𝐺)  

 

=   ∑ (𝑝 − 1)2 − 2(𝑝 − 1)𝑥∈𝑉(𝐺)  ∑ 𝑑𝐺 (𝑥)𝑥∈𝑉(𝐺) + ∑ (𝑑𝐺 (𝑥)2
𝑥∈𝑉(𝐺) ) 

 

=  𝑝(𝑝 − 1)2 − 4𝑞(𝑝 − 1) +  𝑀1(𝐺) 

 

 Result 2: Assuming a Simple Graph G having p Vertices, q Edges, then 

 

𝑀̅1(𝐺) = 2𝑞(𝑝 − 1) −  𝑀1(𝐺) 
 

 Proof:  
 

𝑀̅1(𝐺) = ∑ [𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)]
𝑥𝑦∉𝐸(𝐺)

 

 

=  ∑ [(𝑝 − 1 − 𝑑 𝐺̅̅̅ (𝑥)) + (𝑝 − 1 − 𝑑 𝐺̅̅̅ (𝑦)]𝑥𝑦∈𝐸( 𝐺̅̅̅)  

 

=  ∑ [(2𝑝 − 2 − (𝑑 𝐺̅̅̅ (𝑥) + 𝑑 𝐺̅̅̅ (𝑦))]𝑥𝑦∈𝐸( 𝐺̅̅̅)  

. 

=  ∑ (2(𝑝 − 1) 𝑥𝑦∈𝐸( 𝐺̅̅̅) +∑ (𝑑 𝐺̅̅̅ (𝑥) + 𝑑 𝐺̅̅̅ (𝑦))𝑥𝑦∈𝐸( 𝐺̅̅̅)  

 

=  2(𝑝 − 1) 𝑞̅ −  𝑀1(𝐺)=2(𝑞 − 1)𝑝 −  𝑀1(𝐺) 

 

 (Substituting the Value of   𝑀1( 𝐺̅) from Result 1) 

 

 Result 3: Assuming a Simple Graph G having p Vertices, q Edges, then  

 

𝑀̅2(𝐺) =  (2𝑞)2 −  𝑀2(𝐺) −
1

2
 𝑀1(𝐺) 

 

 Proof: follows from [14] 

 

 Result 4: Assuming a Simple Graph G having p Vertices, q Edges, then  

 

𝑀2( 𝐺̅) =  𝑀̅2(𝐺) + (𝑝 − 1)  𝑀1( 𝐺̅) +  𝑞̅(𝑝 − 1)2 
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 Proof: 

 

𝑀̅2(𝐺) = ∑ [𝑑𝐺 (𝑥). 𝑑𝐺 (𝑦)]
𝑥𝑦∉𝐸(𝐺)

 

 

=  ∑ [(𝑝 − 1 − 𝑑 𝐺̅̅̅ (𝑥)) . (𝑝 − 1 − 𝑑 𝐺̅̅̅ (𝑦)]𝑥𝑦∈𝐸( 𝐺̅̅̅)  

 

=  ∑ (𝑝 − 1)2
𝑥𝑦∈𝐸( 𝐺̅̅̅) − (𝑝 − 1) ∑ 𝑑 𝐺̅̅̅ (𝑥) + 𝑑 𝐺̅̅̅ (𝑦)𝑥𝑦∈𝐸( 𝐺̅̅̅) + ∑ 𝑑 𝐺̅̅̅ (𝑥)𝑑 𝐺̅̅̅ (𝑦)𝑥𝑦∈𝐸( 𝐺̅̅̅)  

 

= (𝑝 − 1)2 𝑞̅+ (𝑝 − 1)  𝑀1( 𝐺̅) + 𝑀̅2(𝐺) 

 
 Corollary 1: 

 

 𝑀2( 𝐺̅) = (2𝑞)2 −  𝑀2(𝐺) −
1

2
 𝑀1(𝐺) + (𝑝 − 1)  𝑀1(𝐺) + 2(𝑝 − 1)2( 𝑞̅− 𝑞) −  𝑞̅( 𝑝 − 1)2 

 

 Proof:  

 

 By substituting the value of M̅2(G) from result 3 in result 4, we get the above stated result. 

 After getting all these things we now tend to establish relation between Gourava and Zagreb Co-indices. 

 

 We know 
 

𝐺𝑂1(𝐺) = ∑𝑥𝑦∈𝐺  [{(𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)} + 𝑑𝐺 (𝑥). 𝑑𝐺 (𝑦)] 

 

= ∑𝑥𝑦∈𝐺  {(𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)} + ∑𝑥𝑦∈𝐺  𝑑𝐺 (𝑥). 𝑑𝐺 (𝑦) 

 

= 𝑀1(𝐺)+ 𝑀2(𝐺) 
 

 Proposition 1: 

 

𝐺𝑂̅̅ ̅̅
1(𝐺) = 𝑀̅1(𝐺) + 𝑀̅2(𝐺) 

 

 Proof:  

 

R.H.S   𝑀̅1(𝐺) + 𝑀̅2(𝐺) 

 

= 2𝑞(𝑝 − 1) −   𝑀1(𝐺)+(2𝑞)2 −  𝑀2(𝐺) −
1

2
 𝑀1(𝐺) 

 

= 2𝑞(𝑝 − 1) −
3

2
 𝑀1(𝐺) −  𝑀2(𝐺)+(2𝑞)2 

 

L.H.S   𝐺𝑂̅̅ ̅̅
1(𝐺) = ∑𝑥𝑦∉𝐺  [{(𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)} + 𝑑𝐺 (𝑥). 𝑑𝐺 (𝑦)] 

 

=∑ [(𝑝 − 1 − 𝑑 𝐺̅̅̅ (𝑥)) + (𝑝 − 1 − 𝑑 𝐺̅̅̅ (𝑦)]𝑥𝑦∈𝐸( 𝐺̅̅̅) + [(𝑝 − 1 − 𝑑 𝐺̅̅̅ (𝑥)) . (𝑝 − 1 − 𝑑 𝐺̅̅̅ (𝑦)] 

 

=∑ [(2𝑝 − 2) − 𝑝(𝑑 𝐺̅̅̅ (𝑥) + 𝑑 𝐺̅̅̅ (𝑦)) + (𝑝 − 1)2 +    (𝑑 𝐺̅̅̅ (𝑥). 𝑑 𝐺̅̅̅ (𝑦))]𝑢𝑣∈𝐸( 𝐺̅̅̅)  

 

= ∑ ((𝑝)2 − 1)

𝑥𝑦∈𝐸( 𝐺̅̅̅)

− 𝑝 ∑ (𝑑 𝐺̅̅̅ (𝑥) + 𝑑 𝐺̅̅̅ (𝑦)) +  ∑ 𝑑 𝐺̅̅̅ (𝑥)𝑑 𝐺̅̅̅ (𝑦)

    𝑥𝑦∈𝐸( 𝐺̅̅̅)𝑥𝑦∈𝐸( 𝐺̅̅̅)

 

 

=((𝑝)2 − 1) 𝑞̅𝑝  𝑀1( 𝐺̅) +   𝑀1( 𝐺̅) 
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 Substituting the Values of 

 

  𝑀1( 𝐺̅) 𝑎𝑛𝑑   𝑀2( 𝐺̅) 

 

=((𝑝)2 − 1) 𝑞̅ − 𝑝(𝑀1(𝐺) + 2(𝑝 − 1)( 𝑞 ̅̅ ̅ − 𝑞))+(2𝑞)2 −  𝑀2(𝐺) −
1

2
 𝑀1(𝐺) + (𝑝 − 1)  𝑀1(𝐺) + 2(𝑝 − 1)2( 𝑞̅− 𝑞) −  𝑞̅(𝑝 − 1)2 

 

=((𝑝)2 − 1 − (𝑝 − 1)2) 𝑞̅+ (2(𝑝 − 1)2 − 2𝑝 (𝑝 − 1)( 𝑞̅− 𝑞) − 𝑀2(𝐺) −
3

2
 𝑀1(𝐺)+(2𝑞)2 

 

=-2p𝑞̅ + (2 − 2𝑝)(  𝑞̅ − 𝑞)–  𝑀2(𝐺) −
3

2
 𝑀1(𝐺)+(2𝑞)2 

 

= 2𝑞(𝑝 − 1) −
3

2
 𝑀1(𝐺) −  𝑀2(𝐺)+(2𝑞)2 =R.H. S 

 

III. SECOND GOURAVA INDEX 

 

 Unlike how First Gourava Index behaves, the Second Gourava Index does not Adhere to 

 

𝐺𝑂2(𝐺) =  𝑀1(𝐺) 𝑀2(𝐺) 
 

 As Summation is not Distributed over Multiplication 

 

 So, Clearly 

 

𝐺𝑂2(𝐺) ≠  𝑀1(𝐺) 𝑀2(𝐺) 

 

 But for Certain Special Cases q 

 

𝐺𝑂2(𝐺) =  𝑀1(𝐺) 𝑀2(𝐺) 

 

 We will now Discuss those Special Cases. 

 

 Uniform Graphs and Uniform Edges 

There exist graphs where the degrees of corresponding 

vertices in both the graph and its complement are equal. We 

refer to these edges as "Uniform edges," and such graphs are 

termed "Uniform Graphs." 

 

Upon observation, Complete graphs, Cyclic Graphs, 

and Tree Graphs are examples of Uniform Graphs. 
 

 Illustration: 

 

 Consider Complete Graph G= K4 

 

      
G                     𝐺̅ 

 
Every edge in G possesses vertex degree 3 and 3 
 

And  G̅ contains no edge 

 
Consider Cyclic Graph G= C4 

 

   
G                                    𝐺̅ 

 
Every edge in G possesses vertex degree 2 and 2  

 
And every edge in  G̅ possesses vertex degree 1 and 1  

 

 Star Graph with 4 Vertices 

 

     
G                                       G̅ 

  

Every edge in graph G has possesses degree 3 and 1 

 

And every edge in  G̅ possesses vertex degree 2 and 2 
 

 Proposition 2: For Uniform Graphs: 

 

 𝑞̅ 𝐺𝑂̅̅ ̅̅
2(𝐺) = 𝑀̅1(𝐺). 𝑀̅2(𝐺) 
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 Proof:  

 

 Case I: For Complete Graphs  

 

LHS  𝑞̅ 𝐺𝑂̅̅ ̅̅
2(𝐺)=  𝑞̅ ∑𝑥𝑦∉𝐺  [{(𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)}. 𝑑(𝑥). 𝑑𝐺 (𝑦)] 

 

=  𝑞̅ ∑𝑥𝑦∉𝐺  [{(𝑝 − 1) + (𝑝 − 1)}. (𝑝 − 1). (𝑝 − 1)] 

 

=2(𝑝 − 1)3  𝑞̅2 

 
RHS 𝑀̅1(𝐺). 𝑀̅2(𝐺)=∑ [𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)]𝑥𝑦∉𝐸(𝐺) . ∑ [𝑑𝐺 (𝑥). 𝑑𝐺 (𝑦)]𝑥𝑦∉𝐸(𝐺)  

 

=∑ [𝑝 − 1 + 𝑝 − 1]𝑥𝑦∉𝐸(𝐺) . ∑ [(𝑝 − 1). (𝑝 − 1)]𝑥𝑦∉𝐸(𝐺)  

 

=2(𝑝 − 1)3  𝑞̅2 

 

 Case 2: For Cyclic Graphs 

 

LHS  𝑞̅ 𝐺𝑂̅̅ ̅̅
2(𝐺) =  𝑞̅ ∑𝑥𝑦∉𝐺  [{(𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)}. 𝑑(𝑥). 𝑑𝐺 (𝑦)] 

 

=  𝑞̅ ∑𝑥𝑦∉𝐺  [(2 + 2). (2). (2)] 

 

=16  𝑞̅2 
RHS    𝑀̅1(𝐺). 𝑀̅2(𝐺)=∑ [𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)]𝑥𝑦∉𝐸(𝐺) . ∑ [𝑑𝐺 (𝑥). 𝑑𝐺 (𝑦)]𝑥𝑦∉𝐸(𝐺)  

 

=∑ [2 + 2]𝑥𝑦∉𝐸(𝐺) . ∑ [(2.2)]𝑥𝑦∉𝐸(𝐺)  

 

=4  𝑞̅. 4 𝑞̅ 

 

=16  𝑞̅2 

 

 Case 3: For Star Graphs 

 

LHS  𝑞̅ 𝐺𝑂̅̅ ̅̅
2(𝐺)= 𝑞 ̅ ∑𝑥𝑦∉𝐺  [{(𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)}. 𝑑(𝑥). 𝑑𝐺 (𝑦)] 

 

=  𝑞̅ ∑𝑥𝑦∉𝐺  [(𝑝 − 1 + 1). (𝑝 − 1). (1)] 

 

=p(p-1)  𝑞̅2
 

 
RHS  𝑀̅1(𝐺). 𝑀̅2(𝐺)=∑ [𝑑𝐺 (𝑥) + 𝑑𝐺 (𝑦)]𝑥𝑦∉𝐸(𝐺) . ∑ [𝑑𝐺 (𝑥). 𝑑𝐺 (𝑦)]𝑥𝑦∉𝐸(𝐺)  

 

=∑ [𝑝 − 1 + 1]𝑥𝑦∉𝐸(𝐺) . ∑ [(𝑝 − 1). 1]𝑥𝑦∉𝐸(𝐺)  

 

=p 𝑞 ̅. (𝑝 − 1) 𝑞̅ 
 

=p(p-1)  𝑞̅2 

 

IV. CONCLUSION 

 

In conclusion, this paper introduces the concept of 
Gourava co-indices, which extend the ideas of Zagreb 

indices to analyse relationships and patterns within 

molecular structures. We have also discussed some results 

that discuss relationship for Gourava and Zagreb Co-indices. 
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