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Abstract:- In this work, Nonlinear Implicit Fractional
Integrodifferential Systems in Banach Spaces with
Distributed Delays in the Control were presented for
Relative Controllability analysis. General argument was
found which was used to establish the relationship
between the relative controllability and the intersection
of the two compact and convex set functions derived
from the mild solution of the system. The establishment
of the relationship gives impetus to the existence of
optimal control for the system as it becomes self-
evidence that the intersection of the two compact and
convex set functions be non-void to establish relative
controllability. Thus we have established relative
controllability of our system. Uses were made of the
notion of the measure of non-compactness of a set and
Dabos’ fixed point theorem, as well as the unsymmetric
Fubinis’ theorem to establish the mild solution of the
system .Necessary and sufficient conditions for the
existence of computable criterion for the relative
controllability of our system were established. The
establishment was built on the usage of definition of
properness of the system and the effects of the existence
of zero in the interior of a reachable set of any dynamical
control system.
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Mild Solution, Optimal Control Relative Controllability, Set
Function, Measure of Non-Compactness, Calculus of
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I INTRODUCTION

Integrodifferential Equations arise in many fields of
Science and Engineering such as Fluid dynamics,Biological
models,and Chemical kinetics.A detailed investigation of
Integro differential Equations have been used to model
various physical phenomena such as heat conduction in
materials with memory, combined conduction, convection
and Radiation problems(See Caputo (1967),0lmstead and
Handels man (1976),0Oraekie (2018)), and numerical
methods for such equations can be found in the works of
Mittal and Nigam(2008) as well as Rawashdeh(2011).1t is
interesting to introduce a fractional derivative for these
models and study their qualitative behaviours.
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Controllability is one of the fundamental concepts in
control theory and plays a major role in many control
problems such as stablization of unstable systems by
feedback or optimal control (Klamka(1993
;Oraekie(2012).This problem can be studied by using
different techniques,among which are the Fixed Point
Theorem Techniques (See Balachandran and Dauer(1987
),(2008)).Dacka (1980) introduced a method based on the
measure of non compactness of a set and Darbos™ Fixed
Piont Theorem for studing the controllabilityof a nonlinear
systems with an implicit derivative.

Anichini etal (1986) addresssed the controllability
problem for nonlinear systems through the notion of the
measure of noncompactness,the condensing operator and the
Sadovskii Fixed Point Theorem (See Sadovskii(1972),where
as Balachandran and Balasubramaniam(1992) considered
the same problem for Nonlinear Volterra Integro-differential
systems with an Implicit derivative.Oraekie (2018)
discussed the Impulsive Quasi-Linear Fractional Mixed
Volterra-Fredholm-Type Integro-dfferential Systems in
Banach Spaces with Multiple Delays in the Control and
established Necessary and Sufficient Conditions for the
existence of Optimal Control of such Systems.

Recently, Balachandran etal (20212a ,2012b and
2012c¢) studied the Controllability problem for various types
of Nonlinear Fractional Dynamical Systems by using Fixed
Point Theorems .While Oraekie(2019) studied Fractional
Integro-Differential Systems with Distrbuted Delays in the
Control and established Necessary and Sufficient Conditions
for such Systems to be Null-Controllable.

However, no work has been reported on the Relative
Controllability of Nonlinear Implicit Fractional Integro-
Dfferential Systems in the existing Literature. Optimality
Conditions for Relative Controllability of  Nonlinear
Implicit Fractional Integro-dfferential  Systems  with
Distributed Delays in the Control is yet to be reported. In
this work, therefore, we shall consider the Nonlinear
Implicit Fractional Integro-dfferential Systems  with
Distributed Delays in the Control of the form:
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0

1°DAx(t) = Ax(t) + fH(t —s)x(s)ds + fd“ G(t, )u(t +a)

0

+ f(t,x(@®), 1D x(t), u(t))

-h

(1.1

x(0) = xq

With the main objective of investigating the Relative Controllability of the system and to establish the relationship between
the Relative Controllability of the System(1.1) and the Intersection of the two Compact and Convex Set Functions derivable

from the Mild Solution of the system(1.1)

1. NOTATION AND PRELIMINARIES

Let E denote the real line.For any integer n,E”n is the Euclidean space of n-tuples with the Euclidean norm denoted by |.|
.Let J=[a,b] be any sub-interval of E, where a,b are numbers such that a<b .

A. DESCRIPTION OF SYSTEM

In this section,we consider the fractional system represented by the fractional integro-differential system with an implicit

fractional derivative and distributed delays in the control given by

t

0

21Dx(t) = Ax(t) + J H(t — s)x(s)ds + Jda G(t, )u(t + a)
Zh

0

+ f(tx(t), 1°D*x(t), u(t))

(1.1)

x(0) = xq

With the initial condition (0) = xo .

Here,0<A<1,€ ;x€Er;u€eEm; A H are
respectively nxn , nxm matrices. H is an nxn
continuous matrix and the nonlinear function f :
JxEr» x Enx Em — Em" js continuous, and u is an
admissible square integrable m — dimensional vector
function ; with [u; 1<1:;j=1,2,3,..., m. (t ,a) is an
nxm matri , continuous in t and of bounded variation
in a on the delay interval [-h ,0]; h > 0 for each t €
[O,tl] ,t1>0.

In order to study this problem, we need some
basic facts or concepts about Measure of
noncompactness and the related fixed point theorem
due toDarbo as it is contained in Krishnam
Balachandran and Shanmugam Divny (2014).

» DEFINVITION (2, 1. 1)

Let (X, I. l)be a Banach space and S be a bounded
subset of X. Then the Measure of noncompactness of
a set S is defined by

t

u(S)=inf {r>0:S can be covered by a finite
number of balls whose radii are smaller thanr }

> THEOREM 2. 1. 1 (DARBOS FIXED POINT
THEOREM)

If M is a nonempty bounded closed convex
subset of X andP is a map such that P: M — M is
a continuous mapping such that for any set B —
M We have

u(PB) < ku(B),

where k is a constant ,0<k<1,then P has a
fixed point. (See Dacka (1980)) .

B. VARIATION OF CONSTANT FORMULA

Consider the Fractional Integrodifferential
syst(1.1) given as

0

1°DAx(t) = Ax(t) + fH(t —s)x(s)ds + fda G(t, )u(t +a)
“h

0

+ f(t,x(®), 1°D*x(t), u(t))

(2.2.1)

x(0) = X0,
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With its standing hypothes .

Using Balachandran and Kokila (2013 a) like arguments as it is contained in K. Balachandran and S.
Divya (2014) , the solution of the above system(2. 2. 1) can be written as

t 0
x(t) = E;(t)x, + f(t—s)’l‘l Ey,t—1) fda G(t,)ult+ a)
0 —h

t

+ f (t — )L Ey 1t — D £(5,x(5), 1¢D*x(s), u(s))] ds (2.2.2)

0

A careful observation of the solution of syst(2.2.1) given as system(2.2.2) shows that the values of the control
u(t) for t € [-h ,t1] enter the definition of the complete state thereby creating the need for an explicit variation of
constant formula. The control in the 2nd term of the Right Hand Side of yst(2.2.2),therefore, has to be separated in
the intervals [-h , Oland [0 ,t1 ]. To do this,he 2nd term has to be transformed into the required form by applying
the method of klamka(1976) as it is contained in Oraekie (2018).

Firstly, we interchange the order of integration by using the Unsymmetric Fubinis' Theorem to getting :

0 t+a
x(t) = E;(Ox, + fdGa j t—s)"TE (t—s—a)G(s—a,a)u(s —a+a)
—h 0+a

+ J[(t =)V E, ,(t — D][ f(s,x(5), 1°D*x(s), u(s))| ds (2.2.3)
0

Simplifying system(2. 2. 3), we have

0 0
x(t) = E;(O)x, + JdGa J(t—s)’l‘lE,l‘,l(t—s—a)G(s—a,a)uo(s)ds

-h 0+a

t+a

0
+ JdG“_[ (t—s)*1E ;(t—s—a)G(s —a,a)u(s) ds
“h 0

+ f[(t — )MV Ey ,(t — D[ £(5,x(s), 1¢D*x(s), u(s))] ds (2.2.4)
0

Using again the Unsymmetric Fubunis’ Theorem on the change of the order of integration and incor porating
G = as defined below :

i _ (G(s—a,a) fors<t
Gs—a,a)= {0, for s > t.

Then, formula (2. 2. 4) becomes

0 0
x(t) = E;(t)x, + f dG, f(t —S)PLE 4t —s— a)G(s — a,)uy(s)ds
-h a

+ f[ f(t —S)E) ,(t—s —a)d,G* (s — a,a)]u(s) ds
“h

0
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+ f[(t =)V Ey 4t — D[ f(5,x(s), 1D x(s), u(s))] ds (2.2.4)

Integration is still in the Lebesgue Stieltjes sense in the variable a. For brevity, let

0 0
n(t) = E;(t)x, + fdGaf(t—s)’l‘lEL,l(t—s—a)G(s—a,a)uO(s)ds (2.2.5)

—-h a

t

B() = f[(t — )2 1E 1 (t — D[ £(5,x(s), 1D*x(s), u(s))] ds (2.2.6)

0
0
Z(t) = [f(t —S)MTE ,(t—s —a)d G (s —a,a)] (2.2.7)
“h

Substituting systems (2. 2. 5), (2. 2. 6), (2. 2. 7) into systm (2. 2. 4) ,we have

t 0

x(t,x,,w)=nt)+ )+ j[ j(t —SMLE 4t — s — a)daG (s — a, a)]u(s)ds
Zh

0

C. BASIC SET FUNCTIONS and PROPERTIES
In this section ,we define the set functions upon which our study hinges.

» DEFINITION 2. 3. 1 (ATTAINABLE SET)
The attainable set for the system (1.1), or system(2.2.1) is given as :

A(tlitO) = {x(trx() ,u) ‘U € U}
Where U ={u € L,([0,t; ,E™): || <1;j=1,2,..n}

» DEFINVITION 2. 3. 2 (REACHABLE SET)
The reachable set for the system (1.1) , or system(2.2.1) is given as :

t1 0
Rt =] [ €= Bl = s - 06 (s - @, lu()as
0 -h

Where u € U, and U ={uEL2([O,t1],Em): |uj|S1;j=1,2,...n}

» DEFINITION 2. 3. 3(CONTROLLABILITY GRAMMIAN)
The controllability grammian for the system (1.1) , or system(2.2.1) is given as :

t1 0 0
Wits t0) = [ [ €= 771, 1t =5 — @6 (s — @, ][ [ (= 9 Epalt = s~ 0,6 (s -, )T
0 -h —h

Where T denotes matrix transpose.

» DEFINVITION 2. 3. 4 (TARGET SET)
The target set for the system (1.1) , or system(2.2.1) is given as :

G(ty,ty) ={x(t;,xo,w): t; =7> ty, =0, for some fixed t and u € U}
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. RELATIONSHIP BETWEEN SET FUNCTIONS

Let us consider the relationship between the attainable set A(t1, t0 ) and the reachable set R(t1 ,t0 ) firstly ,

with a view to establish that, once a property is proved for one set , say reachable set, then it is applicable to the others. From
syst(2.2. 4), attainable set A(t1,t0) is given as :

t

0
A(ty,ty) = p(t) + f[ (t—=PTE) 4t —s —a)d,G* (s — a,a)]u(s)ds

0 -h
where u(t) =n(t) + B(t) ,u € E™
This means that the attainable set is the translation of the reachable set through the origin,,u€ En.

Using the attainable set,therefore, it is easy to show that the set functions possess the properties of
Convexity, Closedness and Compactness. and Continuous on the interval [0, o)to the Metric Subsets of En .

> LEMMA 3 1

If the constraint set U € L, ([0 ,t1], Em), whereU ={u € L, ([0 ,t1], Em) such that [uj |<1;j=1,2,...n}is
convex so is the reachable set R(t1 ,to).

» Proof.
Recall that the solution of the system (1.1) , or system(2.2.1) is given as

t O
x(t,x,,w)=nt)+ )+ j[ j(t —S)MLE 4t — s — a)daG (s — a, a)]u(s)ds
Zh

0
While the reachable set (t1,0) is given as

t

0
R(t;,ty) = J[ J(t —S)PLE 3t —s—a)doG (s — a, a)]u(s)ds
“h

0

We need to prove that if x, y € (t , to ), then [tx+ (1 —t)y] €R(t,,t;) and0 <t < 1. ( by definition of
convexity).

Now,t x, y € R(t1, to), then

e[ o
x = f f(t —S)PLE y(t—s —a)d,G (s —a,a) |u (s)ds , u, € U.and
i

t[ o
y = f f(t—s)’l‘lE,l‘,l(t—s—a)daG*(s—a,a) u,(s)ds, u, €U
o
FORt € [0,1],then
t[ 0

tx+(1—t)y=f f(t—s)’l‘lE,l‘,l(t—s—a)daG*(s—a,a) tu,(s)ds +
o

0

f f(t—s)’l‘lE,l_,l(t—s—a)daG*(s—a,a) (1 —tu,(s)ds

-h
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= f f(t —s5)A1 Ey,t—s—a)d,G* (s —a,a)|[tus(s) + (1 — u,(s)]ds

v=[tu; + (1 —t)u,] €U

0

-'-,tx+(1—t)y=f f(t—s)’l‘lE,m(t—s—a)daG*(s—a,a) v(s)ds

0 [=n
The proof is made. Hence (t1 ,0) is convex

> THEOREM 3.1
If U is Convex and Compact,hen the Reachable
set R(t1,t0) is Convex, Closed and Compact

> PROOF

We have established the Convexity of the
Reachable Set (t , to) from LEMMA3.1.

ieM={u:[0,t]->E™,

o Recalll tha Compactness implies Closed and
Bounded.

Then we need to show tha the Reachable Set R(t1,
to ) is both closed and bounded. Snce reachable set
is asubset Eni.e. (t,t0) c E n, let xx be a sequence of
points in R(t1, to ) such that xx — x as k — o. we need to
show that x € R(t1, to ). Let M be a set of functions u
from the interval [0 ,t] into E msucthatue Uc L2 ([0 ,t
LE™)

ueUcL,([0,t],E™) such that |lul| < 1}

Then,M < L,([0,t],E™) and so M is a set given as :

M={ueUcL,([0,t],E™): llull<B,8>0andp € [0,1]}

Thus, M is also convex , closed and bounded unit ball. But any closed ball in L2 Space is weakly compact
.Hence , any sequence {ux } € M has a subsequence which converges weakly to a point u € M.

Hence,he reachable setR(t1, to) given as

t

0
R(ty,ty) = J (t—$)1E 1 (t—s—a)doG'(s — a,a) [u,(s)ds

0 |-h

t 0

- f[ f(t — )P LE (t—s—a)doG (s — a,@)]u(s)ds ask > o

0 -h

t[ o
Therefore, x = f f(t —S)PLE 4t — s — a)d,G (s — a,a) [u(s)ds.
0

“h
The proof is made. Hence (t1 0 ) is closed andcompact.
» CONTINUITY OF SET FUNCTIONS (REACHABLE
SET) The set functions are continuous on the
interval [ 0, © ) to the metric space of Compact
subset of E™.
Set®P = {p € E™: pis compact,p # 0}

It is necessary to make the set of all non empty
compact subset of E m into ametric space by defining the

NISRT230CT1678

distance function d for each x € , the distance of x to p €
P by

d(x,p) = max{llx —pll : p € P}

where lxl is the Euclidean lenth of x €

The distance between two sets P and Q is
defined as :

d(P,Q) = maxd(p,Q) + maxd(q,P)
pepP a0
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If we equip P with the metric ,then (,d) is a metric > PROOF
space We need to prove that given any e > O,there
exists 6(¢) > 0 such that d(R(t1, to) ,R(tz ,t0) ) <¢€,
» THEOREM 3.2 whenever |t1 —t2| < 8(g) ; for t1,t2> 0, If x(t, u) €
The Reachable set (t* °)is a continuous function R(t ,to),then

from the interval [0, ) into (P, d). i. e. R(t1, t°) : [0,
w) — (P, d) is continuous.

t

0
x(t,u) = f (t—$)P1E) ;(t—s—a)d,G" (s — a,a)|u(s)ds.

0 |-h

ty

o I —x( Wl = f Y(s)u(s) ds||

ty
0
where Y(s) = f(t —S)ME (t—s —a)d,G* (s —a,a).
“h

Recall that our control set U is given by
U={u€el([0,t1], E™) suchthat ju;|<1;j=1,2,...n}.
= U is closed and bounded ; hence compact.

Since there exists a positive number w >0 such that lul < , (u € U, where U is Compact set), it follows that

t2 t2

llx(ty,w) —x(t , Wl < JwIIY(S)IIu(S) ds < j wllY (lluls)l ds

21 31
0

where ,Y(s)u(s)ds = j(t —S)PLE) 4t — s — a)doG (s — a, a)u(s)ds.
“h

Since an integral is absolutely continuous, for every € >0, 3 (¢) 3 ,f

3

[t; —t,| < &, then |w fIIY(s)IIu(s) ds| <e.
21

Consequently, for every € >0, there exists (&) such that if |t1 —t2 | < ,hen Ix(t1, w) — x(t2, u)l <e.
This completes proof.

V. CONTROLLABILITY

» DEFINITION 4. 1. (Relative Controllability)
The system (L.1) , or system(2.2.1) is relatively controllable on the interval [0 ,t1 ] if

Aty , ) NGy, ty) =0, (0 =empty),t; >t, =0.

» DEFINITION 4. 2. ( Controllability Index)
The functiong :[0,x)— E"defined by

0

git)=CcT f(t—s)’l‘1 Ey,(t—=s—a)d,G*(s—a,a)], C eEE™

-h
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Is called the Index of the control of the system (1.1) , or system(2.2.1)
» DEFINVITION. 4. 3. (PROPERNVESS)
The system (1.1) , or system(2.2.1) is Proper in E n on the interval [0 ,t1] if span R(t1,to)=E™.

0
ieifC’ f(t—s)’l‘lE,M(t—s—a)daG*(s—a,a) =0 aae.=>C =0,CEE",t; >0.
—-h

> PROPOSITION 4. 1.
The system (1.1) , or system(2.2.1) is Proper in E n on the interval [0 ,t1 ] iff

0
cT f(t—s)’l‘lE,l_,l(t—s—a)daG*(s—a,a) =0 a.e.
“h

—=C=0,CEE",t;>0.

» PROOF.
Suppose that The system (1.1) , or system(2.2.1) is Proper in E n on [0 ,t1 ], then span R(t1 ,to) = E n ,t1 > 0.

Since (t, to) isasubset of E », an inner product space that is finite dimensional, we have
R(ty,ty) = R (ty,ty),
Where 1 denotes orthogonal complement.
“ RY(ty tg) = E
Hence ,R(t,,ty) = {0}

Then{ : {(C,x)=0,VXER(t1,t0) } = {0}. From the definition of reachable set (t, to), this is equivalent

to
t[ o
CTJ- lj(t—s)l‘lEL,l(t—s—a)daG*(s—a,a) u(s)ds=0, VuelU=C =0
0 [-n
Since the integral is a nonnegative, we have
t 0
CTf lf(t =) E t—s—a)d,6 (s —a,a)|u(s)ds =0, a.e,se[0,t,]=C =0
o L-h
t 0
Therefore, CTf f(t —S)PME (t—s—a)d,G (s—a,a)| =0, a.e, on [0.4,]
o L-h
= C=0.

= the system (1.1) , or system(2.2.1) is Proper in E non [0 ,t1],

IJISRT230CT1678 WWW.ijisrt.com 1787


http://www.ijisrt.com/

Volume 8, Issue 10, October — 2023 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165

> THEOREM 4. 1
Consider the system (1.1) , or system(2.2.1) given as

t
1D x(t) = Ax(t) + fH(t —s)x(s)ds + fd G(t, )u(t +a)
+ f(t,x(®), 1CD’1x(t) u(t)) (4.1)
x(0) = x,,
with its standing hypothes ,hen the following statements are equivalent.

o Syst(4.1) is relatively controllable on [0,t1].
o The contrllability grammian (t1 0 ) of System(4.1) is nonsingular.
o Syst(4.1) is Properin Enon[0,t1].

> PROOF.
(i) = (i)
o  Recall that. The contrllability grammian W(t1 ,to) of System(4.1) is given by

t1

W(t,,to) =J J(t—s)’l‘lE,u(t—s—a)daG*(s—a,a) x
o |-n

T

J(t —S)E (t—s—a)d,G'(s—a,a)| ds

W(t1, to ) is non — singular is equivalent to say that W(t1 , to ) is positive definite,which in turn is
equivalent to saying that the transpose of some constant square matrix C T multiplied by the
controllability index of the system(4. 1) is equal to zero almost everywhere(a. e),plies that C =0

t 0
te. [e-r 10— s - a6 6 -a,0)|uas =0, ae, ¢ -0,
o L-h

Which is properness of system(4. 1) visa vis system(1. 1) andthis situation implies controllability the
system(4. 1) visa vis system(1. 1). Oraekie(2019)

Thus (ii) = (i)
Now,it remains to prove that the statement (iii) implies statement (i) of the theorem 4. 1

Consider (iii) — Proerness of syst(4.1) /(1.1)

t
CTf f(t —S)PTE (t—s—a)d,G (s —a,a)|u(s)ds =0, a.e,
o L-h

s€[0,t;]. Vs.then

fCT f(t—s)’l‘lE,l_,l(t—s—a)daG*(s—a,a) u(s)ds

-h
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t 0
— CTf f(t — )1 Ey,(t—s—a)d,G* (s —a,a)|u(s)ds =0,
0

-h

It follows from this consideration that C is orthogonal to the reachable set (t1 ,0) . If we assume the relative
controllability of syst(4.1)visa vis system(1.1)/(2.2.1).then SpanR(t1,t0) = E " sothat C = 0. Showing that (iii) = (i).

» Conversely,

Assume the syst(4.1) is not controllable sothat SpanR(t1,to) = E ", for t1 > 0. Then there exists C#0,and CEEn
such that C (t1 ,to) = 0. It implies that for all the admissible controlsu e U= E™ c L2 ([ 0 ,t ],E n) so that

0

t
CTf f(t —S)PTE (t—s—a)doG (s — a,a)|u(s)ds =0,
0

-h

Hence,CTR(t; ,t;) =0. a.e,s€[0,t;] = € = 0.

Tis, by definition of properness of systems,his
implies that systm(4.1) or system (1.1)is not proper, ,
since C #0.

Hence the sys(4.1), or system (1.1)/system(2.2.1)
is relatively controllable. Having established that (ii)
= (i),and (iii) = (i), we conclude that (i) = (ii) = (iii)

This completes the proof.

» Theorem4. 2

Consider the syst(4.l)with its standing
hypothesis. we state that the syst(4.1) is relatively
controllable iff zero is in the interior of the
reachable set

i.e.0 € Interior of R(t,,t,)

t 0

0

> PROOF

From Theorem 3. 1 , we realized that the
reachable set R(t1 , to ) is a closed and convexed
subset of Em.

Therefo , a point y» € E n on the boundary
implies there is a support plane Z of R(t1, to )
through y:

i.e.C"(y—y1)<0,Yy€R(t,t)

where C #0 is an outward normal to the support
plane Z.

If ui is the corresponding control to y, we have

CTJ J(t —S)PLE J(t—s —a)doG (s — a,a) [u(s)ds
h

e[ o
<o f f (t = )" By o(t — 5 — @)doG* (s — @, ) | uy (s)ds (4.2)
0

-h

For every u € U, and since U is a unit sphere,he inequality (4.2)becomes

-h

e[ o
CTf f(t—s)l‘1 Ey ,(t—s—a)d,G* (s —a,a)|u(s)ds
0

e[ 0
< CTf f(t —S)MLE) ,(t—s—a)d,G (s —a,a) | |lu(s)|ds
0

-h

t 0
=f cT f(t—s)’l‘lE,l_,l(t—s—a)daG*(s—a,a) ds
0

-h
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0
sgn CT f(t—s)l‘lE,u(t—s—a)daG*(s—a,a) (4.3)
—h
Comparing the Inequalities (4.2)d (4.3), we have
0
u;(s) =sgn CT f(t —ME (t—s—a)d,G (s —a,a) (4.3)
—-h

More so, as y1 is on the boundary and we always have 0 € Interior of (t , to) . If we have zero not in the
interior of reachable set R(t1, to) ,then it is on the boundary. Hence, from the preeding argument , it implies that

t 0
fCT f(t—s)’l‘lE,u(t—s—a)d“G*(s—a,a) ds =90
0 —-h

So that
0
cT f(t—s)’l‘lE,u(t—s—a)d,xG*(s—a,a) =0,a.e.
“h

This, by the definition of properne , it implies that of the system (4.1) is not proper since CT#0 .

However, if zero is in the Interior of the reachable set (t ,to), for t1>0

0
cT J(t—s)’l‘lEL,l(t—s—a)daG*(s—a,a) =0,a.ee=C=0
“h
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