
Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1389 www.ijisrt.com 1232

A Framework for Monitoring Network Node

Failure using Mobile Agents

M. O Lawal*1; K. G Akintola2; O. K Boyinbode3; N.C Onyeka4
1Department of Computer Science, Federal Polytechnic Ede

2Department of Computer Science, Federal University of Technology, Akure
3Department of Computer Science, Federal University of Technology, Akure

4Department of Computer Science, Federal Polytechnic Ede

Abstract:- Fault detection is an essential aspect of

conducting fault diagnosis for computer networks. It

comprises of two phases: fault detection and fault

localization. The use of mobile agents for detecting faulty

nodes on a network is a concept aimed at ensuring the

proper functioning of networks. This research aims to

design a fault detection framework for a network system

using a mobile agent. Light Weight Agent (LWA) travels

within the nodes to detect nodes that are down on the

network and returns true or false along with other

information as the status of each node visited. The

system is designed using software agents. This

subsystems of the system include the Agent Controller,

Server Agent, Client Agent, Check Status and the

database. The Agent Controller allocates and determines

the agent functions using a unique identification number.

The server agent controls the activities of the client agent

by monitoring the migration of each of the probing

agents to each node on the network. The system is

implemented using the Java Application Development

Environment (JADE) platform. It was tested on a

network with twenty nodes, for five hours per day for

twenty days. The system achieved a reliability rate of

100% for the highest and 47% for the lowest. This

research work will be beneficial for testing the reliability

of a networking system to ensure optimal functioning.

Future research will focus on using mobile agents to

diagnose faulty nodes on a network.

Keywords:- Mobile Agent, System Reliability, Computer

Network, JADE, Fault Detection.

I. INTRODUCTION

Nowadays computer networks is becoming very large,

covering the vast majority of geographical locations.

Network Management Applications (NMA) designed to

manage network tasks such as, maintenance and

administration of the network were also designed to manage

traditional client/server networks. However, as computer

networks expand, the size and complexity of client/server

models are faced with the problem of scaling and flexibility

[6].

Researchers in the field of software mobile agents are
now focusing their attention on Network management

systems. However, if there is a malfunction, the issue of

information overwhelming the network becomes especially

severe, particularly since a quick solution is imperative.

Swift diagnosis and resolution of the problem either through

automated means or by informing and guiding a human

operator on the appropriate course of action becomes

crucial. Devices such as routers, hubs, servers, and more are

monitored by the manager and when there are faults within

the network, the application manager within the network

notifies the network manager in real-time.

Operators working with large networks must remotely
interact with numerous devices from their management

workstation. To cater for the diverse range of network

components, management applications feature a plethora of

interfaces and tools. However, network management

systems are often designed as large monoliths, making them

challenging to maintain.

Automatic discovery is a crucial aspect of network

management systems, with various objectives depending on

the scope of the system. At its most basic level, discovery

aims to locate all devices present within the network.
However, an expanded version of this function involves

constructing detailed views that encompass additional

information, such as the services offered by each devices

that meet specific criteria. As the process of identifying the

problem becomes more complex, it becomes harder to

implement using traditional client/server methods.

This research emerged from the exigency to use an

agent to detect network faults/failures using intelligent

decision-making agents. It also came from the reading

literature reviews of previous researchers such as [6] on how

to solve the problem of a complete recovery mechanism in
case of fault/ failure within a network without simulation.

The study by Jian Hu et al. (2008) enables users to define

their own Management Information Base (MIB) tables, but

this also results in increased system complexity, as mobile

agents must communicate directly with the managed system,

which may impact system compatibility. The primary

objective of this research is to leverage mobile agents in

managing today's large and diverse networks. Mobile agent

software objects are autonomous and can move from one

node to another, carrying logic and data to perform tasks on

behalf of the user. The network management software
objects based on mobile agents will be equipped with agents

possessing network management capabilities that will enable

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1389 www.ijisrt.com 1233

them to issue requests to managed devices or nodes once

they migrate to these nodes.

II. REVIEW OF RELATED WORK

In this section, reviewed literature related to network

faults, network fault detection, Mobile Agent, system

reliability and Network reliability are as follows: Mobile
Agents in [1], [2], [3], [4], and [40]. Network fault detection

in [9], [10], [11] [12], [34], [40], [43], [49]. System

reliability [11], [17], [45], [48]. Characteristics of Mobile

Agents are as presented in [4], [6], and [30]. Network

reliability in [12], [15], [28], [29], [31], [33]. Network

management and monitoring in [33], [34], [35].

 Fault Identification

Fault identification is used to understand the elemental

failure mode, ascertain the margin of the fault, and find the

core cause. Fault identification methods may differ, but the

strides to follow are mainly identical.

 A physical fault is a type of network failure that is

related to hardware issues.

 Port faults typically fall into two categories: unstable

ports and port failures..

 When switches or routers break down, it's often due to

equipment damage resulting in abnormal network

behavior.

 Network card faults are considered to be a type of host

hardware failure and are a frequent reason for network

problems.

 Fault Detection

Fault detection is the process of locating the existence

of a fault in a network before it presents itself in the form of

network failure and breakdown. It is the most important

stage of network fault detection (NFD) as all of the

subsequent processes depend on its accuracy. If the

equipment is unable to identify the proper failure mode (or if

detection is incorrect and triggers false alarms), then the

separation, identification, and appraisal will also be

ineffective.

III. MOBILE AGENT

Mobile agents are programs designed to function

automatically moving from node to node. They can perform

a task on behalf of users and allow difficult tasks to be
shared amongst the agents [1], [2], [3], [4]. The primary goal

of using mobile agents in the management of

telecommunication networks is reducing network traffic by

using load balancing and building scalable and reliable

distributed network management systems. Some of the

advantages of using agent technology in telecommunication

networks are as follows:

 Addresses the handling of a large volume of data that

agents can explore, gather, and filter.

 Facilitates the utilization of more intelligent techniques

to manage a network, integrate different services into
value-added services, and negotiate quality of service.

 Promotes the development of higher-level

communication and organization within a network.

 Demonstrates reactivity, as agents can promptly respond

to local events, such as link failures.

 Exhibits robustness, as agents can perform their duties to

some extent, even when parts of the network are

temporarily inaccessible. This is particularly crucial in

mobile computing, where links can be expensive and

unstable.

 Distributes management code to Simple Network
Management Protocol (SNMP) agents to reduce

bandwidth consumption in a wireless network.

 Decentralizes network management functions by

allowing mobile agents to autonomously and proactively

carry out administrative tasks, thereby reducing the

amount of management traffic required.

 Dynamically adjusts network policies, as mobile agents

can modify the underlying rules of network management

periodically.

Fig 1 Mobile Agents Model (Singh1 et al., 2012)

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1389 www.ijisrt.com 1234

 Mobile Agent System Architecture

Network failure can be prevented if the concept of

fault-detection design strategies is used. Fault tolerance is a

way to head off a failure before it has a chance to happen.

With the fault-detection technique, a problem such as a

software defect in safety-network machines can be identified

and prevented. The preemptive detection of node failure

using mobile agents is the concern of this project work. If
this fault is left uncared for, it could result in network failure

and consequently network machine downtime.

In this research work, a fault-detection architecture

which is based on a fault identification procedure is used

and includes the following two steps: Fault detection and

fault localization [7]. The initial step in fault diagnosis for

computer networks is detecting the presence of any faults,

which involves using detection tools. If any faults are

detected, fault localization is then initiated to identify the

location of the fault and the affected node. Therefore, fault

detection is a crucial first step towards ensuring the normal
operation of networks, and it is essential to employ fast and

precise fault detection techniques. The proposed method of

fault detection used in this research work is a non-

deterministic environment [45], [49], [51]. The goal is to

partition the detection process into several stages, with a

small number of lightweight agents (LWAs) assigned to

monitor particular network nodes at each stage. By the

conclusion of numerous detection stages, every node in the

network can be inspected. This approach guarantees that the

traffic generated by probe agents during each detection stage

is considerably less than conventional methods, although it

may take more time to cover the entire network. The idea of

the strategy to ensure this aforementioned is established in

the following attributes:

 There will be an Agent Controller manager that

identifies the agent type (Server/Client Agent).

 Each node should have an individualized fault detection

mechanism (client agent) to ensure that its service is not

impaired by any hardware failure or software fault.

 There is reliable and timely delivery of reliable messages

from nodes to the Server Agent on the shared network.

 The individual node transmits at the appointed time slot

at all times of the network machine’s operation.

The essence of this work is to foresee the occurrence of

a masqueraded fault and prevent it by providing a solution

before the network fails using mobile agents. In this view, a

proactive strategy to prevent faults resulting from software-

defect or hardware defects is presented in this work [51] and

[44].

Fig. 2 Mobile Agent System Architecture

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1389 www.ijisrt.com 1235

IV. THE MATHEMATICAL MODEL

The main performance metric considered in this

research work is reliability, which is a crucial aspect of

engineering design and development. The field of reliability

engineering encompasses all stages of a system's lifecycle,

from design to fabrication, with the goal of minimizing the

risk of equipment failure. Neglecting reliability can result in
severe consequences, including the loss of critical

information or the erosion of trust in the system. Moreover,

acceptable levels of reliability may differ depending on the

application environment [45] and [48].

The relationship between reliability parameters and

probability theory can be expressed as follows: Suppose a

fixed number N0 of identical items is being tested, and Ns is

the number of items that survived after a certain time period

t, while Nf is the number of items that failed during the

same period. Then, for all t,

N0 = Ns + Nf. (1)

If N0 is sufficiently large, the reliability R(t) of an item

can be calculated as Ns divided by N0.

The failure rate function lambda (λ(t)) is defined as the

instantaneous rate of failure at time t, which can be

mathematically expressed as:

λ(t) = -1/R(t) * dR(t)/dt (2)

Where R(t) is the reliability function of the system.

The negative sign in front of the fraction indicates that

lambda λ(t) is a decreasing function of time t, as the

reliability function R(t) decreases over time. The failure rate

function λ(t) is an important concept in reliability

engineering and is used to estimate the probability of failure

of a system over a given time interval.

R(t) = ℮ - λ(t)dt (3)

The survival probability function, as defined in

equation (2), is commonly known as the reliability function.
This function represents the probability of an item not

failing during the time interval [0, t]. When discussing the

reliability of a system, it is often referred to as the

probability of no occurrence of faults belonging to class F

(i.e., the system survives) during time t.

The probability that a system will continue to operate

without experiencing a fault of class F within a given time

interval, t, is denoted by RF(t). This is also referred to as the

system's reliability. It is defined as the probability that the

time to the first failure, tf, is greater than t given that the
system has operated successfully until time tinit.

Mathematically, it can be expressed as:

RF (t) = P(tinit ≤ t < tf ∀ f ∈ F) (4)

RF(t) is a probability function that represents the

likelihood that a system will operate without a fault of class

F occurring within a given time interval [t_init, t_f) for all f

in the set F. In other words, RF(t) measures the probability

that the system will survive without experiencing any faults

of class F during the time interval [t_init, t_f) for all possible

faults F that may occur. RF (t) can be calculated using the

reliability function R(t) as:

RF (t) = R(tf | tinit ≤ t)

Where R(tf | tinit ≤ t) is the conditional reliability of

the system at time tf given that it has operated successfully

until time t. It can be calculated as:

R(tf | tinit ≤ t) = R(tf)/R(t)

Where R(tf) is the reliability of the system at time tf

and R(t) is the reliability of the system at time t. Failure

Probability Qf (t), is complementary to Rf (t)

Rf (t) + Qf (t) = 1 (5)

We can remove the subscript 'f' and write the equation

as R(t) + Q(t) = 1, where R(t) is the reliability function and

Q(t) is the probability of failure function.

If the lifetime of the system is exponentially

distributed, the probability of no failure occurring in the

time interval [tinit, t] is given by:

RF (t) = e^(-λ(t-tinit))

R (t) = e−λ`t (6)

Where ‘λ’ is called the failure rate.

Since this research work is employing TTP/C (Time-

Triggered Protocol/Clock-Synchronized) which makes use

of the Time Distributed Media Access mechanism TDMA.

The research hereby assumes that the operation of each node

successively takes place as they take part in the schedule

round at their allotted timestamp, except in the case of the
fault being currently detected. This makes the serial

reliability mathematical model suitable to abstract the

networked embedded systems machine. The reliability for

serial networked embedded systems is given as:

Rk(t) is the reliability of a single component k:

Rk(t) = e−λkt (7)

The overall system reliability Rser(t)

Rser(t) = R1(t) × R2(t) × R3(t) × . . . × Rn(t) n (8)

Rser(t) = ∏ Ri(t) I=1 n (9)

The serial failure rate is given as λser = ∑ λi (10)

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1389 www.ijisrt.com 1236

Assuming that the failure rates of individual

components are statistically independent, the overall

reliability of a system can be calculated using equations (8)

and (9). Equation (8) states that the system reliability Rser(t)

at time t is equal to the product of the reliability of each

individual component, denoted by R1(t), R2(t), R3(t),...,

Rn(t), raised to the power of the number of components, n.

Equation (3.9) provides a compact notation for this product
using the product symbol, Π.

The serial failure rate of the system, denoted by λser,

can be obtained using equation (10), which states that λser is

equal to the sum of the failure rates of individual

components, denoted by λ1, λ2, λ3,..., λn, summed over all n

components.

 Mobile Agent Migration Process

The Server Agent (SV) consists of Servercontroller,

Threads (TD), Resourcebundle (RB), Sqlconnection (SC),

Messages (MSG), and Agents table (AT). SV communicates

with all the nodes on the network using LWA and monitors

the agent communication between the Server Agent and

Client Agents. It creates threads for each client agent probe,

monitors the agent thread, and collects responses in the form
of messages which carries all the information representing

the status of each client agent that migrated to each visited

node. It creates Agent tables AT to store the list of all the

probed nodes on the network and sends all the listed nodes

and their respective statuses to the database using

Servercontroller and Sqlconnection.

Fig. 3 Server and Client Agent

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1389 www.ijisrt.com 1237

V. IMPLEMENTATION OF THE MODEL

The local area network (LAN) in the Federal

Polytechnic, Ede library was used for the implementation of

the model. For testing of the framework on the LAN,

twenty-day, five-hour-per-day test of the framework was

done on a network with twenty nodes, consisting of one

server node and nineteen client nodes. The operating
platform used for the test is Windows 8 OS, SQLite-3.12.2-

win64 for database, and Eclipse IDE for Java Developers

4.23. Eclipse allows the integration of JADE through

plugins and it allows agent platform integration. Agent

creation, starting, lunching, activation, and killing can be

achieved on the platform. Since agents require multiple

nodes, the start node and destination node must be

compatible [42] and [43].

 Performance Evaluation of the Model

The research is composed of the Agent Controller, a

single Server Agent, and several network nodes called the
Client Agents (CA) and status checker. The Server Agent

employs Light Weight Agents (LWA), which are special

data packets sent to destination nodes (CA) to detect

network faults. Each LWA can be identified by its

destination node address, which includes the IP address and

MAC address. Based on the results obtained from the LWA,

the status of the nodes is determined and valued between 0

and 1. A value of 1 indicates 100% live components (Node

Up) while a value of 0 indicates 0% live components (node

down) on the LWA transmission paths.

As the reliability of this method heavily relies on the

proper functioning of both the LWA and the destination

nodes, it is assumed that these network components are

always functioning correctly. In the active mobile agent

technique that utilizes light weight agents for fault detection,
the association between the agents and nodes must be taken

into account. Researchers in fault detection have

traditionally employed deterministic dependency

information to model the network, assuming that the

connections between the nodes and probe agents are well

understood. This approach was adopted in prior studies by

[52]. As illustrated in Figure 1.2, the nodes used to transmit

LWA to destination node 1 are not deterministic when the

Server Agent Controller (Manager) sends them. The reason

for this is that any route from the Server Agent Controller

(Manager) to destination node 1 can be chosen as the

transmission path.

The table 1 below shows the failure frequency, Failure

rate, Reliability, and Mean Time between Failures of each of

the nodes. This figure shows the reliability rate of each of

the nodes after the test period of four hours each day for

twenty days. It also shows the mean time between failures

for each of the nodes.

Table 1 Failure Rate, Reliability and MTBF for each day

This table 2 shows the cumulative figures for all the test done on all the twenty nodes on the network for twenty days. It

shows the total percentage reliability of all the nodes on the network. It also shows the reliability of the framework after all the test

has been conducted for the twenty days.

Failure Rate, Reliability and MTBF for each day (T = 5 hours)

Nodes Failure Frequency (f) Failure rate (λ) Reliability

(R=e-λt) per hours)

MTBF T/f (per

hours)

1 0 0 1 0

2 2 0.021 0.979 2.5

3 1 0.011 0.99 5

4 1 0.011 0.99 5

5 1 0.011 0.99 5

6 0 0 1 0

7 1 0.011 0.99 5

8 4 0.047 0.791 1.25

9 1 0.011 0.99 5

10 1 0.011 0.99 5

11 9 0.15 0.472 0.5

12 1 0.011 0.99 5

13 0 0 1 0

14 1 0 0.99 5

15 1 0.011 0.99 5

16 0 0 1 0

17 1 0.011 0.99 5

18 5 0.061 0.731 1

19 3 0.033 0.846 1.6

20 6 0.08 0.67 0.833

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1389 www.ijisrt.com 1238

Table 2 Cumulating (C) Failure Rate, Reliability, and MTBF

Cumulating (C) Failure Rate, Reliability, and MTBF

 C = C/20 C*100

Failure rate (λ) 0.491 0.02455 2.455

Reliability(R=e-λt) per hours) 18.389 0.9195 91.945

MTBF T/f (per hour) 57.683 2.8841

Discussion: ServerAgent and the clientAgents are

connected to the network which contains twenty nodes. The

serverAgent is loaded on the single node while the rest of

the nodes are loaded with the clientAgents. The system

works on Client/Server architecture and each of the client

nodes receives probes from the serverAgent which

consistently monitors all the LWA sent to each of the client
nodes. Figure 4 is a chart representation of data gotten from

table 3.2 which shows the test period of twenty days

containing twenty nodes on a network. The failure

frequency (f) of each node per day (twenty days) of the test

is also recorded as the corresponding nodes that failed

during the test period. The node2 as 2 failures, node3,

node4, node5, node7, node9, node10, node12, node14,

node15, and node17 respectively have failed only one time

within the twenty days test period. Node8 failed four times,
node11 failed nine times, node18 failed five times, node19

failed three times and node20 failed 6 times respectively.

Fig 4 Number of Failures with Corresponding Nodes for Twenty Days Test

Discussion: The failure rate of a system is the

frequency at which the system fails or malfunctions over a

given time and it is usually expressed as the number of

failures per unit of time. The measurement depends on the

type of system and the data available. The data is usually
obtained by monitoring the system over some time and

recording the number of failures that occur. Figure 4 above

shows the failure rate of each of the nodes on the network.

The system was tested using twenty nodes for twenty days,

and the data for the failure rate for each node was calculated

from the failure frequency date in table 3.2. Figure 4.8

shows the Failure rate of each of the nodes, starting from (λ)
= 0.011 for nodes that have the lowest failure rate to (λ) =

0.15 for node(s) that have the highest failure rate.

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1389 www.ijisrt.com 1239

Fig 5 Failure rate of each of the Nodes on a Network

Discussion: measuring the reliability of a system is

important for ensuring that it performs its intended function

consistently and identifying potential problems before they

occur. Figure 5 shows the reliability of each node in the
system. The data used for the chart is from table 1 which

shows the reliability rate of each of the nodes in the

network. Each of the nodes tested for the twenty days with

the system is shown and the corresponding calculated

reliability rates are also shown. Nodes without any failure

have a reliability rate of 1 which is 100% and also specify

the probability that the node will not fail. The test shows the

reliability rate of the nodes as node1 = 100%, node2 = 0.979

(97%), node3 = 0.99 (99%), node4 = 0.99 (99%), node5 =

0.99 (99%), node6 =1, node7 =0.99(99%), node8 =0.791

(79%), node9 =0.99 (99%), node10 =0.99 (99%), node11
=0.472 (47%). node12 =0.99 (99%), node13 =1 (100%),

node14 =0.99 (99%), node15 =0.99 (99%), node16 =1

(100%), node17 =0.99 (99%), node18 =0.731 (73%),

node19 =0.846 (84%), node20 =0.67 (67%). The node with

the highest reliability shows a reliability rate of 100% while

the lowest reliability rate as indicated above is 47%.

Fig 6 Reliability of each node for Twenty Days test

Discussion: The system testing was done for five hours

every day and for twenty days, the cumulating results of the

nodes from all the days are summed together and the

average of the result is found. This is shown in figure 4.10

and shows the total failure rate, reliability, and MTBF. This

can show the total test hours, the total number of failed

nodes, and the total working nodes. Therefore, figure 5 can

show how reliable the system is haven is gone through the

five hours daily and twenty days test period.

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1389 www.ijisrt.com 1240

Fig 7 Cumulating (C) Failure Rate, Reliability, and MTBF

Discussion: Three agents (Agent Controller, Server
Agent, and Client Agents) were used with twenty 20 nodes

during the twenty days test of the framework. The test was

done five hours every day for twenty days with the

assumption that all the twenty nodes are in good condition.

Figure 6, shows the total number of nodes used for the first

test and it also shows the nodes that are alive and the ones

that have failed during the five hours test. It shows the

number of nodes that were alive throughout the test and each

of the nodes that are still connected and stored in the

database. The failure rate (λ) of the system for this test was

computed and it shows the cumulated failure rate of (λ) =
0.02455 and the reliability of R (t) = 92%. This shows that

the framework is reliable having computed the reliability

rate of the system.

VI. CONCLUSION

This research work presents mobile agents as a

solution for network fault detection systems. This work

provides a system testing and a prototype implementation of

a proactive fault detection solution using mobile agents.

Correspondingly, the results from the test period of the fault-

detection system model showed that the theory of reliability
can be used to verify that this research can determine that

the use of mobile agents is viable if properly deployed in an

embedded network system. It is capable of providing a

reliable, dependable, and always-available network

detection system to organizations, industries, banks, and

every other social sector that hinges on computer network in

delivering their services.

REFERENCES

[1]. Zhang, J., Song, J., Hu, X., & Li, M. (2022). A

mobile agent-based fault detection approach for

wireless sensor networks. Ad Hoc Networks, 126,

103907.

[2]. Anand, V., & Devaraj, R. (2021). Mobile Agent

based Fault Detection in Wireless Sensor Networks.

Journal of King Saud University-Computer and

Information Sciences.

[3]. Tripathi, D. S., & Gupta, S. (2020). Fault detection in

wireless sensor networks using mobile agents.
Wireless Personal Communications, 114(2), 737-756.

[4]. Singh, M., & Dave, M. (2020). Mobile agent-based

fault detection and recovery mechanism for wireless

sensor networks. Wireless Personal Communications,

114(3), 1319-1341.

[5]. Chen, Y., He, S., Li, L., & Li, Q. (2019). Mobile

agent-based distributed fault detection in wireless

sensor networks. Journal of Ambient Intelligence and

Humanized Computing, 10(8), 3247-3261.

[6]. Choudhary, P., & Singh, A. K. (2018). A review on

mobile agent based fault detection and recovery

mechanisms in wireless sensor networks. In 2018 3rd
International Conference on Internet of Things:

Smart Innovation and Usages (IoT-SIU) (pp. 1-5).

IEEE.

[7]. Maria Zubair and Umar Manzoor (2016). Mobile

Agent based Network Management Applications and

Fault-Tolerance Mechanisms. The Sixth International

Conference on Innovative Computing Technology

(INTECH 2016)

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1389 www.ijisrt.com 1241

[8]. Ademaj, A. (2002). Slightly-Off-Specification

Failures in the Time-Triggered Architecture. In

Proceedings of the Seventh IEEE International

Workshop on High-Level Design Validation and Test

(HLDVT'02), Cannes, France, 7-12.

[9]. Ademaj, A., Sivencrona, H., Bauer, G., & Torin, J.

(2003). Evaluation of Fault Handling of the Time-

Triggered Architecture with Bus and Star Topology.
In Proceedings of the 2003 IEEE International

Conference on Dependable Systems and Networks

(DSN’03), San Francisco, California, 123-132.

[10]. Adeosun, O. O. (2011). Development of an Enhanced

Model for Internet System Availability Using

Modular Redundancy (Unpublished doctoral thesis).

Department of Computer Science and Engineering,

Obafemi Awolowo University, Ile-Ife, 27-28.

[11]. Barborak, M., Dahbura, A., & Malek, M. (1993). The

Consensus Problem in Fault-Tolerant Computing.

ACM Computing Surveys, 25(2), 171-220.

[12]. Chandra, T. D., & Toueg, S. (1991). Unreliable
Failure Detectors for Asynchronous Systems

(Preliminary version). In 10th Annual ACM

Symposium on Principles of Distributed Computing,

325-340.

[13]. Curtis, H., & France, R. (1999). Time-Triggered

Protocol (TTP/C): A Safety-Critical System Protocol.

EE382C Literature Survey, 10-24.

[14]. Dilger, E., Uhrer, T. F., Muller, B. M., & Poledna, S.

(1998). The X-by-Wire Concept: Time-Triggered

Information Exchange and Fail Silence Support by

New System Services. SAE Conference.
[15]. Dobel, B., Hartig, H., & Engel, M. (2012). Operating

System Support for Redundant Multithreading. In

Proceedings of the Tenth ACM International

Conference on Embedded Software, 83-92.

[16]. Elmenreich, W., & Ipp, R. (2001). Introduction to

TTP/C and TTP/A. Vienna University of

Technology, InstitutfürTechnischeInformatik,

Vienna, Austria.

[17]. Fischer, M. J., Lynch, N. A., & Paterson, P. S.

(1985). Impossibility of distributed consensus with

one faulty process. Journal of the ACM, 32(2), 374-

382.
[18]. George, A. R. (2008). Software modulated fault

tolerance. (Doctoral dissertation, Princeton

University).

[19]. George, A. P., & Barbara, J. P. (2003). Automotive

vehicle safety. Technology and Engineer CRC Press,

9-10.

[20]. Helmer, G., Wong, J. S. K., Honavar, V., Miller, L.,

& Wang, Y. (2003). Lightweight agents for intrusion

detection. The Journal of Systems and Software, 67,

109-122.

[21]. Kelvin, H. (2009). Introduction to TTP- Time-
Triggered protocol (Seminar paper). Chemnitz

University of Technology, pages 2-5.

[22]. Knoll, G., Suri, N., & Bradshaw, J. M. (2002). Path-

based security for mobile agents. Notes in

Theoretical Computer Science, 58(2), 16.

[23]. Kopetz, H. (2001). A comparison of TTP/C and

FlexRay. Technische UniversitätWie, 5.

[24]. Kopetz, H. (2001). REAL-TIME SYSTEMS Design

Principles for Distributed Embedded Applications.

Kluwer Academic Publishers, 1-5.

[25]. Kopetz, H., & Bauer, G. (2002). The time-triggered

architecture. In Proceedings of the IEEE Special

ISSUE on Modeling and Design of Embedded

Software, 6.

[26]. Kopetz, H., & Bauer, G. (2003). The time-triggered
architecture. In Proceedings of the IEEE, 91(1), 112-

126.

[27]. Lamport, L., Shostak, R., & Pease, M. (1982). The

Byzantine Generals Problem. ACM Transactions on

Programming Language Systems, 4(3), 382-401.

[28]. Manju, N., & Jayanthi, J. (2013). An Effective

Verification and Validation Strategy for Safety-

Critical Embedded Systems. International Journal of

Software Engineering & Applications (IJSEA), 4(2).

[29]. McCarthy, M. (2003). Fault-Tolerant. Tech Target,

3(1), 13-21.

[30]. Minsky, Y., Renesse, R., Schneider, F. B., & Stoller,
S. D. (1996). Cryptographic Support for Fault-

Tolerant Distributed Computing. Proceedings of the

7th ACM SIGOPS European Workshop, 109-114.

[31]. Olubosi, F. (2005). Recovering from Information

System Failures. Vanguard Newspapers Online

Edition, August 12.

[32]. Payal, B., & Mukesh, K. (2013). A Detailed

Anatomization of Mobile Agents. International

Journal of Science and Research (IJSR), 2(11), 1-7.

[33]. Pfeifer, H. (2000). Formal Verification of the TTP

Group Membership Algorithm. In IFIP TC6/WG6
International Conference on Formal Description

Techniques for Distributed Systems and

Communication Protocols and Protocol

Specification, Testing, and Verification,

FORTE/PSTV 2000 (pp. 3-18). Pisa, Italy.

[34]. Raman, C. V., & Atul, N. (2005). A Hybrid Method

to Intrusion Detection System Using HMM.

Proceedings of ICDCIT Workshop, 4-9.

[35]. Ross. C., Lee P. A. and Anderson T. (2003):

“Providing Fault-Tolerant Call-Control in the IMS

using the Rserpool Architecture.” In Proceedings of

the 8th International Workshop on Mobile
Multimedia Communication, Munch, Germany, pp.

67-72.

[36]. Schlichting R.D and Schneider F.B. (1983): ‘‘Fail-

stop processors: an approach to designing fault-

tolerant computing systems,’’ ACM Transactions on

Computer Systems, Vol.1, No.3, pp.222-238, ACM

Press.

[37]. Seidel F. (2009): “X-By-Wire, Operation Systems”,

Presented at the Seminar on Transportation Systems,

Chemnitz University of Technology.

[38]. Sunil G., Harsh K. V. and Sangal A. L. (2012):
“Analysis and Removal of Vulnerabilities in

Masquerading Attack in Wireless Sensor Networks”,

International Journal of Computer Technology and

Electronics Engineering (IJCTEE), Vol.2, Issue 3.

[39]. Verissimo P. and Rodrigues L. (2001): “Distributed

Systems for System Architects”, Kluwer Academic

Publishers, pp.1.

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1389 www.ijisrt.com 1242

[40]. Wensley J. H., Lamport L., Goldberg J., Green

M.W., Levitt K.N., Melliar-Smith P. M., Shostak

R.E., and Weinstock C. B. (1978): ‘‘SIFT: Design

and analysis of a fault-tolerant computer for aircraft

control,’’ Proceedings of the IEEE, Vol.66, No.10,

pp.1240-1255.

[41]. White T. and Pagurek B. (1998): “Towards Multi-

Agent Problem Solving in Networks”, Proceedings of
the Third International Conference on Multi-Agent

Systems (ICMAS ’98), pp.333-340.

[42]. Bathula, B. G., Sinha, R. K., Chiu, A. L., and

Woodward, S. L. (2018). Routing and regenerator

planning in a carrier’s core reconfigurable optical

network. Journal of Optical Communications and

Networking, 10(2), A196–A205.

[43]. Jhawar, R. and Piuri, V. (2017). Fault tolerance and

resilience in cloud computing environments. In

Computer and Information Security Handbook (Third

Edition), Elsevier, pp. 165–181.

[44]. Wang, Z. (1989). Model of network faults. Integrated
Network Management, Amsterdam: North-Holland.

[45]. Adetokunbo M and Ojieabu Clement E (2017).

Automated Fault Detection and Identification System

for Computer Networks.

[46]. Castro, M., & Liskov, B. (1999). Practical Byzantine

fault tolerance. In Proceedings of the Third

Symposium on Operating Systems Design and

Implementation (OSDI), pp. 173-186.

[47]. Ongaro, D., & Ousterhout, J. (2014). In search of an

understandable consensus algorithm. Proceedings of

the 2014 USENIX Annual Technical Conference, pp.
305-319.

[48]. Vukolić, M. (2015). The quest for scalable

blockchain fabric: Proof-of-work vs. BFT replication.

IEEE Communications Magazine, 53(9), 71-77.

[49]. Hopcroft, J. E., & Karp, R. M. (1973). An n5/2

algorithm for maximum matching in bipartite graphs.

SIAM Journal on Computing, 2(4), 225-231.

[50]. Liu, Y., & Li, B. (2011). A survey of network fault

diagnosis based on graph theory. Mathematical

Problems in Engineering, 2011, 1-19.

[51]. Coates, M., & Marbach, P. (2002). Network

tomography: Recent developments. Statistical
Science, 17(4), 465-480.

[52]. Paul Barford, Yan Chen, Anup Goyal, Zhichun Li,

Vern Paxson and Vinod Yegneswaran. “Employing

Honeynets For Network Situational Awareness”, In

Series: Advances in Information Security, Springer,

2009.

[53]. A. Dusia | A. S. Sethi (2018). Probe Generation for

Active Probing. Article in International Journal of

Network Management, Wiley, 2018.

http://www.ijisrt.com/

