Comparison of Areas Formed from Angle Trisectors on Any Nonconvex Quadrilateral

Rysfan ${ }^{1}$, Mashadi ${ }^{2}$, Sri Gemawati ${ }^{3}$
${ }^{1,2,3}$ Department of Mathematics, Faculty of Mathematics and Natural Sciencs, University of Riau, Pekanbaru, Indonesia

Abstract

Angular trisectors were originally discussed for Morleey's theorem on the existence of equilateral triangles formed from the intersection of trisectors. This trisector has been developed by several authors on convex quadrilaterals. However, no one has developed in detail on nonconvex quadrilaterals. In this paper, the author will determine the side lengths of angle trisectors on nonconvex quadrilaterals in various cases. At the end, a comparison of the area of triangles formed from the construction of angle trisectors on nonconvex quadrilaterals is also given, which will be described in several cases.

Keywords:- Area Comparison, Angle Trisectors, Nonconvex Quadrilaterals.

I. INTRODUCTION

One of the discussions about flat buildings is about angle trisectors in triangles that divide each angle of a triangle into three equal parts. In [1-3] discussed how to divide the angle into three equal parts. The result obtained is that there are various methods to divide the angle into three equal parts. Morley's theorem is the most interesting and surprising result of the 20th century in the field of geometry because it divides every angle in an arbitrary triangle into three equal parts. In [5-16], states that if there is an arbitrary triangle formed by a trisector at each angle, then there are three intersections of two adjacent trisectors to form a morley triangle. The result obtained is that there is an equilateral triangle formed from the intersection of the angle trisectors. In addition to angle trisectors in triangles, [17] discussed the outer angle trisector in any triangle by dividing the outer angle in any triangle into three equal parts. The result obtained is that there is an equilateral triangle formed from the intersection of the outer angle trisector.

In addition to triangles, Morley's theorem is also developed on quadrilaterals. In [18], the development of Morley's theorem on special quadrilaterals namely square, rectangle, rhombus, kite, and isosceles trapezoid is discussed. The results obtained are Morley quadrilaterals formed from square flat shapes are square flat shapes. Morley's quadrilateral formed from a rectangular flat is a rhombus flat. Morley's quadrilateral formed from a rhombus flat is a rectangular flat. A Morley quadrilateral formed from a kite is an isosceles trapezoid. The Morley quadrilateral formed from an isosceles trapezoid is a kite.

Another discussion of angle trisectors is to determine the area ratio formed from angle trisectors. In [19], it is discussed how to determine the area ratio of the shapes formed from angle trisectors on any triangle. In addition, it also discusses the comparison of the area of the shape formed from the angle trisector on any convex quadrilateral. The results obtained are there are three triangles that are made area comparison. The discussion only discusses the area comparison formed from angle trisectors on a convex quadrilateral but not on a nonconvex quadrilateral where this nonconvex quadrilateral, there are several cases that make the area comparison different.

II. ANGLE TRISECTOR ON A CONVEX QUADRILATERAL

Some development of angular trisectors was done by [13] which is about the length of two trisector lines and the area ratio formed from any convex quadrilateral. Suppose there is an arbitrary quadrilateral ABCD , the length of the side $A B$ is denoted by a, the length of the side $B C$ is denoted by b, the length of the side CD is denoted by c , the length of the side DA is denoted by d . Furthermore, $\angle \mathrm{A}$ is denoted by $\alpha, \angle B$ is denoted by $\beta, \angle C$ is denoted by γ, and $\angle D$ is denoted by δ. Then if a trisector is formed from the four corners, there will be two trisector lines from each corner that divide the corner into three equal parts. In Figure 1, it can be seen that lines $A A_{1}$ and $A A_{2}$ divide angle A, lines $B B_{1}$ and $B B_{2}$ divide angle B, lines $C C_{1}$ and $C C_{2}$ divide angle C , and lines DD_{1} and DD_{2} divide angle D , each of these trisector lines divides each angle of the ABCD quadrilateral into three equal parts. The following theorems are given about the length of two angle trisector lines on any nonconvex quadrilateral and the area ratio formed from any convex quadrilateral.

$>$ Theorem 1 .

In any convex quadrilateral $A B C D$, if a trisector is formed at angle A, the length of the trisector side is

$$
A A_{1}=\frac{a \sin \beta}{\sin \left(\frac{a}{3}+\beta\right)}
$$

And

$$
A A_{2}=\frac{d \sin \delta}{\sin \left(\frac{a}{3}+\delta\right)}
$$

Proof: see [12]

By using the same method in determining the side lengths of the trisectors $A A_{1}$ and $A A_{2}$, the side lengths of the trisectors at other arbitrary angles are obtained, namely

$$
\begin{gathered}
B B_{1}=\frac{b \sin \gamma}{\sin \left(\frac{\beta}{3}+\gamma\right)}, B B_{2}=\frac{a \sin \alpha}{\sin \left(\frac{\beta}{3}+\alpha\right)}, C C_{1}=\frac{c \sin \delta}{\sin \left(\frac{\gamma}{3}+\delta\right)}, \\
C C_{2}=\frac{b \sin \beta}{\sin \left(\frac{\gamma}{3}+\beta\right)}, D D_{1}=\frac{d \sin \alpha}{\sin \left(\frac{\delta}{3}+\alpha\right)}, \text { and } D D_{2}=\frac{c \sin \gamma}{\sin \left(\frac{\delta}{3}+\gamma\right)} .
\end{gathered}
$$

Fig 1 Trisector of Each Angle of an Arbitrary Quadrilateral $A B C D$

$>$ Teorema 2

In an arbitrary quadrilateral $A B C D$ if a trisector is formed at $\angle A$ then the ratio of the triangle area of the trisector $L \triangle B A A_{1}: L \triangle A A_{1} A_{2}: L \triangle D A A_{2}$ is

$$
\frac{a^{2} \sin \beta}{\sin \left(\frac{\alpha}{3}+\beta\right)}: \frac{a d \sin \beta \sin \delta}{\sin \left(\frac{\alpha}{3}+\beta\right) \sin \left(\frac{\alpha}{3}+\delta\right)}: \frac{d^{2} \sin \delta}{\sin \left(\frac{\alpha}{3}+\delta\right)}
$$

Proof: see [12]

III. SIDE LENGTH NONCONVEX QUADRILATERAL TRISECTOR

Suppose there is a nonconvex quadrilateral $A B C D$, with side length $A B=a$, side length $B C=b$, side length $C D=c$, and side length $A D=d$. Suppose $\angle D A B=\alpha$, $\angle A B C=\beta, \angle B C D=\gamma$, and $\angle C D A=\delta$. Then if a trisector is formed from the four angles, there will be two trisector lines from each angle that divide the angle into three equal parts. In Figure 2, line $A A_{1}$ and line $A A_{2}$ divide angle $D A B$ into three equal parts so that $\angle D A A_{1}=\frac{\alpha}{3}, \angle A_{1} A A_{2}=\frac{\alpha}{3}$, and $\angle A_{2} A B=\frac{\alpha}{3}$. Line $B B_{1}$ and line $B B_{2}$ divide angle $A B C$ into three equal parts so that $\angle A B B_{1}=\frac{\beta}{3}, \angle B_{1} B B_{2}=\frac{\beta}{3}$, and $\angle B_{2} B C=\frac{\beta}{3}$. Line $C C_{1}$ and line $C C_{2}$ divide angle $B C D$ into three equal parts so that, $\angle B C C_{1}=\frac{\gamma}{3}, \angle C_{1} C C_{2}=\frac{\gamma}{3}$, and $\angle C_{2} C D=\frac{\gamma}{3}$. Line $D D_{1}$ and line $D D_{2}$ divide angle $C D A$ into three equal parts so that $\angle C D D_{1}=\frac{\delta}{3}, \angle D_{1} D D_{2}=\frac{\delta}{3}$, and $\angle D_{2} D A=\frac{\delta}{3}$. The lengths of $A A_{1}$ and $A A_{2}$ are presented in the following theorem.

Theorem 3.
In any nonconvex quadrilateral $A B C D$ in Figure 2, if a trisector is formed at angle A, the length of the trisector side is

Fig 2 Trisector of Each Corner of an Arbitrary Nonconvex Quadrilateral $A B C D$

$$
A A_{1}=\frac{a \sin \beta}{\sin \left(\frac{2 \alpha}{3}+\beta\right)}
$$

and

$$
A A_{2}=\frac{a \sin \beta}{\sin \left(\frac{\alpha}{3}+\beta\right)}
$$

- Proof:

The length of the trisector side of each angle of an arbitrary quadrilateral is shown using trigonometric comparisons. Consider $\triangle A A_{1} B$, because the sum of the angles in the triangle is 180°, it is obtained

$$
\angle A A_{1} B=180-\left(\angle A_{1} A B+\angle A B A_{1}\right)
$$

Then by substituting the value of $\angle A_{1} A B=\frac{2 \alpha}{3}$ and $\angle A B A_{1}=\beta$, we obtain

$$
\angle A A_{1} B=180-\left(\frac{2 \alpha}{3}+\beta\right)
$$

By using the sine rule on $\triangle A A_{1} B$, we obtain

$$
\frac{A B}{\sin \left(\angle A A_{1} B\right)}=\frac{A A_{1}}{\sin \left(\angle A B A_{1}\right)}
$$

Furthermore, we get

$$
A A_{1}=\frac{a \sin \beta}{\sin \left(\frac{2 \alpha}{3}+\beta\right)}
$$

Next, the length of side $A A_{2}$ will be shown with respect to $\triangle B A A_{2}$, because the sum of the angles in the triangle is 180°, we obtain

$$
\angle A A_{2} B=180-\left(\angle A_{2} A B+\angle A B A_{2}\right)
$$

Then by substituting the value of $\angle A_{2} A B=\frac{\alpha}{3}$ and $\angle A B A_{2}=\beta$, then

$$
\angle A A 2 B=180-\left(\frac{\alpha}{3}+\beta\right)
$$

By using the sine rule on $\triangle A A_{2} B$, we obtain

$$
\frac{A B}{\sin \left(\angle A A_{2} B\right)}=\frac{A A_{2}}{\sin \left(\angle A B A_{2}\right)}
$$

Furthermore, we get

$$
A A_{2}=\frac{a \sin \beta}{\sin \left(\frac{\alpha}{3}+\beta\right)}
$$

So Theorem 3 is proven.
In the same way of determining the lengths of $A A_{1}$ and $A A_{2}$, the lengths of the side trisectors at angle C are $C C_{1}=$ $\frac{b \sin \beta}{\sin \left(\frac{\gamma}{3}+\beta\right)}$ and $C C_{2}=\frac{b \sin \beta}{\sin \left(\frac{2 \gamma}{3}+\beta\right)}$. If $\angle D$ is greater than 90°, it raises the case to determine the length of $B B_{1}, B B_{2}, D D_{1}$ and $D D_{2}$. As for $A A_{1}, A A_{2}, C C_{1}$ and $C C_{2}$, it does not cause a case. The following theorem determines the length of $B B_{1}$ and $B B_{2}$ in some cases.

$>$ Theorem 4.

In any nonconvex quadrilateral $A B C D$ with $\angle D$ greater than 90°, if a trisector is formed at angle B, the length of the trisector side is

$$
\begin{aligned}
B B_{1} & =\frac{a \sin \alpha}{\sin \left(\frac{\beta}{3}+\alpha\right)} \\
B B_{2} & =\frac{a \sin \alpha}{\sin \left(\frac{2 \beta}{3}+\alpha\right)}
\end{aligned}
$$

Or

$$
B B_{2}=\frac{b \sin \gamma}{\sin \left(\frac{\beta}{3}+\gamma\right)}
$$

- Proof:

In determining the length of $B B_{1}$ and $B B_{2}$, there are several cases to prove it. The following is an explanation of each case in determining the length of $B B_{1}$ and $B B_{2}$.

- Case 1

Suppose there is a nonconvex quadrilateral $A B C D$ with $\angle D$ greater than 90°, an angle trisector will be formed from its four angles. The two sides of the trisector of angle B are on the side of $A D$ illustrated in Figure 2. Next, the length of the trisector side of angle B will be determined using trigonometric comparison. Consider $\triangle A B_{1} B$, because the
sum of the angles in the triangle is 180°, the following is obtained

$$
\angle A B_{1} B=180-\left(\angle A B B_{1}+\angle B_{1} A B\right)
$$

Then by substituting the value of $\angle A B B_{1}=\frac{\beta}{3}$ and $\angle B_{1} A B=\alpha$, we obtain

$$
\angle A B_{1} B=180-\left(\frac{\beta}{3}+\alpha\right)
$$

By using the sine rule on $\triangle A B_{1} B$, we obtain

$$
\frac{A B}{\sin \left(\angle A B_{1} B\right)}=\frac{B B_{1}}{\sin \left(\angle B A B_{1}\right)}
$$

Furthermore, we get

$$
B B_{1}=\frac{a \sin \alpha}{\sin \left(\frac{\beta}{3}+\alpha\right)}
$$

Next, the length of side $B B_{2}$ will be shown by considering $\triangle A B_{2} B$, because the sum of the angles in the triangle is 180°, we obtain

$$
\angle A B_{2} B=180-\left(\angle A B B_{2}+\angle B_{2} A B\right)
$$

Then by substituting the value of $\angle A B B_{2}=\frac{2 \beta}{3}$ and $\angle B_{2} A B=\alpha$, we obtain

$$
\angle A B_{2} B=180-\left(\frac{2 \beta}{3}+\alpha\right)
$$

By using the sine rule on $\triangle A B_{2} B$, we obtain

$$
\frac{A B}{\sin \left(\angle A B_{2} B\right)}=\frac{B B_{2}}{\sin \left(\angle B A B_{2}\right)}
$$

Furthermore, we get

$$
B B_{2}=\frac{a \sin \alpha}{\sin \left(\frac{2 \beta}{3}+\alpha\right)}
$$

After obtaining the length of $B B_{1}$ and $B B_{2}$ in case 1 , the length of $B B_{1}$ and $B B_{2}$ in case 2 will be determined. In case 2, the length of $B B_{1}$ is the same as the length of $B B_{1}$ in case 1, but the length of $B B_{2}$ is different. The following explanation is given in determining the length of $B B_{2}$ in case 2 .

- Case 2

Suppose there is a nonconvex quadrilateral $A B C D$, an angle trisector will be formed from its four corners. The two sides of the angle trisector B are $A D$ and $C D$, respectively, as illustrated in Figure 3. Next, the lengths of the sides of the angle trisector $B, B B_{1}$ and $B B_{2}$, will be determined. The length of $B B_{1}$ in case 2 is the same as the length of $B B_{1}$ in case 1 so it will be continued to determine the length of $B B_{2}$.

Fig 3 Trisector Angle B on the Nonconvex Quadrilateral $A B C D$ Case 2.

Consider $\triangle B C B_{2}$, because the sum of the angles in the triangle is 180°, the following is obtained

$$
\angle B B_{2} C=180-\left(\angle C B B_{2}+\angle B_{2} C B\right)
$$

Then by substituting the value of $\angle C B B_{2}=\frac{\beta}{3}$ and $\angle B_{2} C B=\gamma$, we obtain

$$
\angle B B_{2} C=180-\left(\frac{\beta}{3}+\gamma\right)
$$

By using the sine rule on $\triangle B C B_{2}$, we obtain

$$
\frac{B C}{\sin \left(\angle B B_{2} C\right)}=\frac{B B_{2}}{\sin \left(\angle B_{2} C B\right)}
$$

Furthermore, we get

$$
B B_{2}=\frac{b \sin \gamma}{\sin \left(\frac{\beta}{3}+\gamma\right)}
$$

After obtaining the length of $B B_{1}$ and $B B_{2}$ in case 2, the length of $B B_{1}$ and $B B_{2}$ will be determined in case 3. In case 3, the length of $B B_{1}$ is the same as the length of $B B_{1}$ in case 1. The following explanation is given in determining the length of $B B_{2}$ in case 3 .

- Case 3

Suppose there is a nonconvex quadrilateral $A B C D$, an angle trisector will be formed from its four corners. The two sides of the angle trisector B are $A D$ and point D, respectively, illustrated in Figure 4. Next, the lengths of the sides of the angle trisector B will be determined, namely $B B_{1}$ and $B D$. The length of $B B_{1}$ in case 2 is the same as the length of $B B_{1}$ in case 1 so it will be continued to determine the length of $B D$.

Fig 3 Trisector Angle B on the Nonconvex Quadrilateral $A B C D$ Case 3.

Consider $\triangle B D C$, because the sum of the angles in the triangle is 180°, the following is obtained

$$
\angle B D C=180-(\angle C B D+\angle D C B)
$$

Then by substituting the value of $\angle C B D=\frac{\beta}{3}$ and $\angle D C B=\gamma$, we obtain

$$
\angle B D C=180-\left(\frac{\beta}{3}+\gamma\right)
$$

By using the sine rule on $\triangle B D C$, we obtain

$$
\frac{B C}{\sin (\angle B D C)}=\frac{B D}{\sin (\angle D C B)}
$$

Furthermore, we get

$$
B D=\frac{b \sin \gamma}{\sin \left(\frac{\beta}{3}+\gamma\right)}
$$

So Theorem 4 is proven.
After getting the length of the side trisector at angle B, the length of the side trisector at angle $D, D D_{1}$ and $D D_{2}$, will be determined. The following theorem determines the length of $D D_{1}$ and $D D_{2}$ in some cases.

$>$ Theorem 5 .

In any nonconvex quadrilateral $A B C D$ with $\angle D$ greater than 90°, if a trisector is formed at angle D, the length of the trisector side is

$$
D D_{1}=\frac{c \sin \gamma}{\sin \left(\frac{\delta}{3}+\gamma\right)}
$$

$$
D D_{2}=\frac{c \sin \gamma}{\sin \left(\frac{2 \delta}{3}+\gamma\right)}
$$

Or

$$
D D_{2}=\frac{d \sin \alpha}{\sin \left(\frac{\delta}{3}+\alpha\right)}
$$

- Proof: In determining the length of $D D_{1}$ and $D D_{2}$, there are several cases to prove it. The following is an explanation of each case in determining the length of $D D_{1}$ and $D D_{2}$.

Fig 5 Trisector Angle D on the Nonconvex Quadrilateral $A B C D$ Case 1.

- Case 1

Suppose there is a nonconvex quadrilateral $A B C D$ with $\angle D$ greater than 90°, an angle trisector will be formed from its four angles. The two sides of the trisector of angle D are on the $B C$ side illustrated in Figure 5. Next, the length of the trisector side of angle D will be determined using trigonometric comparison. Consider $\triangle C D_{1} D$, since the sum of the angles in the triangle is 180°, the following is obtained

$$
\angle C D_{1} D=180-\left(\angle C D D_{1}+\angle D_{1} C D\right)
$$

Then by substituting the value of $\angle C D D_{1}=\frac{\delta}{3}$ and $\angle D_{1} C D=\gamma$, we obtain

$$
\angle C D D_{1}=180-\left(\frac{\delta}{3}+\gamma\right)
$$

By using the sine rule on $\triangle C D_{1} D$, we obtain

$$
\frac{C D}{\sin \left(\angle C D D_{1}\right)}=\frac{D D_{1}}{\sin \left(\angle D_{1} C D\right)}
$$

Furthermore, we get

$$
D D_{1}=\frac{c \sin \gamma}{\sin \left(\frac{\delta}{3}+\gamma\right)}
$$

Next, the length of side $D D_{2}$ will be shown by considering $\triangle C D_{2} D$, because the sum of the angles in the triangle is 180°, we obtain

$$
\angle C D_{2} D=180-\left(\angle C D D_{2}+\angle D_{2} C D\right)
$$

Then by substituting the value of $\angle C D D_{2}=\frac{2 \delta}{3}$ and $\angle D_{2} C D=\gamma$, we obtain

$$
\angle C D_{2} D=180-\left(\frac{2 \delta}{3}+\gamma\right)
$$

By using the sine rule on $\triangle C D_{2} D$, we obtain

$$
\frac{C D}{\sin \left(\angle C D_{2} D\right)}=\frac{D D_{2}}{\sin \left(\angle D_{2} C D\right)}
$$

Furthermore, we get

$$
D D_{2}=\frac{c \sin \gamma}{\sin \left(\frac{2 \delta}{3}+\gamma\right)}
$$

After obtaining the length of $D D_{1}$ and $D D_{2}$ in case 1 , the length of $D D_{1}$ and $D D_{2}$ in case 2 will be determined. In case 2 , the length of $D D_{1}$ is the same as the length of $D D_{1}$ in case 1 , but the length of $D D_{2}$ is different. The following explanation is given in determining the length of $D D_{2}$ in case 2.

- Case 2

Suppose there is a nonconvex quadrilateral $A B C D$, an angle trisector will be formed from its four corners. The two sides of the angle trisector D are respectively on the sides $A B$ and $B C$ illustrated in Figure 2. Next, the length of the sides of the angle trisector D will be determined, namely $D D_{1}$ and $D D_{2}$. The length of $D D_{1}$ in case 2 is the same as the length of $D D_{1}$ in case 1 so it will be continued to determine the length of $D D_{2}$. Consider $\triangle D A D_{2}$, because the sum of the angles in the triangle is 180° then obtained

$$
\angle D D_{2} A=180-\left(\angle A D D_{2}+\angle D_{2} A D\right)
$$

Then by substituting the value of $\angle A D D_{2}=\frac{\delta}{3}$ and $\angle D_{2} A D=\alpha$, we obtain

$$
\angle D D_{2} A=180-\left(\frac{\delta}{3}+\alpha\right)
$$

By using the sine rule on $\triangle D A D_{2}$, we obtain

$$
\frac{A D}{\sin \left(\angle D D_{2} A\right)}=\frac{D D_{2}}{\sin \left(\angle D_{2} A D\right)}
$$

Furthermore, we get

$$
D D_{2}=\frac{d \sin \alpha}{\sin \left(\frac{\delta}{3}+\alpha\right)}
$$

After obtaining the length of $D D_{1}$ and $D D_{2}$ in case 2, the length of $D D_{1}$ and $D D_{2}$ will be determined in case 3 . In case 3, the length of $D D_{1}$ is the same as the length of $D D_{2}$ in case 1 . The following explanation is given in determining the length of $D D_{2}$ in case 3 .

- Case 3

Suppose there is a nonconvex quadrilateral $A B C D$, an angle trisector will be formed from its four corners. The two sides of the angle trisector D are respectively on the $B C$ side and point B illustrated in Figure 6. Next, the length of the sides of the angle trisector D will be determined, namely $D D_{1}$ and $D B$. The length of $D D_{1}$ in case 3 is the same as the length of $D D_{1}$ in case 1 so it will be continued to determine the length of $D B$.

Fig 6 Trisector Angle D on the Nonconvex Quadrilateral $A B C D$ Case 3.

Consider $\triangle D B C$, because the sum of the angles in the triangle is 180° then obtained

$$
\angle D B C=180-(\angle C D B+\angle D C B)
$$

Then by substituting the value of $\angle C D B=\frac{2 \delta}{3}$ and $\angle D C B=\gamma$, we obtain

$$
\angle D B C=180-\left(\frac{2 \delta}{3}+\gamma\right)
$$

By using the sine rule on $\triangle D B C$, we obtain

$$
\frac{C D}{\sin (\angle D B C)}=\frac{D B}{\sin (\angle D C B)}
$$

Furthermore, we get

$$
D B=\frac{c \sin \gamma}{\sin \left(\frac{2 \delta}{3}+\gamma\right)}
$$

So Theorem 5 is proven.

IV. AREA COMPARISON IN NONCONVEX QUADRILATERALS

There is an arbitrary nonconvex quadrilateral $A B C D$, if an angle trisector is formed at each corner, then several shapes are formed at each corner, namely at $\angle A$ formed Δ $A B A_{2}, \triangle A_{2} A A_{1}$ and $\triangle A D A_{1}$, at $\angle B$ formed $\triangle A B B_{1}, \triangle$ $B_{1} B A_{2}$ and quadrilateral $B_{2} B C D$, at $\angle C$ formed $\triangle B C C_{1}, \triangle$ $C_{1} C C_{-} 2$ and $\triangle C D C_{2}$, and then at $\angle D$ formed $\triangle C D D_{1}, \triangle$ $A D D_{2}$ and quadrilateral $D_{1} D D_{2} B$. The following will show the comparison of the area of each angle of the nonconvex quadrilateral $A B C D$, by showing the comparison of the triangular area of one of the angles, namely at angle A, as in the following theorem.
$>$ Theorem 6.
In an arbitrary nonconvex quadrilateral $A B C D$, if a trisector is formed at angle A then the area ratio $L \triangle A B A_{2}$: $L \triangle A_{2} A A_{1}: L \triangle A D A_{1}$ is

$$
a \sin \left(\frac{2 \alpha}{3}+\beta\right): a \sin \beta: d \sin \left(\frac{\alpha}{3}+\beta\right)
$$

- Proof:

Suppose there is a nonconvex quadrilateral $A B C D$, an angle trisector will be formed from its four corners. The two sides of the angle trisector B are on the $A D$ side illustrated in Figure 2. Next, the area ratio of the trisector triangle at angle A will be determined, namely determining the area of triangles $A B A_{2}, A_{2} A A_{1}$ and $A D A_{1}$. The area of triangle $A B A_{2}$ is shown using the triangle area formula in trigonometry, resulting in

$$
L \triangle A B A_{2}=\frac{1}{2} \cdot A B \cdot A A_{2} \cdot \sin \left(\angle B B A_{2}\right)
$$

Then by substituting the value of $A A_{1}$ in Theorem 3, we obtain

$$
L \triangle A B A_{2}=\frac{a^{2} \sin \beta \sin \left(\frac{\alpha}{3}\right)}{2 \sin \left(\frac{\alpha}{3}+\beta\right)}
$$

Next, $L \Delta A_{2} A A_{1}$ is shown using the triangle area formula, resulting in

$$
L \triangle A_{2} A A_{1}=\frac{1}{2} \cdot A A_{1} \cdot A A_{2} \cdot \sin \left(\angle A_{2} A A_{1}\right)
$$

Then by substituting the values of $A A_{1}$ and $A A_{2}$ in Theorem 3, we obtain

$$
L \Delta A_{2} A A_{1}=\frac{a^{2} \sin ^{2} \beta \sin \left(\frac{\alpha}{3}\right)}{2 \sin \left(\frac{2 \alpha}{3}+\beta\right) \sin \left(\frac{\alpha}{3}+\beta\right)}
$$

Next, $L \triangle A D A_{1}$ is shown using the triangle area formula, resulting in

$$
L \triangle A D A_{1}=\frac{1}{2} \cdot A D \cdot A A_{1} \cdot \sin \left(\angle D A A_{1}\right)
$$

Then by substituting the value of $A A_{1}$ in Theorem 3, we obtain

$$
L \triangle A D A_{1}=\frac{a d \sin \beta \sin \left(\frac{\alpha}{3}\right)}{2 \sin \left(\frac{2 \alpha}{3}+\beta\right)}
$$

By comparing $L \triangle A B A_{2}, L \triangle A_{2} A A_{1}$ and $L \triangle A D A_{1}$, the triangle area comparison is obtained as follows:

$$
\begin{gathered}
L \triangle A B A_{2}: L \triangle A_{2} A A_{1}: L \triangle A D A_{1} \\
=a \sin \left(\frac{2 \alpha}{3}+\beta\right): a \sin \beta: d \sin \left(\frac{\alpha}{3}+\beta\right)
\end{gathered}
$$

Therefore, Theorem 5 is proven
Using the same method, we can determine the area ratio of the trisector at angle C as follows.

$$
\begin{gathered}
L \triangle B C C_{1}: L \triangle C_{1} C C_{2}: L \triangle C D C_{2} \\
=b \sin \left(\frac{2 \gamma}{3}+\beta\right): b \sin \beta: c \sin \left(\frac{\gamma}{3}+\beta\right)
\end{gathered}
$$

If $\angle D$ is greater than 90°, then a case arises to determine the area ratio at angle B and angle D. While the area ratio at angles A and C does not cause a case. The following theorem determines the length of the area ratio of the shape formed at angle B in some cases.

$>$ Theorem 7.

In an arbitrary nonconvex quadrilateral $A B C D$, if a trisector is formed at angle B then the area ratio formed is

$$
L \triangle A B B_{1}: L \Delta B_{1} B B_{2}=\sin \left(\frac{2 \beta}{3}+\alpha\right): \sin \alpha
$$

Or

$$
L \triangle A B B_{1}: L \triangle C B B_{2}=\frac{a^{2} \sin \alpha}{\sin \left(\frac{\beta}{3}+\alpha\right)}: \frac{b^{2} \sin \gamma}{\sin \left(\frac{\beta}{3}+\gamma\right)}
$$

Or

$$
\begin{gathered}
L \triangle A B B_{1}: L \triangle B_{1} B D: L \triangle C B D \\
=\frac{a^{2} \sin \alpha}{\sin \left(\frac{\beta}{3}+\alpha\right)}: \frac{a^{2} \sin ^{2} \alpha}{\sin \left(\frac{\beta}{3}+\alpha\right) \sin \left(\frac{2 \beta}{3}+\alpha\right)}: \frac{b^{2} \sin \gamma}{\sin \left(\frac{\beta}{3}+\gamma\right)}
\end{gathered}
$$

- Proof:

In determining the area ratio at angle B, there are several cases to prove it. The following is an explanation of each case in determining the area ratio of angle B.

- Case 1

Suppose there is a nonconvex quadrilateral $A B C D$ in Figure 2, an angle trisector will be formed from its four corners. Both sides of the angle trisector B are on the $A D$ side. Next, the area ratio of the trisector triangle at angle B will be determined by determining the area of triangle $A B B_{1}$ and the area of triangle $B_{1} B B_{2}$. The area of triangle $A B B_{1}$ is determined by using the triangle area formula in trigonometry, resulting in

$$
L \triangle A B B_{1}=\frac{1}{2} \cdot A B \cdot B B_{1} \cdot \sin \left(\angle A B B_{1}\right)
$$

Then by substituting the value of $B B_{1}$ in Theorem 4, we obtain

$$
L \triangle A B B_{1}=\frac{a^{2} \sin \alpha \sin \left(\frac{\beta}{3}\right)}{2 \sin \left(\frac{\beta}{3}+\alpha\right)}
$$

Next, $L \Delta B_{1} B B_{2}$ is shown by using the triangle area formula, resulting in

$$
L \Delta B_{1} B B_{2}=\frac{1}{2} \cdot B B_{1} \cdot B B_{2} \cdot \sin \left(\angle B_{1} B B_{2}\right)
$$

Then by substituting the values of $B B_{1}$ and $B B_{2}$ in Theorem 4, we obtain

$$
L \Delta B_{1} B B_{2}=\frac{a^{2} \sin ^{2} \alpha \sin \left(\frac{\beta}{3}\right)}{2 \sin \left(\frac{\beta}{3}+\alpha\right) \sin \left(\frac{2 \beta}{3}+\alpha\right)}
$$

By comparing $L \triangle A B B_{1}$ and $L \triangle B_{1} B B_{2}$, the following triangular area comparison is obtained:
$L \triangle A B B_{1}: L \triangle B_{1} B B_{2}=\sin \left(\frac{2 \beta}{3}+\alpha\right): \sin \alpha$.
Figure 2 explains that the area comparison between $L \triangle A B B_{1}$ and $L \triangle B_{1} B B_{2}$ only applies to the figure, so the area of $L \triangle A B B_{1}$ and $L \triangle B_{1} B B_{2}$ only applies if the angle trisector B is on the $A D$ side. Next, we will discuss case 2 which occurs if the angle trisector B is on the $A D$ and $C D$ sides, respectively.

- Case 2

Suppose there is a nonconvex quadrilateral $A B C D$ in Figure 3, an angle trisector will be formed from its four corners. The two sides of the angle trisector B are on the sides of $A D$ and $C D$. Next, the area ratio of the trisector triangle at angle B will be determined by determining the area of triangle $A B B_{1}$ and the area of triangle $C B B_{2}$. The area of triangle $A B B_{1}$ has been obtained in the previous discussion. The area of triangle $C B B_{2}$ is determined by using the triangle area formula in trigonometry, resulting in

$$
L \triangle C B B_{2}=\frac{1}{2} \cdot C B \cdot B B_{2} \cdot \sin \left(\angle C B B_{2}\right)
$$

Then by substituting the value of $B B_{2}$ in Theorem 4 , we obtain

$$
L \triangle C B B_{2}=\frac{b^{2} \sin \gamma \sin \left(\frac{\beta}{3}\right)}{2 \sin \left(\frac{\beta}{3}+\gamma\right)}
$$

By comparing $L \triangle A B B_{1}$ and $L \triangle C B B_{2}$, the comparison of the areas of the triangles is obtained as follows:

$$
L \triangle A B B_{1}: L \triangle C B B_{2}=\frac{a^{2} \sin \alpha}{\sin \left(\frac{\beta}{3}+\alpha\right)}: \frac{b^{2} \sin \gamma}{\sin \left(\frac{\beta}{3}+\gamma\right)}
$$

Figure 3 explains that the area comparison between $L \triangle A B B_{1}$ and $L \triangle C B B_{2}$ only applies to the figure, so the areas of $L \triangle A B B_{1}$ and $L \triangle C B B_{2}$ only apply if the angle trisectors B are on sides $A D$ and $C D$. Next, we will discuss case 3 which occurs if the trisector of angle B is on side $A D$ and point D, respectively.

- Case 3

Suppose there is a nonconvex quadrilateral $A B C D$ in Figure 4, an angle trisector will be formed from the four corners. The two sides of the angle trisector B are on the side of $A D$ and and point D. Next, we will determine the ratio of the triangle area of the trisector at angle B by determining the area of triangle $A B B_{1}$, the area of triangle $B_{1} B D$ and the area of triangle $C B D$. The area of triangle $A B B_{1}$ has been obtained in the previous discussion. The area of triangle $B_{1} B D$ is equal to the area of triangle $B_{1} B B_{2}$ and the area of triangle $C B D$ is equal to and the area of triangle $C B B_{2}$. By comparing the area of triangle $A B B_{1}$, the area of triangle $B_{1} B D$ and the area of triangle $C B D$ obtained

$$
\begin{gathered}
L \triangle A B B_{1}: L \triangle B_{1} B D: L \triangle C B D \\
=\frac{a^{2} \sin \alpha}{\sin \left(\frac{\beta}{3}+\alpha\right)}: \frac{a^{2} \sin ^{2} \alpha}{\sin \left(\frac{\beta}{3}+\alpha\right) \sin \left(\frac{2 \beta}{3}+\alpha\right)}: \frac{b^{2} \sin \gamma}{\sin \left(\frac{\beta}{3}+\gamma\right)}
\end{gathered}
$$

Therefore, Theorem 6 is proven.
After getting the area ratio of the shape formed at angle B, we will determine the area ratio of the shape formed at angle D. The following theorem is given which determines the length of the area ratio of the shape formed at angle D in some cases.

$>$ Theorem 8.

In an arbitrary nonconvex quadrilateral $A B C D$, if a trisector is formed at angle D then the area ratio formed is
$L \triangle C D D_{1}: L \triangle D_{1} D D_{2}=\sin \left(\frac{2 \delta}{3}+\gamma\right): \sin \gamma$
Or

$$
L \triangle C D D_{1}: L \triangle A D D_{2}=\frac{c^{2} \sin \gamma}{\sin \left(\frac{\delta}{3}+\gamma\right)}: \frac{d^{2} \sin \alpha}{\sin \left(\frac{\delta}{3}+\alpha\right)}
$$

Or

$$
L \triangle C D D_{1}: L \triangle D_{1} D B: L \triangle A D B
$$

$$
=\frac{c^{2} \sin \gamma}{\sin \left(\frac{\delta}{3}+\gamma\right)}: \frac{c^{2} \sin ^{2} \gamma}{\sin \left(\frac{\delta}{3}+\gamma\right) \sin \left(\frac{2 \delta}{3}+\gamma\right)}: \frac{d^{2} \sin \alpha}{\sin \left(\frac{\delta}{3}+\alpha\right)}
$$

- Proof:

In determining the area ratio of angle D, there are several cases to prove it. The following is an explanation of each case in determining the area ratio of angle D.

- Case 1

Suppose there is a nonconvex quadrilateral $A B C D$ in Figure 5, an angle trisector will be formed from its four corners. Both sides of the angle trisector D are on the $B C$ side. Next, the area ratio of the trisector triangle at angle D will be determined by determining the area of triangle $C D D_{1}$ and the area of triangle $D_{1} D D_{2}$. The area of triangle $C D D_{1}$ is determined by using the triangle area formula in trigonometry, resulting in

$$
L \triangle C D D_{1}=\frac{1}{2} \cdot C D \cdot D D_{1} \cdot \sin \left(\angle C D D_{1}\right)
$$

Then by substituting the value of $D D_{1}$ in Theorem 5, we obtain

$$
L \triangle C D D_{1}=\frac{c^{2} \sin \gamma \sin \left(\frac{\delta}{3}\right)}{2 \sin \left(\frac{\delta}{3}+\gamma\right)}
$$

Next, $L \Delta D_{1} D D_{2}$ is shown by using the triangle area formula, resulting in

$$
L \Delta D_{1} D D_{2}=\frac{1}{2} \cdot D D_{1} \cdot D D_{2} \cdot \sin \left(\angle D_{1} D D_{2}\right)
$$

Then by substituting the values of $D D_{1}$ and $D D_{2}$ in Theorem 5, we obtain

$$
L \Delta D_{1} D D_{2}=\frac{c^{2} \sin ^{2} \gamma \sin \left(\frac{\delta}{3}\right)}{2 \sin \left(\frac{\delta}{3}+\gamma\right) \sin \left(\frac{2 \delta}{3}+\gamma\right)}
$$

By comparing $L \triangle C D D_{1}$ and $L \triangle D_{1} D D_{2}$, the ratio of the areas of the triangles is obtained as follows:

$$
L \triangle C D D_{1}: L \Delta D_{1} D D_{2}=\sin \left(\frac{2 \delta}{3}+\gamma\right): \sin \gamma
$$

Figure 5 explains that the area comparison between $L \triangle C D D_{1}$ and $L \triangle D_{1} D D_{2}$ only applies to the figure, so the area of $L \triangle C D D_{1}$ and $L \triangle D_{1} D D_{2}$ only applies if the angle trisector D is on the $B C$ side. Next we will discuss case 2
which occurs if the angle trisector D is on the $A B$ and $B C$ sides respectively.

- Case 2

Suppose there is a nonconvex quadrilateral $A B C D$ in Figure 2, an angle trisector will be formed from its four corners. The two sides of the angle trisector D are on the $A B$ and $B C$ sides. Next, the area ratio of the trisector triangle at angle D will be determined by determining the area of triangle $C D D_{1}$ and the area of triangle $A D D_{2}$. The area of triangle $C D D_{1}$ has been obtained in the previous discussion. The area of triangle $A D D_{2}$ is determined by using the triangle area formula in trigonometry, resulting in

$$
L \triangle A D D_{2}=\frac{1}{2} \cdot A D \cdot D D_{2} \cdot \sin \left(\angle A D D_{2}\right)
$$

Then by substituting the value of $D D_{2}$ in Theorem 5, we obtain

$$
L \triangle A D D_{2}=\frac{d^{2} \sin \alpha \sin \left(\frac{\delta}{3}\right)}{2 \sin \left(\frac{\delta}{3}+\alpha\right)}
$$

By comparing $L \triangle C D D_{1}$ and $L \triangle A D D_{2}$, the area of the triangles is compared as follows:

$$
L \Delta C D D_{1}: L \triangle A D D_{2}=\frac{c^{2} \sin \gamma}{\sin \left(\frac{\delta}{3}+\gamma\right)}: \frac{d^{2} \sin \alpha}{\sin \left(\frac{\delta}{3}+\alpha\right)}
$$

Figure 2 explains that the area comparison between $L \triangle C D D_{1}$ and $L \triangle A D D_{2}$ is only valid for that figure, so the areas of $L \triangle C D D_{1}$ and $L \triangle A D D_{2}$ are only valid if the angle trisectors D are on sides $A B$ and $B C$. Next, we will discuss case 3 which occurs if the corner trisector D is on side $B C$ and point B, respectively.

- Case 3

Suppose there is a nonconvex quadrilateral $A B C D$ in Figure 6, angle trisectors will be formed from its four corners. The two sides of angle trisector D are on side $B C$ and point B. Next, the area ratio of the trisector triangle at angle D will be determined by determining the area of triangle $C D D_{1}$, the area of triangle $D_{1} D B$ and the area of triangle $A D B$. The area of triangle $C D D_{1}$ has been obtained in the previous discussion. The area of triangle $D_{1} D B$ is equal to the area of triangle $D_{1} D D_{2}$ and the area of triangle $A D B$ is equal to and the area of triangle $A D D_{2}$. By comparing the area of triangle $C D D_{1}$, the area of triangle $D_{1} D B$ and the area of triangle $A D B$ we obtain

$$
\begin{gathered}
L \triangle C D D_{1}: L \triangle D_{1} D B: L \triangle A D B \\
=\frac{c^{2} \sin \gamma}{\sin \left(\frac{\delta}{3}+\gamma\right)}: \frac{c^{2} \sin ^{2} \gamma}{\sin \left(\frac{\delta}{3}+\gamma\right) \sin \left(\frac{2 \delta}{3}+\gamma\right)}: \frac{d^{2} \sin \alpha}{\sin \left(\frac{\delta}{3}+\alpha\right)}
\end{gathered}
$$

Therefore, Theorem 7 is proven

V. CONCLUSIONS

This research discusses the length of the side of an arbitrary angle trisector of a nonconvex quadrilateral in some cases and the comparison of the area of the shape formed from the angle trisector of a nonconvex quadrilateral in some cases. As for calculating the comparison of the area of the shape formed from the angle trisector on the nonconvex quadrilateral, it is calculated using the sine rule and the triangle area in trigonometry. Calculating the area of shapes formed from angle trisectors on non-convex quadrilaterals can be an enrichment material at the senior high school level.

REFERENCES

[1]. R. Bhat. "Ram's theorem for Trisection." Karnataka, India. 2019. https://www.researchgate.net/publication /340280661_Ram\%27s_theorem_for_Trisection
[2]. R. Bhat. "Locus of Intersection for Trisection." Karnataka, India. 2021.https://www.researchgate.net /publication/349492116_Locus_of_Intersection_for_Tr isection
[3]. L.O. Barton. "A Procedure for Trisecting an Acute Angle." Advances in Pure Mathematics. Vol.12, pp. 63-69, February 2022https://doi.org/10.4236/apm. 2022 . 122005
[4]. B. Stonebridge. "A Simple Geometric Proof Morley's Trisector Theorem". Applied Probability Trust. 2009. http://www.cut-the-knot.org/triangle/Morley/sb.shtml
[5]. C. Donolato. "A Verctor-based proof of Morley trisektor theorem." Forum Geometricorum. Vol. 13 pp. 233-235,2013.https://forumgeom.fau.edu/FG2013 volume13/FG201325.pdf
[6]. R. Coghetto. "Morley's Trisector Theorem." Formalized Mathematics. Vol.23, pp.75-79, March 2015. https://doi.org/10.1515/forma-2015-0007
[7]. Kuruklis, S.A. "Trisectors like Bisectors with equilaterals instead of Points." CUBO A Mathematical Journal. Vol.16, pp. 71-110, June 2014. http://dx.doi.org/10.4067/S0719-06462014000200005
[8]. I. Gasteratos, S. Kuruklis, and T. Kuruklis. "A Trigonometrical Approach to Morley's Observation." CUBO A Mathematical Journal. Vol. 19, pp.73-85, June 2017.https://doi.org/10.4067/S0719-06462017000 200073
[9]. N. Dergiades, T.Q. Hung. "On some Extensions of Morley's Trisector Theorem". Journal for Geometry and Graphics. Vol. 24, pp. 197-205, November 2020. https://doi.org/10.48550/arXiv.2005.08723
[10]. Gorjian, O.A.S. Karamzadeh, and M. Namdari. "Morley's Theorem Is No Longer Mysterious!". University of Ahvaz, 2015.http://doi.org/10.1007/ s00283-015-9579-0
[11]. N. Dergiades and T.Q Hung. "On Some Extensions Of Morley's Trisector Theorem." Journal for Geometry and Graphics. Vol. 24, pp. 197-205, November 2020. https://www.heldermannverlag.de/jgg/jgg24/j24h2derg .pdf
[12]. Omid Ali Shahni Karamza. "Is The Mystery of Morley's Trisector Theorem Resolved." Forum Geometricorum. Vol. 18, pp. 297-306, 2018. https://www.researchgate.net/publication/327883726_I s_The_Mystery_of_Morley\%27s_Trisector_Theorem_ Resolved
[13]. V G Tikekar. "Lurking within any triangle Morley's is an equilateral triangle part I." At Right Angles. Vol. 3, pp. 10-13, July 2014. https://publications. Azimpremji university.edu.in/1654/1/2_Morley\�\�\�s\ Miracle\%20-\%20Part\%20I.pdf
[14]. V G Tikekar. "Lurking within any triangle Morley's is an equilateral triangle part II." At Right Angles. Vol. 3, pp. 5-8, November 2014. https://apfstatic.s3.ap-south-1.amazonaws.com/s3fs-public/01-morley-1-iii$3 \% 20 \% 281 \% 29 . p d f$
[15]. V G Tikekar. "Lurking within any triangle Morley's is an equilateral triangle part III." At Right Angles. Vol. 5, pp. 5-8, July 2015. https://apfstatic.s3.ap-south-1.amazonaws.com/s3fs-public/1-morley-1-iv-2.pdf
[16]. T. Ida, A. Kasema, F. Ghourabi, H. Takahashi. "Morley's theorem revisited: Origami construction and automated proof". Journal of Symbolic Computation, Vol. 46, pp. 571-583, October 2010. http://doi.org/ 10.1016/j.jsc.2010.10.007
[17]. Peter Andrews. "A Proof of Morley's Theorem Using Complex Analytic Geometry." Department of Mathematics and Computer Science Friday, 2018. https://www.eiu.edu/math/pdf/Peter_Andrews_Sept_21 _2018.pdf
[18]. F.A. Barutu, Mashadi, dan S. Gemawati. "Pengembangan Teorema Morley Pada Segiempat." Journal of Medives. Vol. 2, pp. 41-50, January 2018. https://doi.org/10.31331/medives.v2i1.526
[19]. R. Husna, Mashadi and S. Gemawati. "Morley's theorem outer trisektor on triangle and isosceles trapezoid." Internasional Journal of Current Advancesd Research. Vol. 8, pp. 18778-18780, May 2019. http://dx.doi.org/10.24327/ijcar.2019.18780.3598
[20]. D. Trisna, Mashadi, and S. Gemawati. "Angle Trisector in the Triangle". IOSR Journal of Mathematics. Vol. 16, pp. 11-18, September-October 2020. https://doi.org/10.9790/5728-1605051118
[21]. E. Jumianti, Mashadi, and S. Gemawati. "Symmedian Development of the Trimedian and Trisector," International Journal of Mathematics Trends and Technology. Vol. 67, pp. 21-27, March 2021. https://doi.org/10.14445/22315373/IJMTT-V67I3P504
[22]. Y. Arisa, Mashadi and S. Gemawati. "Modification of the Varignon Theorem on The Triangle." International Journal of Recent Scientific Research. Vol. 11, pp. 39642-39646, September 2020. https://doi.org/10.31331/medives.v2i1.526
[23]. L.A. Goldoni. "Generalization Of Marion Walter's Theorem". Universit’a degli Studi di Modena e Reggio Emilia, 2016. https://www.researchgate.net/publication /301284954_A_GENERALIZATION_OF_MARION_ WALTER\%27S_THEOREM
[24]. Mashadi. Geometri Lanjut. UR Press. Pekanbaru. 2016. http://sister.unri.ac.id/tridharma/penelitian
[25]. Mashadi. Geometri Lanjut II. UR Press. Pekanbaru. 2020. http://sister.unri.ac.id/tridharma/penelitian

