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Abstract:- In this work, displacement functions obtained 

by direct integration of governing equation were used to 

analyse anisotropic rectangular plates that are simply 

supported on its four edges (SSSS) and clamped on two 

adjacent edges and simply supported on the other two 

(CCSS). A modified first order shear deformation theory 

was used to develop the kinematic and constitutive 

relations of the plate. The total potential energy 

functional was formulated from which the governing and 

two compatibility equations were developed and solved to 

generate the polynomial displacement functions. By 

satisfying the boundary conditions of the plates, their 

peculiar displacement functions were determined. With 

these functions the anisotropic stiffness coefficients were 

obtained. By differentiating the total potential energy 

functional with respect to the displacement coefficients, 

the formulae for the coefficients were obtained. For each 

boundary condition analysis in this study, the 

displacement parameter values, in-plane stresses 

parameter values and out-of-plane stresses parameter 

values at various span to depth ratios (7.142857, 10 and 

20), aspect ratios (0.5 to 2) and angle of fibre orientation 

of 00  were calculated. The solutions of this work were 

compared with those from various researchers and their 

results were close. 

 

Keywords:- Polynomial Displacement Function; Total 

Potential Energy Functional; Thick Plate; Anisotropic; 

Displacement; Stress, Governing Equation. 

 

I. INTRODUCTION 

 

Plates are plane surface structural elements bounded by 

two parallel planes called faces, which are separated from one 

another by thickness whose dimension is much smaller than 

the other dimensions (Ibearugbulem, Ezeh, and Ettu 2014).  

Rectangle plates are frequently used as structural elements in 

many branches of modern technology namely aeronautics, 

electronics, marine, optical, nuclear and structural 

engineering. Plates are classified according to their material 

organization as isotropic, orthotropic and anisotropic plates 

(Ventsel and Krauthammer, 2001). Such plates are often 

subjected to static and dynamic loads, which are 

predominantly perpendicular to the plate’s surface. Thus, the 

understanding of bending behaviour of isotropic, orthotropic 

and anisotropic thick plates are very important to the 

engineering structural designers. Various plate theories with 

different assumptions have been developed over the years to 

accurately describe the static and dynamic behaviour of 

plates. The earliest theory suggested for the plates was the 

Kirchhoff’s plate theory or classical (CPT) plate theory 

(Gorman, 1977).  This theory has been used by various 

researchers to analyze bending problems of isotropic, 

orthotropic and anisotropic rectangular plates (Zhao, Wei and 

Xiang, 2000). In CPT, the straight line normal to the plane 

(in-plane) is assumed to be straight and normal in the 

deformed configuration of the plate. These assumptions led to 

CPT expression of in-plane displacements (u and v) and out of 

plane displacement ( )  as expressed in Equations (1), (2) 

and (3) respectively. 

 

 
 

 
 

 
 

This assumption neglects the transverse shear effects, 

which have significant impact on the behaviour of thick plates 

meaning that CPT idealizes all plates as thin plates thereby 

limiting the usage of the theory to only thin plates (Ghugal 

and Sayyad 2011a). This limitation was taken care of by the 

first order shear deformation (FSDT) plate theories. Reissner 

was the first to develop a stress-based approach, which 

incorporated the effect of transverse shear strains. On the 

other hand, Mindlin employed a displacement-based approach 

for first order shear deformation, which assumed transverse 

shear stress as constant throughout the thickness of the plate 

(Shimpi and Patel, 2005). Reissner`s and Mindlin`s theories 

are called first order theories because the shear deformation 

profile line, F(z), (the vertical line that is initially normal to 

mid surface) remains straight though no longer normal to the 

middle surface after bending but this violates the shear 

stresses free surface conditions. This means that F(z) is equal 

to z {F(z) = z}.  Mindlin`s theory satisfies constitutive 

relations for transverse shear strains and shear stresses in an 

approximate manner (because their theory violates the shear 

stress free surface conditions) by way of using shear 

correction factor. This correction factor is to correct the 

discrepancy between the real distribution of the transverse 

shear stress from FSDT and the one resulting from the 

utilization of the kinematic relations (Mihai and Seriu, 2013; 

Shahrokh and Arsaniani, 2005). The assumptions of FSDT`s 
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that the normal to the mid-surface remains straight but not 

necessarily perpendicular to the mid-surface after 

deformations led to Mindlin’s FSDT expression of in-plane 

and out of plane displacements as: 

 

 
 

 
 

 
 

Where and  are the rotations at x and y 

axis. The limitations of the FSDT`s led to the evolution of the 

second order shear deformation theory (SSDT), Third order 

shear deformation (TSDT), Hyperbolic shear deformation 

theories (HPSDT), Trigonometric shear deformation theories 

(TST) and Exponential shear deformation theories (ESDT) etc 

(Dawe and Roufaeil, 1980; Liew, Hung and Lim, 1995; 

Cheung and Zhou, 2000). These theories assumed that the 

shear deformation line, that is F(z) is not straight and not 

normal to the middle surface after bending resulting to most 

of the higher order theories expression of in-plane and out of 

plane displacements as:   

 

 
 

 
 

 
 

Where  and  are rotation in x and y axes 

respectively (Sadrnejad, Daryan and Ziaei, 2009; Punit and 

Hiren, 2013; Yuwaraj and Meghraj, 2011;Ghugal and Sayyad, 

2011b; Shahrjerdi and Mustapha, 2011; Sayyad and Ghugal, 

2012; Chikalthnkar, Sayyad and Nandedkar, 2013; Sayyad 

and Ghugal, 2014; Ivo, Nikola, Dae-Seung and Tae-muk, 

2014). These theories (higher order theories) have common 

relationship for shear deformation line, F(z) and shear stress 

profile, G(z). That is: 

 

 
 

where F from Equation (10) is usually denoted as F(z) 

and is a model in cubic or higher polynomial function, 

trigonometric function, exponential function, hyperbolic 

function etc (Chikalthankar et al. 2013). Hence, this use of 

model as the shear deformation profile of the vertical section 

after bending satisfies the specious assumption for the 

expression of in-plane displacements and vertical rotation 

brought about by the assumption that a vertical section that is 

initially straight and normal to the middle surface before 

bending no longer remains straight after bending. 

 

All these higher order theories have limitations. In order 

to solve the problems associated with the use of higher order 

shear deformation theories, Ibearugbulem (2016) introduced 

two new theories called Alternative 1 theory and Alternative 2 

theory, which are modifications of existing first shear 

deformation theory. Alternative 2 theory assumed that a 

section that is initially normal and straight to the middle plane 

of the plate before deformation will remain straight but no 

longer normal to the middle surface after deformation. 

Alternative 2 theory expressed in-plane and out of plane 

displacements as: 

 

 
 

 
 

 
 

Equation (11) and Equation (12) show that Alternative 2 

theory expressed in-plane displacements as two components. 

Where  is the classical component of in-plane displacement 

in x direction and  is the shear component of in-plane 

displacement in x direction while  is the classical 

component of in-plane displacement in y direction and  is 

the shear component of in-plane displacement in y direction. 

 

Alternative 1 theory assumed that a vertical section that 

is initially straight and normal to the middle surface before 

bending will remain straight but no longer normal to the 

middle surface after bending  this assumption makes it a first 

shear deformation theory which led to the Alternative 1 

theory expression of in-plane and out of plane displacements 

as: 

 

 

 

 

 

 
 

From Equations (14) and (15), it can be seen that the 

negative signs used in expressing in-plane displacements both 

in FSDT and HSDT have been eliminated in Alternative 1 

theory. Also, Alternative 1 theory made the correct 

assumption for vertical rotations and in-plane displacements 

and used a linear function,  for the expression of shear 

deformation line unlike the FSDT that assumed constant shear 

stress across the thickness of the plate. 

 

Due to the desirable high strength to weight and other 

excellent properties of anisotropic plates, anisotropic materials 

are the most important structural materials used in structural 

and civil engineering fields (sarangan and singh, 2017). 

Researchers have carried out bending analysis of anisotropic 

plates using various theories and methods. Ezeh, 

Ibearugbulem, Anya and Ozioko (2020) analyzed thick 

anisotropic plates that are simply supported and clamped on 
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all edges using a third order shear deformation model in Ritz 

energy method that employed exact approach. Sayyad (2013) 

carried out flexural analysis of orthotropic thick plates using a 

variationally consistent exponential shear deformation theory 

that considered transverse shear deformation. Gholami, 

Hassani, Mousavi and Alashti (2019) introduced a three-

dimensional simple solution for the analysis of anisotropic 

functionally graded plates using a method known as 

differential quadrature method. Lisboa and Marczak (2018) 

applied adomian decomposition method to moderately thick 

anisotropic plates under linear bending using a first order 

shear theory. Aghdam and Mohammadi (2008) presented 

bending analysis of orthotropic moderately thick sector plates 

under various loading conditions. Ibearugbulem, Ebirim, 

Anya and Ettu (2020) employed alternative II theory that is 

based on polynomial shape function to analyze stability and 

free vibration of thick orthotropic and isotropic plates having 

simply and free support conditions. The methods and theories 

employed by the various researches are either built upon the 

classical plate theory or used a shear correction factor or 

adopted a displacement field that consists of classical and 

shear deformation parts or are based on the erroneous 

assumption that a vertical section that is initially straight and 

normal to the middle surface of the plate before bending is no 

longer straight after bending.  The motivation behind this 

present study is to use a modified first shear deformation 

theory which is alternative 1 theory that have addressed the 

limitations of the various theories and methods as outlined in 

this paper to analyzed bending of thick anisotropic rectangular 

plates having simply support conditions on all edges (SSSS) 

and plate clamped on two adjacent edges and simply 

supported on the other two edges (CCSS). 

 

 

 

 

 

 

II. ACADEMIC FORMULATION 

 

Two in-plane displacements (u and v) and one out-of-

plane displacement called deflection (w) constitute the 

displacement field. The spatial dimensions (lengths) of the 

plate are "a, b, and t" along x, y, and z directions respectively. 

The domain of the plate along the x direction is 0 ≤ x ≤ a. 

Along y and z directions, the domains are 0 ≤ y ≤ b and -t/2 ≤ 

z ≤ t/2 respectively. These are shown in Figure 1. 

 

 
Fig 1 Three-Dimensional Coordinates of a Rectangular Plate 

 

Consider a fibre of the plate indicated as DF that is 

oriented in the z direction as shown in Figure 2, which shows 

the plate’s section before and after deformation. This fibre 

takes the positions  and   as a result of shear and 

bending deformations respectively in the x-z plane. Let be 

the rotation in the x-z plane of a line formally normal to the 

middle plane before deformation. The movement 

(displacement) of a point E that is at a distance +z  from the 

mid-plane in the line of action of the x axis is.+z Similarly, 

the displacement of point E along y axis is +z . Were is 

the rotation in the y-z plane of a line that is formerly normal to 

the middle plane before the deformation of the plate. 

 
Fig 2 Deformation of a Section of a thick Anisotropic Plate 
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III. KINEMATIC RELATIONSHIPS 

 

From Figure 2, it can be stated that the in-plane displacement of any point (like E) in the plate is given by Equations (17) and 

(18) respectively. 

 

 
 

 
 

The five engineering strain components are given in Equations (19) to (23).  

 

 
 

 
 

 
 

 
 

 
 

The vertical rotations in the x-direction and the vertical rotation in the y-direction (  are given in Equations (24) to (25) 

 

 
 

  
 

IV. CONSTITUTIVE RELATIONSHIPS 

 

Following Hooke’s law, the engineering strains of anisotropic material are defined in terms of stress, Poisson’s ratios and 

Young’s modulus of elasticity as given in Equations (26) to (30).  
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Where: are Young’s moduli in the 1 and 2 material directions of an anisotropic plate. are 

Poisson’s ratios in the 1-2 and 2-1 local planes of an anisotropic plate respectively. , and   are the shear moduli in the 1-

2, 1-3 and 2-3 planes, respectively. Also  are normal stresses in the 1 and 2 local directions of the plate.  

 

By solving Equations (26) and (27) simultaneously and rearranging Equations (28), (29) and (30) respectively and putting 

them in matrix form gave Equation (31a)  

 

 
 

 
 

) 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Putting Equations (19), (20), (21), (22) and (23) in matrix form gives Equation (32). 

 

    

  

Transforming Equation (31a) from local coordinate (1-2 coordinate) to global coordinate (x-y coordinate) using the 

transformation matrix resulted to Equation (33a) 
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Where: 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Where: m = cos and n = sin    is the angle of orientation of the fibers 

 

V. DETERMINATION OF TOTAL POTENTIAL ENERGY FUNCTIONAL 

 

The total potential energy is defined as Equation (34). 

 

 
 

Where:   is the strain energy of thick anisotropic rectangular plate and  is the external work on the thick anisotropic 

rectangular plate. 

 

Average strain energy mobilized by the plate when it is subjected to load is given as Equation (35) 

 

 
 

By substituting Equations (32) and (33a) into Equation (35) and simplifying the resulting equation gave Equation (36a) which 

is the strain energy equation of thick anisotropic rectangular plate based on alternative 1 theory 

 

 
 

http://www.ijisrt.com/


Volume 8, Issue 10, October – 2023                              International Journal of Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165 

 

IJISRT23OCT507                                                               www.ijisrt.com                     854 

 
 

 
 

Where: 

 

 
 

) 

 

Lateral load external work ) employed is as given in Equation (37). 

 

 
 

By substituting Equations (36a) and (37) into Equation (34), and putting the resulting equation in non-dimensional forms 

Equation (38a) is obtained. 

 

 
 

Where:  

 

 
 

VI. DETERMINATION OF THE GOVERNING EQUATION AND TWO COMPATIBILITY 

 

By minimizing Equation ( ) with respect to the deflection (w) the governing equation is obtained and presented in a 

Simplified form as Equation (39). 
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Minimizing Equation ( ) with respect to  gives compatibility equation in x-z plane as Equation (40). 

 

 
 

Minimizing Equation ( ) with respect to  gives compatibility equation in y-z plane as Equation (41). 

 

 
 

VII. DETERMINATION OF THE GENERAL DISPLACEMENT EQUATIONS 

 

By solving equations (39), (40) and (41) and simplifying the resulting equation, Equation (42) is obtained. 

 

 
 

Equation  can be written as Equation  

 

 
 

Where: 

 

 
 

is the coefficient of deflection;  is the shape function 

 

By substituting Equation (42b) into the non-dimensional form of Equations (24) and (25) respectively gives equations (43) and (44). 

 

 
 

 
 

Where:  

 

 

 

Equations ( ) can be written in split deflection form as Equation (45). 

 

 
 

Where:  and  are expressed respectively as Equations ( ) and ( ). 

 

 
 

http://www.ijisrt.com/


Volume 8, Issue 10, October – 2023                              International Journal of Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165 

 

IJISRT23OCT507                                                               www.ijisrt.com                     856 

 
 

Equation ( ) is the deflection equation of a strip of the rectangular plate along x axis while Equation ( ) is the 

deflection equation of a strip of the rectangular plate along y axis. 

 

Equations ( ) and ( )  is written in generalized form as Equation (47). 

 

 
 

Where  can be R or Q as the case may be and  can be  or  as the case may be. 

 

Equation (47) is the generalized split deflection equation. 

 

VIII. PECULIAR DISPLACEMENT EQUATIONS 

 

Peculiar displacement equations are obtained by substituting respectively the boundary conditions of a particular plate with 

specified edge conditions into the general deflection polynomial equation of the thick anisotropic plate. Carrying out this procedure 

using the generalized split deflection equation gave the following deflection equations of the plate along simply supported (S-S) 

strip and clamped at one end and simply supported at the other end (C-S) strip as presented on Equations (48) and (49) respectively. 

 

    

 

 
 

By combining the peculiar deflections along various strips, the peculiar deflection equations for plate of various support 

conditions are obtained. This are summarized on Table 1 

 

IX. DETERMINATION OF THE FORMULAS FOR CALCULATING DEFLECTION COEFFICIENTS, 

DISPLACEMENTS AND STRESSES 

 

Substituting Equations (42a), (43) and (44) into Equation (38b) and minimizing the resulting equation with respect to the 

coefficient of deflection (  and coefficient of x-z shear rotation along x-direction ( ) and coefficient of y-z shear rotation along 

y-direction ( ) respectively gave Equations (50), (51) and (52) respectively. 
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Note: 

 

;  

 

;   ;  

 

; ;  

 

By solving simultaneously, the simplified form of Equations (51) and (52) gave Equations (53) and (54) 

 

Table 1 The Deflection of the Plate for SSSS and SSCC Boundary Conditions 

Plate Strip R Strip Q Deflection along R strip Deflection along Q strip Peculiar Deflection equations 

SSSS S-S S-S 
   

CCSS C-S C-S    
 

 
 

 
 

By substituting equations (53) and (54) into the simplified form of Equation (50) and making deflection coefficient ( ) the 

subject gives equation (55). 

 

 
 

Where:  

 

 

 

 
 

; 

 

 
 

 
 

Substituting Equation (55) into Equation (42b) and simplifying gives Equation (56). 

 

 
 

Substituting Equation (53) and (54) into Equations (43) and (44) respectively gave Equations (57) and (58) respectively 
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Substituting Equations (57) and (58) into Equations (17) and (18) respectively and simplifying the resulting equations gives 

Equations (59) and (60) 

 

 
 

 
 

Substituting Equations (56), (57) and (58) into Equation (33a) and simplifying the resulting equations, Equations (61), (62), 

(63), (64), (65) and (66) are obtained. 

 

 
 

 
 

 
 

 
 

 
 

Where:    

 

 
 

 
 

 
 

X. NUMERICAL PROBLEMS 

 

For  anisotropic rectangular plate of two different support conditions (SSSS and SSCC) that are subjected to bending, the 

numerical values of the in-plane displacements in x and y axis ( , central deflection ( , in-plane stresses 

(  and out-plane stresses (  were obtained at span to depth ratios (a/t ) of  7.142857, 10 and 20,  
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aspect ratio ( )  of 0.5 to 2 and  grain fibres  orientation angle (θ) of  00.  For SSSS  anisotropic rectangular plate: in-plane 

displacements were calculated at coordinates:  ( ,  ; out of 

plane displacement was calculated at coordinates:  ( , ; in-plane stresses were calculated at 

coordinates:  ( ,  ); in- plane shear stress was calculated at coordinates:  

 out of plane shear stresses was calculated at coordinates:  ( , );   

( , ). For CCSS  anisotropic rectangular plate: in-plane displacements were calculated at coordinates:  

( , ; out of plane displacement was calculated at 

coordinates:  ( , ; in-plane stresses were calculated at coordinates:  ( ,  

); in- plane shear stress was calculated at coordinates:   out of plane shear 

stresses was calculated at coordinates:  ( , );   ( , ). Both plates are subjected to load 

that is uniformly distributed on the surface of the plates. The material properties used are as follows: 

, 0.15991  and   

 

XI. PRESENTATION OF NUMERICAL RESULTS 

 

The numerical problem results on bending analysis of SSSS and CCSS  anisotropic rectangular plate with specified material 

properties as given in the section above and for aspect ratios (β = b/a= 0.5 to 2), span-depth ratios (a/t = 7.142857, 10 and 20) and 

grain fibre orientation (θ = 00) obtained from Equations (56), (59), (60), (61), (62), (63), (64) and (65) are presented on Tables 2 to 

7.  The present study is validated by compering its solution with those obtained from previous research works of Shimpi and Patel 

(2006), Reddy (1984) and Srinivas and Roa (1970). The out of plane displacement parameter values ( ), the x-axis in-plane stress 

parameter values ( ) and the y-axis in-plane stress parameter values ( ), were calculated at the same coordinates as 

presented in the section above using the following formula: ;  = ( ;  = ( . it is importance to 

note the following: If β = 0.5 for previous authors; for this study    =  = 2.0. If β = 1.0 for previous authors; for this study   = 

 = 1.0. If β = 2.0 for previous authors; for this study   =  = 0.5. If  = 0.05 for previous authors; for this study    =  = 20. 

 

The obtained results compared with the results of previous research works are presented on Tables 8 to 10.  

 

Table 2 Displacement and stress parameter values for SSSS plate at a/t =7.142857  and θ =  

         
0.5 0.0148 -0.0156 -0.0403 0.1143 0.1533 -0.0601 0.0185 

 

0.0273 

 1 0.0697 -0.0929 -0.1035 0.3902 0.2532 -0.1652 0.0425 0.0307 

1.1 0.0806 -0.1089 -0.1094 0.4406 0.2585 -0.1753 0.0459 0.0300 

1.2 0.0908 -0.1239 -0.1134 0.4868 0.2614 -0.1823 0.0489 0.0292 

1.3 0.1001 -0.1377 -0.1158 0.5287 0.2625 -0.1865 0.0514 0.0283 

1.4 0.1086 -0.1503 -0.1169 0.5664 0.2625 -0.1887 0.0536 0.0274 

1.5 0.1162 -0.1617 -0.1171 0.6003 0.2617 -0.1892 0.0556 0.0265 

1.6 0.1231 -0.1719 -0.1164 0.6305 0.2604 -0.1884 0.0573 0.0255 

1.7 0.1293 -0.1812 -0.1152 0.6576 0.2588 -0.1866 0.0587 0.0246 

1.8 0.1349 -0.1895 -0.1137 0.6817 0.2571 -0.1842 0.0600 0.0237 

1.9 0.1398 -0.1970 -0.1118 0.7033 0.2553 -0.1813 0.0612 0.0229 

2 0.1443 -0.2037 -0.1097 0.7227 0.2535 -0.1780 0.0622 0.0221 
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Table 3 Displacement and stress parameter values for SSSS plate at a/t =10  and θ =  

         
0.5 0.0134 -0.0173 -0.0391 0.1181 0.1506 -0.0620 0.0133 

 

0.0195 

 1 0.0654 -0.0951 -0.1005 0.3951 0.2496 -0.1645 0.0304 0.0219 
1.1 0.0758 -0.1110 -0.1062 0.4453 0.2550 -0.1743 0.0328 0.0215 
1.2 0.0855 -0.1259 -0.1101 0.4913 0.2581 -0.1809 0.0349 0.0209 
1.3 0.0944 -0.1396 -0.1124 0.5329 0.2594 -0.1849 0.0367 0.0202 
1.4 0.1025 -0.1520 -0.1135 0.5704 0.2596 -0.1868 0.0383 0.0196 
1.5 0.1098 -0.1633 -0.1136 0.6040 0.2590 -0.1872 0.0397 0.0189 
1.6 0.1164 -0.1735 -0.1130 0.6340 0.2578 -0.1863 0.0409 0.0182 
1.7 0.1223 -0.1826 -0.1118 0.6608 0.2564 -0.1845 0.0420 0.0176 
1.8 0.1276 -0.1908 -0.1103 0.6847 0.2548 -0.1820 0.0429 0.0169 
1.9 0.1324 -0.1982 -0.1084 0.7061 0.2532 -0.1790 0.0437 0.0163 

2 0.1367 -0.2048 -0.1064 0.7253 0.2515 -0.1757 0.0444 0.0158 
 

Table 4 Displacement and stress parameter values for SSSS plate at a/t =20  and θ =  

         
0.5 0.0122 -0.0186 -0.0383 0.1211 0.1485 -0.0634 0.0066 

 

0.0098 

 1 0.0620 -0.0968 -0.0981 0.3990 0.2468 -0.1639 0.0152 0.0110 

1.1 0.0720 -0.1126 -0.1037 0.4490 0.2523 -0.1734 0.0164 0.0107 

1.2 0.0813 -0.1274 -0.1075 0.4948 0.2555 -0.1798 0.0175 0.0104 

1.3 0.0899 -0.1410 -0.1097 0.5362 0.2570 -0.1836 0.0184 0.0101 

1.4 0.0977 -0.1534 -0.1108 0.5735 0.2573 -0.1854 0.0192 0.0098 

1.5 0.1048 -0.1646 -0.1109 0.6069 0.2568 -0.1856 0.0199 0.0094 

1.6 0.1112 -0.1747 -0.1103 0.6367 0.2558 -0.1847 0.0205 0.0091 

1.7 0.1169 -0.1837 -0.1092 0.6633 0.2545 -0.1828 0.0210 0.0088 

1.8 0.1220 -0.1919 -0.1077 0.6871 0.2531 -0.1803 0.0214 0.0085 

1.9 0.1266 -0.1992 -0.1059 0.7083 0.2516 -0.1773 0.0219 0.0082 

2 0.1308 -0.2057 -0.1039 0.7273 0.2500 -0.1739 0.0222 0.0079 

 

Table 5 Displacement and stress parameter values for CCSS plate at a/t =7.142857  and θ =  

         
0.5 0.0079 -0.0064 -0.0161 0.0671 0.0893 -0.0195 0.0098 

 

0.0204 

 1 0.0381 -0.0388 -0.0467 0.2413 0.1629 -0.0577 0.0299 0.0207 

1.1 0.0437 -0.0452 -0.0493 0.2701 0.1652 -0.0610 0.0328 0.0195 

1.2 0.0487 -0.0509 -0.0508 0.2951 0.1653 -0.0629 0.0353 0.0183 

1.3 0.0531 -0.0560 -0.0515 0.3165 0.1639 -0.0638 0.0375 0.0171 

1.4 0.0568 -0.0604 -0.0515 0.3347 0.1617 -0.0638 0.0392 0.0159 

1.5 0.0601 -0.0642 -0.0511 0.3502 0.1590 -0.0633 0.0407 0.0149 

1.6 0.0629 -0.0675 -0.0503 0.3634 0.1560 -0.0624 0.0419 0.0139 

1.7 0.0653 -0.0704 -0.0493 0.3746 0.1531 -0.0612 0.0429 0.0130 

1.8 0.0674 -0.0729 -0.0482 0.3842 0.1502 -0.0598 0.0438 0.0122 

1.9 0.0693 -0.0751 -0.0470 0.3925 0.1474 -0.0583 0.0445 0.0115 

2 0.0708 -0.0770 -0.0457 0.3996 0.1448 -0.0568 0.0451 0.0109 

 

Table 6 Displacement and stress parameter values for CCSS plate at a/t =10  and θ =  

         
0.5 0.0068 -0.0070 -0.0158 0.0694 0.0884 -0.0201 0.0072 

 

0.0145 

 1 0.0344 -0.0403 -0.0445 0.2459 0.1588 -0.0572 0.0216 0.0146 
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1.1 0.0395 -0.0467 -0.0467 0.2745 0.1608 -0.0601 0.0237 0.0137 

1.2 0.0441 -0.0523 -0.0480 0.2992 0.1608 -0.0618 0.0254 0.0128 

1.3 0.0480 -0.0573 -0.0485 0.3203 0.1595 -0.0624 0.0269 0.0120 

1.4 0.0514 -0.0616 -0.0483 0.3382 0.1573 -0.0623 0.0281 0.0112 

1.5 0.0544 -0.0653 -0.0478 0.3533 0.1548 -0.0616 0.0292 0.0104 

1.6 0.0569 -0.0686 -0.0470 0.3662 0.1520 -0.0606 0.0300 0.0098 

1.7 0.0591 -0.0714 -0.0460 0.3771 0.1493 -0.0594 0.0307 0.0092 

1.8 0.0610 -0.0738 -0.0449 0.3864 0.1466 -0.0580 0.0313 0.0086 

1.9 0.0627 -0.0759 -0.0438 0.3945 0.1440 -0.0565 0.0319 0.0081 

 

Table 7 Displacement and stress parameter values for CCSS plate at a/t =20  and θ = 0 

         
0.5 0.0059 -0.0075 -0.0155 0.0714 0.0876 -0.0206 0.0036 

 

0.0072 

 1 0.0315 -0.0416 -0.0426 0.2498 0.1554 -0.0568 0.0109 0.0072 

1.1 0.0362 -0.0479 -0.0446 0.2782 0.1573 -0.0594 0.0119 0.0068 

1.2 0.0404 -0.0535 -0.0457 0.3026 0.1572 -0.0609 0.0128 0.0063 

1.3 0.0440 -0.0584 -0.0460 0.3233 0.1558 -0.0613 0.0135 0.0059 

1.4 0.0472 -0.0626 -0.0458 0.3409 0.1538 -0.0611 0.0141 0.0055 

1.5 0.0499 -0.0662 -0.0452 0.3558 0.1514 -0.0603 0.0146 0.0052 

1.6 0.0522 -0.0694 -0.0444 0.3684 0.1488 -0.0592 0.0151 0.0048 

1.7 0.0543 -0.0721 -0.0434 0.3791 0.1462 -0.0579 0.0154 0.0045 

1.8 0.0560 -0.0745 -0.0424 0.3882 0.1437 -0.0565 0.0157 0.0043 

1.9 0.0575 -0.0765 -0.0412 0.3961 0.1413 -0.0550 0.0160 0.0040 

2 0.0588 -0.0783 -0.0401 0.4028 0.1391 -0.0534 0.0162 0.0038 

 

Table 8 Out of plane displacement parameter results of present study compared with the results of previous research for SSSS 

thick orthotropic rectangular plate at θ = . 

 

 Theory  

 
7.142857 10 20 

0.5 

Present study (P) 42.89 149.19 2173.36 

Shimpi and Patel (2006), (SP) 39.26 137.82 2042.74 

Reddy (1984), (R) 40.21 139.8 2051.0 

Srinivas and Roa (1970), (SR) 39.79 139.08 2048.7 

% Difference between P and SP 8.46 7.62 6.01 

% Difference between P and R 6.25 6.29 5.63 

% Difference between P and SR 7.23 6.78 5.74 

1 

 

Present Study (P) 202.01 728.17 11044.95 

Shimpi and Patel (2006), (SP) 187.75 681.73 10413.4 

Reddy (1984), (R) 191.60 689.5 10450.0 

Srinivas and Roa (1970), (SR) 191.07 688.57 10443.0 

% Difference between P and SP 7.06 6.38 5.72 

% Difference between P and R 5.15 5.31 5.39 

% Difference between P and SR 5.42 5.44 5.45 

2 

Present study (P) 418.22 1522.02 23301.28 

Shimpi and Patel (2006), (SP) 384.20 1402.24 21513.5 

Reddy (1984), (R) 387.5 1408.5 21542.0 

Srinivas and Roa (1970), (SR) 387.23 1408.5 21542.0 

% Difference between P and SP 8.13 7.87 7.67 

% Difference between P and R 7.35 7.46 7.55 

% Difference between P and SR 7.35 7.46 7.55 
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Table 9 x-axis in-plane stress parameter results of present study compared with the results of previous research for SSSS thick 

orthotropic rectangular plate at θ = . 

 

Table 10 y-axis in-plane stress parameter results of present study compared with the results of previous research for SSSS thick 

orthotropic rectangular plate at θ = . 

 

Finally, complete content and organizational editing before  

 

 Theory 

(  

 

7.142857 10 20 

0.5 

Present study (P) 5.8316 11.81 48.44 

Shimpi and Patel (2006), (SP) 5.32 10.33 40.98 

Reddy (1984), (R) 5.068 10.05 40.67 

Srinivas and Roa (1970), (SR) 5.0364 10.025 40.657 

% Difference between P and SP 8.77 12.53 15.40 

% Difference between P and R 13.09 14.90 16.04 

% Difference between P and SR 13.63 15.11 16.07 

1 

 

Present Study (P) 19.9082 39.51 159.6 

Shimpi and Patel (2006), (SP) 18.68 36.36 144.68 

Reddy (1984), (R) 18.34 36.01 144.3 

Srinivas and Roa (1970), (SR) 18.346 36.021 144.31 

% Difference between P and SP 6.17 7.97 9.35 

% Difference between P and R 7.88 8.86 9.59 

% Difference between P and SR 7.85 8.83 9.58 

2 

Present study (P) 36.872 72.53 290.92 

Shimpi and Patel (2006), (SP) 33.96 66.07 262.78 

Reddy (1984), (R) 33.84 65.95 262.6 

Srinivas and Roa (1970), (SR) 33.862 65.975 262.67 

% Difference between P and SP 7.89 8.91 9.67 

% Difference between P and R 8.22 9.07 9.73 

% Difference between P and SR 8.16 9.04 9.71 

 Theory 

(  

 

7.142857 10 20 

0.5 

Present study (P) 7.821 15.06 59.4 

Shimpi and Patel (2006), (SP) 7.06 13.65 54.04 

Srinivas and Roa (1970), (SR) 7.2794 13.888 54.279 

% Difference between P and SP 9.73 9.36 9.01 

% Difference between P and SR 6.92 7.78 8.62 

1 

 

Present Study (P) 12.918 24.96 98.72 

Shimpi and Patel (2006), (SP) 11.21 21.80 86.68 

Srinivas and Roa (1970), (SR) 11.612 22.21 87.08 

% Difference between P and SP 13.22 12.66 12.19 

% Difference between P and SR 10.11 11.02 11.79 

2 

Present study (P) 12.933 25.15 100 

Shimpi and Patel (2006), (SP) 10.25 19.94 79.30 

Srinivas and Roa (1970), (SR) 10.515 20.204 79.545 

% Difference between P and SP 20.75 20.72 20.7 

% Difference between P and SR 18.69 19.67 20.46 
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XII. DISCUSSION ON THE RESULTS OF BENDING 

ANALYSIS OF SSSS AND CCSS THICK 

ANISOTROPIC RECTANGULAR PLATE 

 

The displacement parameters and stress parameters  

numerical results for SSSS and CCSS thick anisotropic 

rectangular plates are presented on Tables 2 to 7. The span to 

depth ratios (a/t) used are 7.142857, 10 and 20 while   fibre 

orientation angle (θ) were considered. Aspect ratio ( ) used 

ranges from 0.5 to 2. Each of these tables presented results for 

a given value of span to depth ratio and fibre orientation angle 

over the full range of aspect ratios. From Tables 2, 3, 4, 5,6 

and 7, the following observation were made: for SSSS and 

CCSS anisotropic plates, the out-of-plane displacement 

parameter ) values increase as the aspect ratios 

increase but decrease in value as the span to depth ratios 

increase. This means that out-of-plane displacement depends 

on the spatial dimensions of the anisotropic plate and acts 

more on thin plate than on thick plate. The x-axis in-plane 

displacement parameter ) yielded negative values, 

which increased as the aspect ratios and span to depth ratios 

increased both for SSSS and CCSS anisotropic plates. The y-

axis in-plane displacement parameter ) yielded 

negative values, which increased as the aspect ratios increased 

but decreased as span to depth ratios increased, both for SSSS 

and CCSS anisotropic plates. The x-axis in-plane stress 

parameter ) values increase as the aspect ratios and span 

to depth ratios increase, both for SSSS and CCSS anisotropic 

plates. For SSSS anisotropic plate, the y-axis in-plane stress 

parameter ( ) values increased for 0.5 to 1.4 aspect ratios 

but decreased moderately for 1.5 to 2 aspects ratios. The y-

axis in-plane stress parameter ( ) values decreased 

gradually as span to depth ratios increased. For CCSS 

anisotropic plate, the y-axis in-plane stress parameter ( ) 

values increased for 0.5 to 1.2 aspect ratios but decreased 

moderately for 1.3 to 2 aspects ratios but decreased gradually 

as span to depth ratios increased. The behaviour of the in-

plane displacements and stresses are because of the 

anisotropic nature of the plate.  For SSSS anisotropic plate, 

the in-plane shear stress parameter ( ) values, increased 

for 0.5 to 1.5 aspect ratios but decreased in value for aspects 

ratios of 1.6 to 2. The in-plane shear stress parameter ( )  

increased and decreased in value as span to depth ratios 

increased for aspect ratio of 0.5 and aspect ratios of 1 to 2 

respectively. For CCSS anisotropic plate, the in-plane shear 

stress parameter ( ) values increased for 0.5 to 1.3 aspect 

ratios but decreased in value for aspects ratios of 1.4 to 2. The 

in-plane shear stress parameter ( )  increased and 

decreased in value as the span to depth ratio increased for 

aspect ratio of 0.5 and 1 to 2, respectively. The out of plane 

shear stress parameter (  values increase as the aspect 

ratios increase but decrease in value as the span to depth ratios 

increase, both for SSSS and CCSS anisotropic plates. The out 

of plane shear stress parameter (  values increase for 

aspect ratios of 0.5 to 1.0 and decreased for aspect ratios of 

1.1 to 2 but decrease in value as the span to depth ratios 

increase both for SSSS and CCSS anisotropic plates. This 

increase and decline in the value of shear stresses are as a 

result of the anisotropic characteristics of the rectangular 

plates. 

 

XIII. COMPARISON OF THE SOLUTIONS OF 

PRESENT WORK WITH THOSE FROM 

PREVIOUS AUTHORS 

 

Results of the comparison of the solutions of this present 

study with the solutions of previous researchers as presented 

on Tables 8 shows that the out-of-plane displacement 

parameter values  obtained by the present theory has the same 

trend as those of Shimpi and Patel (2006), Reddy (1984), and 

Srinivas and Roa (1970). The out-of-plane displacement 

parameter values for both the present theory and those of 

previous researchers increase as the span to depth ratio 

increases. It is also seen from Table 8 that the out-of-plane 

displacement parameter values of present theory and those of 

past researchers increase as the aspect ratio increases. The 

out-of-plane displacement parameter values of present theory 

and that of Shimpi and Patel (2006), for span to depth ratios 

of 7.142857, 10 and 20 at aspect ratio of 0.5 differ by 8.45%, 

7.62%, and 6.01% respectively and the variance between their 

results has a maximum value of 8.46% at a span to depth ratio 

of 7.142857, aspect ratio of 0.5 and a minimum value of 

5.72% at span to depth ratio of 20, aspect ratio of 1. The out-

of-plane displacement parameter values of present theory and 

that of Reddy (1984), for span to depth ratios of 7.142857, 10 

and 20 at aspect ratio of 0.5 differ by 6.25%, 6.29%, and 

5.63% respectively and the variance between their results has 

a maximum value of 7.55% at a span to depth ratio of 20, 

aspect ratio of 2 and a minimum value of 5.15% at span to 

depth ratio of 7.142857, aspect ratio of 1. The out of plane 

displacement parameter values of present theory and that of 

Srinivas and Roa (1970), for span to depth ratios of 7.142857, 

10 and 20 at aspect ratio of 0.5 differ by 7.23%, 6.78%, and 

5.74% respectively and the variance between their results  has 

a maximum value of 7.23% at a span to depth ratio of 

7.142857, aspect ratio of 0.5 and a minimum value of 5.42% 

at span to depth ratio of 7.142857, aspect ratio of 1. 

 

Results of the comparison of the solutions of this present 

study with the solutions of previous researchers as presented 

on Tables 9 shows that the present study predicts higher 

values of x-axis in-plane stress parameter for all the span to 

depth ratios and aspect ratios. The x-axis in-plane stress 

parameter values predicted by the present theory has the same 

trend as those predicted by the previous researchers since both 

their values increased as the span to depth ratio increased. It is 

also seen from Table 9 that the x-axis in-plane stress 
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parameter values of present theory and those of past 

researchers increased as aspect ratio increased. The x-axis in-

plane stress parameter values of present theory and that of 

Shimpi and Patel (2006), for span to depth ratios of 7.142857, 

10 and 20 at aspect ratio of 0.5 differ by 8.77%, 12.53%, and 

15.40% respectively. The variance between the results of the 

present theory and that of Shimpi and Patel (2006), has a 

maximum value of 15.40% at a span to depth ratio of 20, 

aspect ratio of 0.5 and a minimum value of 6.17% at span to 

depth ratio of 7.142857, aspect ratio of 0.5. The x-axis in-

plane stress parameter values of present theory and that of 

Reddy (1984), for span to depth ratios of 7.142857, 10 and 20 

at aspect ratio of 0.5 differ by 13.09%, 14.90%, and 16.04% 

respectively. The variance between their results has a 

maximum value of 16.04% at a span to depth ratio of 20, 

aspect ratio of 0.5 and a minimum value of 7.88% at span to 

depth ratio of 7.142857, aspect ratio of 0.5. The x-axis in-

plane stress parameter values of present theory and that of 

Srinivas and Roa (1970), for span to depth ratios of 7.142857, 

10 and 20 at aspect ratio of 0.5 differ by 13.63%, 15.11%, and 

16.07% respectively. The variance between their results has a 

maximum value of 16.07% at a span to depth ratio of 20, 

aspect ratio of 0.5 and a minimum value of 7.85% at span to 

depth ratio of 7.142857, aspect ratio of 0.5. 

 

Results of the comparison of the solutions of this present 

study with the solutions of previous researchers as presented 

on Tables 10 shows that the present study predicts higher 

values of y-axis in-plane stress parameter for all the aspect 

ratios and span to depth ratios. The y-axis in-plane stress 

parameter values predicted by the present theory has the same 

trend as those predicted by the previous researchers, owing to 

the fact that both their values increase as the span to depth 

ratio increases. Table 10, shows that the y-axis in-plane stress 

parameter values of present theory and those of past 

researchers increase as aspect ratio increases. The y-axis in-

plane stress parameter values of present theory and that of 

Shimpi and Patel (2006), for span to depth ratios of 7.142857, 

10 and 20 at aspect ratio of 0.5 differ by 9.73%, 9.36%, and 

9.01% respectively. The variance between their results has a 

maximum value of 20.75% at a span to depth ratio of 

7.142857, aspect ratio of 2 and a minimum value of 9.01% at 

span to depth ratio of 20, aspect ratio of 0.5.  The y-axis in-

plane stress parameter values of present theory and that of 

Srinivas and Roa (1970), for span to depth ratios of 7.142857, 

10 and 20 at aspect ratio of 0.5 differ by 6.92%, 7.78%, and 

8.62% respectively. The variance between their results has a 

maximum value of 20.46% at a span to depth ratio of 20, 

aspect ratio of 2 and a minimum value of 6.92% at span to 

depth ratio of 7.142857, aspect ratio of 0.5. 

 

The differences between the present theory results and 

those of previous researchers are quite acceptable as being 

close as can be seen from the percentage difference between 

them which is within acceptable limits in statistics which 

justifies that the present study provides good solutions to 

anisotropic plate problems. These differences are as a result of 

the different approaches employed by the researchers. The 

present study used alternative 1 theory which is a modified 

first order shear deformation theory that used an improved 

Ritz energy method for analysis while Shimpi and Patel 

(2006) used a two variable refined plate theory, Srinivas and 

Roa (1970) used a three-dimensional elasticity theory, Reddy 

(1984) used a higher order shear deformation theory. It is 

worth to note that the present theory used polynomial series as 

its displacement function which it obtained by the direct 

integration of its governing equation while all the previous 

researchers assumed their displacement function as a double 

trigonometric series. 

 

XIV. CONCLUSION 

 

In this work, the present theory is applied to bending 

analysis of thick anisotropic plate of two boundary conditions 

(SSSS and CCSS). The solutions of this study are compared 

with those obtained from previous works. Observations show 

that the results of stresses and displacement predicted by the 

present theory are in close agreement with those of previous 

researchers. The present theory is capable of producing 

reasonably correct solutions to bending problems of thick 

anisotropic rectangular plate and can be employed by future 

researchers to solve thick anisotropic rectangular plate 

problems. 
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