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Abstract:- Erroneous driver behavior is one of the most 

dangerous aspects of driving in traffic, which can be 

prevented if the dangerous actions are detected 

immediately and the necessary actions are taken. 

However, in order to be able to implement a hazard 

detection framework, we first need a model that can 

perceive the related objects in the traffic scene, which is 

not a trivial task considering the diversity of the outside 

conditions. In this paper, we propose a computer vision-

based system that only requires dash camera footage to 

compute binary drivable area segmentation, dashed and 

straight lane line segmentation, and traffic object 

detection. We utilize two YOLOv5s and YOLOP, a 

multitask architecture, to create a complete panoptic 

perception model and train the member models using 

the public BDD100K, traffic sign dataset, and our 

private dataset. To reduce the significant annotation 

overhead of the segmentation tasks, we use semi-

supervised learning techniques and a different 

annotation approach for lane line labeling. We also 

present 2 lane violation detection algorithms and 

temporal smoothing techniques for the segmentation 

tasks. We managed to achieve remarkable results in all 3 

of our tasks and showed the usability of our system 

under real-world scenarios. 

 

Keywords:- YOLOP; Lane Detection; Traffic Object 

Detection; Drivable Area Segmentation; Traffic Violation. 

 

I. INTRODUCTION 

 

The ever-accelerating progress of Artificial Intelligence 

(AI) has illuminated a transformative path for the 

automotive industry, offering an array of opportunities to 

enhance both vehicular safety and the quality of the driving 

experience. In an era marked by data-driven innovations and 

technological convergence, the role of AI in reshaping the 
dynamics of road safety and driver behavior analysis has 

become increasingly prominent. 

 

This study embarks on an exploration of the 

noteworthy advancements in AI technology, with a specific 

focus on its application within vehicles. Unlike the pursuit 

of fully autonomous driving, our primary objective is to 

develop a robust and versatile system that will lay the 

groundwork for ongoing research aimed at detecting and 

mitigating unsafe driver behaviors. This system relies on 

computer vision as the fundamental technology, harnessing 
visual data captured by a dashboard camera (dash cam) as 

its sole sensory input. 

 

The core aim of this paper is to introduce a 

comprehensive computer vision-based system that functions 
independently, without additional sensory data, to segment 

drivable areas and lanes while simultaneously detecting the 

presence of pedestrians, vehicles, traffic lights, and signs. 

Furthermore, our research seeks to push the boundaries of 

road safety analysis by proposing several innovative rule-

based techniques designed specifically for the detection of 

lane violations, a prevalent and hazardous unsafe behavior 

exhibited by drivers. 

 

This holistic approach to driver behavior analysis not 

only aligns with current trends in the AI-driven automotive 

industry but also serves as a foundation for further research. 
The developed system, combined with rule-based 

methodologies, offers an adaptable platform for researchers 

and safety experts to delve into the complexities of driver 

behavior, identify potential risks, and develop interventions 

to reduce accidents and enhance road safety. 

 

In the subsequent sections of this paper, we will 

provide a comprehensive overview of our computer vision-

based system, its functionalities, and the rule-based 

techniques we have devised for detecting lane violations. 

Our contributions can be listed as follows: 
 

 Provide a simpler method of lane annotation technique 

that can reduce the labeling overhead. 

 Train a multitask network that is capable of drivable area 

and lane segmentation with the distinction of dashed and 

straight lines, and traffic object detection, using two large 

datasets and a semi-supervised learning method. 

 Train separate object detectors that can detect people and 

traffic lights/signs. 

 Propose two simple yet effective lane violation 

techniques that have a small computational cost. 
 

II. LITERATURE SURVEY 

 

There have been countless works on lane detection, 

which is a popular problem that requires to be addressed to 

make AI utilizable in the automotive industry. Lane 

detection can generally be separated into feature-based and 

model-based methods. One common approach in lane 

detection is the use of inverse perspective mapping (IPM) to 

transform the image into a top-down view, which simplifies 

the detection process [1]. Random sample consensus 

(RANSAC) is a popular algorithm used for fitting lane 
models to the transformed image [2]. Other techniques, such 

as Gabor filters and Hough transform, have also been 
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employed for lane detection [3]. 

 

Recent advancements in deep learning have led to the 

development of end-to-end lane detection algorithms that 

can directly predict lane markings from raw image data [4]. 

These models eliminate the need for hand-crafted features 

and post-processing techniques, making them more scalable 

and computationally efficient. Instance segmentation 
approaches have also been proposed, where lane markings 

are treated as individual instances and segmented 

accordingly [5, 8, 10]. The segmentation methods also 

include current lane classification (left, mid, right) [7]. 

Besides, vanishing point detection is also a related problem 

in the field therefore there have also been works that 

addressed it using deep learning methods [6]. 

 

In addition to lane detection, there has been 

research on multitask AI models for traffic data analysis. 

These models aim to perform multiple tasks simultaneously, 

such as lane detection, object identification, and traffic 
sign recognition [9]. By integrating multiple tasks into a 

single model, these multitask AI models can improve the 

performance and efficiency of traffic data analysis 

systems. In this paper, we utilize YOLOP, which is also a 

multitask network that is capable of separately segmenting 

drivable areas and lane lines, along with detecting traffic 

objects [11]. Hybrid Nets and YOLOPv2 were 

introduced following YOLOP, completing the same tasks 

with small yet significant changes in the architecture and the 

training procedures [12, 13]. 

 

 
Fig 1 Combined BDD100K and Private Dataset  

Class Histogram 

 

III. METHODOLOGY 

 

A. Data Gathering 
In this work, we utilized 3 datasets, 2 of which are 

publicly available and one is composed of private dashcam 

frames. 

 

 BDD100K 

BDD100K is a large-scale diverse driving video dataset 

that has been widely used in computer vision research, 

particularly in the field of autonomous driving [14]. It stands 

for Berkeley DeepDrive 100,000, indicating that it contains 

100,000 high- quality video clips captured from diverse 

driving scenarios. The dataset is designed to address the 

limitations of existing driving datasets by providing a more 

comprehensive and diverse collection of real-world driving 

scenes. It covers a wide range of driving conditions, 

including different weather conditions, lighting conditions, 

road types, and traffic patterns. The videos are captured 

from a variety of camera viewpoints, including front-facing, 

rear-facing, and side-facing cameras, providing a rich source 
of visual information. BDD100K includes detailed 

annotations for various tasks, such as object detection, 

instance segmentation, and drivable area segmentation. The 

dataset also provides additional information, such as GPS 

coordinates, vehicle speed, and sensor information, which 

can be used for more advanced research and analysis. The 

detection classes are separated as 'person', 'rider', 'car', 'bus', 

'truck', 'bike', 'motor', 'green light', 'red light', 'yellow light', 

'undefined traffic light', 'traffic sign', 'train', however in our 

case, we densified the labels to be 'vehicle', 'person', and the 

traffic lights. On the other hand, the lane line information is 

not held in a segmentation mask as in regular cases, instead, 
the vertices of the lane lines are kept as data which then can 

be used to fit some 1st or 2nd-degree polynomial, based on 

the number of provided vertices. 

 

It should be noted that the drivable area binary segments 

and the lane line annotations are only available for the first 

frame of each video, which led us to use only a small portion 

of the dataset; besides, 100,000 samples are arguably a 

sufficient amount of data for the trained CNN models with 

high inductive bias. 

 

 
Fig 2 Combined BDD100K and Private Dataset  

Class Histogram 

 

 Private Dashcam Dataset 

Our private dataset was gathered from the dashcams 

installed on the windshield of the taxis of Istanbul by our 

partner. The frames are taken from everyday routes that the 

taxi drivers go through, thus the clips are highly natural and 

properly represent the real-world scenarios. On the other 
hand, unlike BDD100K, the frames of the private dataset are 

highly distorted, due to the low quality of the dashcams. The 

low- quality frames arguably make the task even more 

challenging. The dataset is composed of 15.2k frames and 
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each frame is annotated to hold the traffic light, vehicle, and 

lane information. The traffic light bounding boxes are 

separated based on their colors, i.e. red, green, and yellow. 

Furthermore, each vehicle is labeled as a 'car', similar to the 

densification performed for the BDD100K dataset. 

 

For the annotation of the frames, we used a tool called 

Remo, which is a web application for managing and 
annotating raw data. While being relatively lightweight, the 

tool is short on functionality and only supports bounding box 

annotation for object detection tasks. To get around this 

issue, we annotated the corners of the lines as bounding 

boxes, and took the centroids of the bounding boxes as the 

vertices, to match the format of BDD100K lane lines. Note 

that the vertices of each line were labeled as the same 

number. Furthermore, as detecting the dashed and straight 

lines is a key requirement for our case, we set the labels of 

the straight lines as odd numbers, and the dashed ones as 

even numbers. We utilized this information in a posterior 

operation to generate the corresponding lane mask. 
 

 Traffic Sign Dataset 

The traffic sign dataset is an object detection dataset 

that contains annotations of the traffic signs and lights 

captured by high-quality dashcam frames. The resolution of 

each frame is 1920x1080, similar to BDD100K, but different 

from the private dataset. The dataset is composed of 4706 

images, 3546 of which are separated for the train set, and 

1060 of which are separated for the test set. The annotations 

are composed of 18 classes; 'trespass sign', 'straight or left 

only', 'straight or right only', 'left only ahead', '20 speed limit 
end', '30 speed limit', '20 speed limit', 'right only ahead', 'no 

right turn', 'no left turn', 'stop', 'no parking', 'park', 'bus stop', 

'green light', 'yellow light' and 'red light'. The class instance 

histogram can be found in Fig. 1. 

 

 Dataset Combination 

To be able to use all the datasets in our possession, we 

utilized a basic yet effective method, which is annotating the 

unlabeled data with a model that was trained with the 

annotated portion of the dataset. In this case, the fully 

annotated part of the dataset is BDD100K; it includes the 

drivable area segments that are absent in the private dataset. 
For that reason, we first trained a multitask network with a 

drivable area segmentation head, then, annotated the frames 

coming from the private dataset. The class instance 

histogram of the combined dataset can be found in Fig. 2. 

 

B. Utilized Models 

In this section, the utilized methods will be presented 

in detail. These methods can be summarized as the model 

architectures and approaches for lane violation detection. 

The complete pipeline that will be presented can be found in 

Fig. 6. 
 

 YOLOP 

You Only Look Once for Panoptic Driving Perception 

(YOLOP) is a multitask CNN that is capable of doing binary 

drivable area and lane segmentation along with traffic object 

detection [11]. The high-level architecture comprises a 

multi- head autoencoder scheme, where the features are 

extracted through a shared encoder (backbone and neck), 

and then fed into 3 decoupled decoders(heads) that were 

trained to utilize the input features to their separate tasks. 

The backbone is taken from the popular CSPDarknet 

architecture, due to its real-time efficiency and proven 

impact on the propagated features [16]. Furthermore, 

Spatial Pyramid Pooling (SPP) module and Feature 

Pyramid Network (FPN) architecture compose the neck part 
of the network [19, 20]. As usual, the neck is utilized to 

couple and fuse the features coming from different semantic 

scales, by combining the bottom-up features from the 

backbone with the bottom-down features computed by 

upsampling. The detection head takes a similar approach to 

YOLOv4, in that the detections are selected via 

precomputed anchor boxes, which are computed based on 

the different scales that are computed in the neck [17]. 

 

On the other hand, the segmentation heads upsample 

the top- down features coming from the neck several times; 

notice that the upsampling method does not use 
deconvolution to reduce computational costs, instead, 

nearest interpolation is preferred. The upsampling is done 

until the size of the obtained 2D feature map matches the 

input's dimensions. In the original paper, both segmentation 

heads yield binary maps which signify the presence of either 

a lane or a drivable area; for our task, we modified the 

output layer of the lane segmentation head to also classify 

the lane's type, as whether straight or dashed. This 

classification feature is crucial for our requirement as we 

intend to detect lane violations that occur due to the passage 

through straight lines. 
 

As the initial pretrained YOLOP model came with 2 

binary segmentation heads to be suitable with the data 

coming from the BDD100K dataset, we had to modify the 

last layer of the lane segmentation head to output 3 channels 

(no line, dashed lane, straight lane) instead of the original 2. 

 

We utilized a hybrid loss function which is the 

combination of 3 loss functions crafted for each individual 

task. The loss function of the detector head is the addition of 

the objectness loss, box, and classification losses. The 

objectness loss is the standard binary cross entropy function 
which indicates whether the detected area contains an 

object, furthermore, the box loss signifies how accurate the 

predicted bounding box is when compared to the ground 

truth. Finally, the classification loss is the standard focal loss 

that has seen common use in recent years to overcome the 

struggles raised by the class imbalance problem. On the 

other side, for both segmentation tasks, we use the focal 

Tversky loss which is a common method to overcome the 

severe class imbalance problem raised by the nature of the 

lane and drivable area segmentation tasks. Note in the 

overall data, the ratios of drivable area and lane pixels to the 
negative pixels are very small, as most of the frames do not 

contain either of the positive classes. The focal Tversky loss 

function was shown to be highly effective in forcing the 

models to tune the parameters more when encountered with 

hard samples. The Tversky Index, which is the main 

equation that aims to maximize true positive and minimize 

false negative predictions is given in (1). 

http://www.ijisrt.com/


Volume 8, Issue 10, October – 2023                              International Journal of Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165 

 

IJISRT23OCT1838                                                             www.ijisrt.com                   2315 

 
 

 
Fig 3 The Model Performance Under Dark Conditions 

 

The focal Tversky loss which capitalizes more in hard 

examples thanks to the γ parameter, is given in (2). 

 
𝐹𝑇𝐿 = (1 − 𝑇𝐼)                                                                   (2) 

 

 YOLOv5 

YOLOv5, short for "You Only Look Once Version 5," 

is a state-of-the-art object detection framework that has 
gained prominence in computer vision research and 

applications [15]. It consists of several key components, 

each contributing to its exceptional performance. The 

backbone of YOLOv5 is a deep convolutional neural 

network, often based on architectures like CSPDarknet53 or 

EfficientNet, which extracts features from input images 

[17]. The neck component, typically PANet or PANet-Lite, 

then combines these features at different scales to enhance 

object localization [18]. YOLOv5's unique feature is the 

detection head, composed of several prediction layers 

responsible for bounding box coordinates, objectness scores, 

and class probabilities. The anchor boxes, a set of 
predefined bounding box priors, aid in predicting accurate 

object locations. Furthermore, YOLOv5 implements a novel 

loss function, CIoU (Complete Intersection over Union), 

which optimizes both localization accuracy and class 

prediction. Its versatility is evident through support for 

various input sizes, hardware accelerators like GPUs, and an 

efficient inference process that makes it suitable for real-

time applications. With its robust components and superior 

performance, YOLOv5 has become a pivotal tool in the field 

of computer vision, advancing object detection capabilities. 
 

We trained 2 Small YOLOv5(YOLOv5s) models to 

detect traffic lights/signs and people. We have empirically 

seen that training the YOLOP detection head to detect 

people along with the traffic objects yielded suboptimal 

performance in real- world situations, therefore we went on 

with training multiple smaller models, which can learn 

completely different features from each other. 

 

C. Posterior Algorithms 

In this section, the proposed algorithms will be applied 

after the model inference is made. These algorithms are 
crafted to enhance the model segmentation outputs, which 

will be used in the following operations. 

 

 Temporal Smoothing for Segmentation Outputs 

Temporal smoothing in computer vision refers to the 

process of reducing noise or fluctuations in a sequence of 

images or video frames over time. It involves applying a 

filtering technique to the temporal dimension of the data to 

create a more stable and visually coherent representation. 

The main goal of temporal smoothing is to improve the 

quality and consistency of the video sequence by reducing 
unwanted variations caused by factors such as camera shake, 

sensor noise, or rapid changes in the scene. It helps to create 

a more visually pleasing and easier-to-analyze video stream. 

We utilize this scheme in our pipeline as well both in lane 

and drivable area allows the smoothing process to take 

certain predictions more into account while deciding on the 

presence of drivable areas. 

 

 
Fig 4 Panoptic Perception and Violation Detection Pipeline 

http://www.ijisrt.com/


Volume 8, Issue 10, October – 2023                              International Journal of Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165 

 

IJISRT23OCT1838                                                             www.ijisrt.com                   2316 

 
Fig 5 Validation Loss Curve of YOLOP Trained with BDD100K 

 

 
Fig 6 Example Output Frames Containing Lane Segmentation and Vehicle Detection from YOLOP, and Traffic Light and Person 

Detection from YOLOv5s Models 

 

Segmentation tasks. We implemented 2 temporal 
smoothing methods that can be utilized in any situation 

depending on the preference. 

 

 Majority Voting 

Majority voting is a technique used to make decisions 

based on the majority opinion of a group of voters and is 

commonly used to make the decisions more reliable. We 

used the majority voting mechanism to smooth out the small 

meaningless segments obtained during the model inference. 

The majority voting mechanism adds up the binary drivable 

area segmentation results of the last n frames (preferably an 
odd number, we empirically set n to be 5 on 30FPS video 

streams), and outputs 1 for the pixels with an addition of 

more than n/2. 

 

 

 Probability Voting 
The probability voting mechanism is similar to the 

majority voting algorithm, however this time instead of the 

binary predictions, we add up the sigmoid outputs of the last 

n frames and pick the pixels with an addition more than n/2. 

This method. 

 

D. Lane Violation Detection Algorithms 

We describe a lane violation as the lane change over a 

straight line, which is a universally forbidden behavior. To 

detect the lane violations of the driver, we incorporated a 

methodology where the YOLOP lane segmentation head 
outputs the lane pixel map, then we put the new output 

through a rule-based mechanism, which is crafted and 

calibrated based on the empirical results gathered on unseen 

data. This section presents the basic algorithms that were 

crafted to detect lane violations under different situations. 
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We introduce 2 algorithms with different strengths and 

weaknesses depending on the outside conditions. 

 

 Center Crop 

For the center cropping method, we first need to define 

an ROI where under usual conditions, the occurrence of a 

vertical line segment means that there is a passage of lane. In 

that regard, we first select a suitable ROI, and then, in each 
frame, we check the area for the occurrence of straight-line 

segments, and if there is any, we compare the numbers of 

pixels coming from the dashed and straight-line segments. If 

the number of straight- line pixels is higher than some 

threshold, which is empirically set to be 5% of the RoI’s 

area, and is higher than the number of dashed line pixels, the 

algorithm yields lane violation. This method is highly 

intuitive and effective when the input segments are 

generated properly; this phenomenon will be discussed in 

detail in the following sections of the paper. 

 

 Centroid Shift Tracking 

Centroid shift tracking was crafted to counteract the 
possible hard lane segmentation cases, where the line 

segment is not clear and continuous around the RoI. This 

method utilizes the temporal information alongside the 

spatial information. 

 

Table 1 Segmentation Task Results 

Model Dataset Task Accuracy IoU 

 

YOLOP 

 

BDD100K 

Dri. Ar. Seg. 0.95 0.89 

Lane Seg. 0.71 0.39 

 

YOLOP 

 

BDD100K+Priv. 

Dri. Ar. Seg. 0.97 0.91 

Lane Seg. 0.85 0.49 

 

Table 2 Object Detection Task Results 

Model Dataset Task Precision Recall mAP0.5 mAP0.95 

YOLO BDD100K+Priv. Car Detection 0.88 0.66 0.63 0.44 

YOLOv5 BDD100K Person Detection 0.80 0.64 0.68 0.45 

YOLOv5 Traffic Sign Dataset Traffic Light/Sign Detection 0.96 0.88 0.91 0.75 

 

Coming from each line segment. The main idea of the 

algorithm is to track the lane centroid movements in both 

ego lanes (left and right) which are detected by computing 
the horizontal position of the centroid inside the predefined 

RoIs. These regions are selected to best cover the lane 

segments when the vehicle is going perfectly forward inside 

the lanes, therefore any major movement of lanes inside 

these RoIs can be considered as an attempt at a lane change. 

 

With this in mind, the algorithm puts the centroid 

locations of the lane segments found on the ego lane RoIs 

and differentiates the horizontal centroid locations, which 

gives a rough idea about the movement of the vehicle. 

Especially if the movements of 2 lane centroids are similar, 

this can imply the movement of the car in either direction; 
for instance, if both of the centroids move towards the right, 

it can be assumed that the vehicle moves towards the left, and 

at some point, either or both lane segments can disappear as 

the vehicle’s position can sit perfectly on the left lane, in 

which case neither region can enclose a lane segment. The 

algorithm iteratively checks for such a phenomenon and 

throws a lane violation event when it captures one. 

 

The algorithm is designed to overcome the possible 

problems that can occur from the utilization of the Center 

Crop method, in that the line segments can be inconsistent 
around the middle of the images, yet this method will not be 

affected by such inconsistency as the focal points of the line 

segments are chosen to be original ego line positions. 

However, as this algorithm utilizes the small centroid 

movements between consecutive frames, it requires the 

frames to be as close to each other as possible, i.e. high FPS. 

However, as the operation is done in the CPU the execution 

time of the algorithm is rather high therefore it is not 

suitable for real-time processing problems; on the other 

hand, if the requirements are suitable for offline processing, 

meaning that the dashcam videos can be analyzed after the 
driving session, this algorithm can yield more reliable results 

when the lane segmentation model underperforms in real-

world scenarios. 

 

Finally, it should be noted that to overcome the issue of 

high processing overhead, we also added a movement 

detection scheme that is crafted to reduce the amount of 

redundant computation when the vehicle is stationary. Note 

that in this case, we assume that our rule-based scheme does 

not take any sensory data as input that can indicate the 

movement of the vehicle, therefore we need to perceive the 

movement through the camera frames also. For that reason, 
we compute the Structural Similarity Index Measure (SSIM) 

on another RoI, which is chosen to be the union of the 

regions selected in the Center Crop and Centroid Shift 

algorithm, i.e. the front part of the vehicle. Computing SSIM 

between 2 whole frames is not a viable approach as even 

when the vehicle is stationary, the surroundings are likely to 

move, forcing the algorithm to mispredict the occurrence of 

a movement. The SSIM between the RoIs from 2 

consecutive frames is thresholded with a value of 0.9 and if 

the measurement is less than the threshold, the algorithm 

decides that there is a significant change between the frames 
and notifies the occurrence of a movement. Note that even 

though the SSIM measurement is highly optimized in the 

package we are using(sci-kit-learn), to reduce the amount of 

computation, we run the movement detection algorithm 

once every 10 seconds, and if we do not detect a movement, 

we do not make any model inference or run any lane 

detection algorithm. 
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E. Experimental Design 

As mentioned earlier, we made the experimental setup 

such that we can use multiple datasets at once and create a 

model with enhanced perception capability in different 

datasets and scenarios. 

 

In the first step, we trained a YOLOP model with 

semantic lane segmentation, drivable area segmentation, and 
vehicle detection using the BDD100K dataset. Furthermore, 

we used the focal loss for the class prediction with α and γ 

parameters being 0.25 and 1.5 respectively, to generate more 

loss values from harder examples during training. Finally, 

for the segmentation tasks, the parameters of the focal 

Tversky loss α, β and γ were set to be 0.5, 0.5, and 0.75 in 

order. The model was trained for 500 epochs with a batch 

size of 16. The critical point for the training of a multitask 

network is the separation of the training procedures; this 

paradigm has been highly popular in the related fields, 

therefore in our case, we use this method as well. Firstly, 

only the encoder and the detection heads are trained over the 
detection data of BDD100K, therefore we freeze all the 

parameters of the two segmentation heads. In the following 

step, we unfreeze the segmentation parameters and freeze the 

encoder along with the detection head parameters. These two 

steps utilize separate Adam optimizers with initial learning 

rates of 0.001, β1 of 0.937, and β2 of 0.999. Note that solely 

freezing the model parameters is not enough in this case, as 

some of the statistics are learned during the forward pass of 

the model, such as the mean and standard deviation 

information of the batch normalization layers. Therefore, 

unless we freeze these forward statistics along with the 
model parameters, the outputs received before and after the 

training can differ, even though technically the parameters of 

the corresponding layers were not changed. Finally, we 

unfreeze all the parameters and forward statistics of the 

model and train the model while lowering the initial learning 

rate of the Adam optimizer to 0.0001. This can be considered 

a final fine tune of the overall multitask model. The 

smoothed validation loss graph of the final training 

procedure can be seen in Fig. 5. 
 

Furthermore, we annotate the unlabeled data coming 

from the private dataset using the learned model, more 
specifically the drivable area segments. The same strategies 

are also applied during the fine-tuning of the new combined 

dataset. We also extensively applied data augmentation 

during the training with the combined dataset to make the 

model robust against the hard situations that may be 

encountered in real-world examples. The augmentations 

used during the training are as follows; random horizontal 

flip (probability(p)=0.5), hue, saturation, value change 

(p=0.5), blur (p=0.25), grayscale (p=0.25), histogram 

equalization  (p=0.1), brightness, contrast, gamma 

change(p=0.2), 1-75% image compression (p=0.75), motion 
blur(p=0.1), and shift, scale, rotate(p=0.3). We chose the 

augmentation techniques to simulate the possible situations 

that can be encountered during a standard traffic session. 

Fig. 3. shows an example of a frame with very dark lighting, 

and the performance of the model that was trained on the 

augmented data. For instance, the camera’s light exposure 

can be simulated by increasing the gamma of the image. In 

particular, we frequently utilized image compression 

augmentation to match the possible inputs that can be 

gathered from low-quality dash cams. We should also point 

out the intentional usage of the shifting augmentation. We 

empirically found that when the lane segmentation head is 

trained over BDD100K, the model grows a noticeable bias 

about the positions of the lanes, since most of the time the 

vehicle stays between the lanes, therefore there are very few 
samples where the lane segments are around the middle of the 

frame. This phenomenon makes the model struggle to find 

lane pixels when footage shows a lane change activity. To 

overcome this issue, we set the shifting augmentation 

parameters such that a standard frame can imitate a lane 

change after the transformation. Note that we used the 

Albumentations package to apply the mentioned 

augmentations and Torchvision for the normalization. 

 

For the training procedure of the YOLOv5s object 

detectors, we used the pre-trained weight that is available in 

the model repository and fine-tuned it with our datasets. We 
trained both object detectors for 300 epochs with early 

stopping regularization with patience of 30 epochs. We set 

the batch size of the training as 32 as the model is relatively 

small. Different from the training of YOLOP, we used a 

Stochastic Gradient Descent optimizer with a learning rate of 

0.001 and momentum of 0.98, and cosine annealing to 

overcome overfitting on a relatively small dataset. 

 

IV. RESULTS AND DISCUSSION 

 

The resultant metrics of the object detection models are 
presented in Table I, which gives the precision, recall, and 

mean average precisions with intersection over union (IoU) 

thresholds being 0.5 and 0.95(mAP0.5 and mAP0.95). The 

car detection head, trained on the combination of BDD100K 

and our private datasets yields precision and recall values of 

0.88 and 0.66 respectively. A high precision and a relatively 

low recall value usually signify that the model gives 

predictions relatively rarely, yet the predictions are correct 

for the most part. This situation translates into high false 

negative but low false positive rates; this situation can 

usually be balanced out by reducing the confidence 

threshold of the non-maximum suppression postprocess 
(NMS). However, in most real-world AI-based systems, 

false positives are perceived to be more problematic when 

compared to false negatives, therefore we increased the 

NMS’s confidence threshold to 0.6 to make sure that the 

predictions of the model are reliable. In terms of the box 

regression scores, mAP0.5 and mAP0.95 values are received 

as 0.63 and 0.44. 

 

Person detection with YOLOv5s on BDD100K gives 

results very close to car detection. The model again yields 

high precision and low recall, which is also a consequence 
of the confidence threshold being set relatively high to 

reduce false positives on real-world use. The traffic sign and 

light detection model yields very high results on every 

metric, as the dataset is relatively simple. The precision 

value of 0.96 is exceptionally high, pointing out the 

effectiveness of the method on the target dataset. 
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The segmentation results are given in Table II, where it 

is possible to see the pixel classification accuracy and IoU 

scores of the 2 YOLOP segmentation heads. As mentioned 

earlier we trained the first model on BDD100K to be able to 

annotate the drivable area segments of the private dataset. 

The drivable area pixel classification accuracy of the 

annotator model is 0.95 and its IoU score is 0.89; these 

values are rather high and can be considered enough to be 
used for the annotation of a similar dataset. On the other 

hand, the lane segmentation scores of the first model are 

rather low, which makes it unsuitable for an annotation task, 

however, note that our private dataset’s lane segments were 

annotated by real people. The results of the final finetuned 

YOLOP model are naturally more promising than its 

predecessor. In terms of drivable area segmentation, the 

pixel classification accuracy has increased by 2 percentage 

points; this situation shows that the model has not only 

learned the automatically annotated drivable area data but 

also kept on learning the data coming from BDD100K. Note 

that this may be a consequence of the separate tasked training 
paradigm we have incorporated; it is possible that during the 

final phase of the training procedure, which is the fine tune 

of all the model parameters, the loss coming from the 

detection head had more effect on the backbone and the neck, 

which could hypothetically have harmed the segmentation 

heads. 

 

The most remarkable improvement is seen in the lane 

segmentation task, where both the pixel accuracy and the 

IoU score have increased significantly after the fine tune 

with the private dataset. The pixel classification accuracy 
and the IoU score reached values of 0.85 and 0.49 

respectively. The total output of lane segmentation and 

traffic object detection is given in Fig. 4. 

 

V. CONCLUSION 

 

In this work, we have utilized some models from the 

YOLO family to meet the requirement of building a 

complete visual perception system on the traffic data, 

gathered by the installation of dashcams on the windshields 

of the vehicles. We used YOLOP, which is a multitask 

network that was inspired by the more popular YOLOv4, for 
binary drivable area segmentation, semantic lane 

segmentation for straight and dashed lines, and vehicle 

detection on the traffic. We started with a state-of-the-art 

panoptic traffic dataset, BDD100K, and used semi-

supervised learning techniques to automatically annotate our 

private dataset. Furthermore, we used 2 YOLOv5s object 

detectors for person and traffic light/sign detection. As our 

eventual aim is to build a system that can detect the 

erroneous behavior of the drivers, we also introduced two 

rule- based lane change violation detection algorithms that 

can work under different conditions and situations. The first 
algorithm is simple and effective; however, it assumes 

consistent lane segmentation output in every part of the 

frame. We also introduced a less efficient algorithm that 

takes advantage of the frequent positions of the ego 

lanes, thus more consistent. 

 

 

This work can be majorly improved in the future by 

using newer and more capable multitask networks. These 

models can implicitly utilize the temporal aspect of the 

video frames to further improve the detection and 

segmentation performance. We implemented lane violation 

as a rule-based algorithm as a proof of concept, however, the 

violations can also be implicitly learned by a machine 

learning model if the data is annotated to meet such 
requirements, even though the explainability of the 

decisions made by the AI models is crucial in these 

cases. 
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