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Abstract:- The objective of this research is to investigate 

the impact of coordinate and boundary conditions on the 

displacement and strain properties of a thin rectangular 

plate subjected to substantial deflection. The formulas for 
nonlinear displacement and nonlinear strain were found 

by utilising the Von-Karman strain-displacement 

equation. The Von-Karman equations were 

mathematically integrated with regard to the variables x 

and y, resulting in the determination of the nonlinear 

displacement in both the x and y directions. The 

nonlinear displacements were further differentiated with 

respect to both the x and y coordinates, leading to the 

derivation of the nonlinear strain-displacement equations. 

The researchers in the study conducted by Ibearugbulem 

et al. (2020) employed the total potential energy 

functional of a thin rectangular plate in their 

investigation of pure bending. The functional was 

minimised with respect to displacement, resulting in the 

derivation of a governing equation and two compatibility 

equations. The aforementioned equations were 

subsequently solved in order to obtain the in-plane 
displacements as a function of deflection. The energy 

functional was further minimised to determine the 

coefficient of deflection and produce the various formulas 

employed in the analysis of plates exhibiting considerable 

bending. The utilisation of polynomial displacement 

functions was employed in the analysis of pure bending. 

The load characteristics that were established were 

compared to those obtained by Levy and Ibearugbulem, 

revealing a maximum discrepancy of 21.53% and 18.9% 

respectively. This supports the current methodology. The 

nonlinear displacement and strain values for thin 

rectangular plates of SSSS and CCCC were obtained in 

two distinct coordinate systems. The initial set of 

coordinates is characterised by the values (0.5, 0.5, 0.5), 

whereas the subsequent set of coordinates is defined by 

the values (0.25, 0.25, 0.5). A comparison was made 

between the findings obtained from the SSSS and CCCC 
plates. 
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I. INTRODUCTION 
 

The link between engineering strain and displacement is 

referred to as kinematics in the context of structural 
mechanics. Therefore, the engineering strains must be 

defined as displacements. The relationship between 

displacement and strain can be established with the right 

definitions for both terms. The three cardinal coordinates—x, 

y, and z—are included in the displacement field. The letters 

u, v, and w stand for the three dimensions' x, y, and z 

coordinates, respectively [7]. 

 

Plates, which are initially flat structural components, 

have significantly smaller thicknesses than their other 

dimensions. Popular examples of plates include tabletops, 

street manhole coverings, side panels and roofs of structures, 

turbine discs, bulkheads, and tank bottoms. Plates are 

employed extensively in machine components, aircraft, 

bridges, missiles, submarines, ships, and architectural 

structures. Many engineering problems in the actual world 

can be categorised as "plates in bending" or "shells in 
bending" [21]. 

 

In structural plates, deflections and deformations are 

frequently considered, and for convenience, their deflections 

are investigated under loading conditions [19]. In practice, 

many plate structures are subjected to heavy loads that can 

result in significant deflections. By producing membrane 

pressure, this significant deflection stretches the plate's 

central plane [9]. 

 

[16] states that Von Karman nonlinear equations are not 

amenable to analytic solutions. [10] and [17] also support this 

position. [4] the Von-Karman model of nonlinear strain-

displacement relation is utilised in the majority of studies 

examining the strength of highly deformed rectangular plates. 

This Von-Karman type strain-displacement relation has two 

components: a linear component (Kirchhoff's strain-
displacement, here assumed to be bending strain-

displacement) and a non-linear component (membrane strain-

displacement). According to [4] and [7], the following 

describes the plane Von-Karman strain-displacement 

relations: 
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One of the challenges encountered in handling the 

membrane component of the Von-Karman strain 

displacement pertains to the examination of plates exhibiting 

large deflection. Finding mathematical formulas for the u0 

and v0 in-plane displacements of the membrane is the 

primary challenge in this situation. Earlier analyses of 

rectangular plates with significant deflection assumed the 

existence of the formulations for u0 and v0. In light of this, 

their conclusive findings should not be considered exact 

([12], [13], [1], [2], [20], [5] and [10]). 

 

For solving the Von-Karman equations, a stress 
function, also known as Airy's stress function, is employed. 

The results are approximations because previous researchers 

frequently assumed expression for Airy's stress function 

([13], [20] and, [18]). This is comparable to membrane 

displacement in the same plane. It seems impossible to obtain 

the exact expression for Airy's stress function. In their 

doctoral research, [14], [15] and [3] discovered polynomial 

formulations for Airy's stress function. By integrating the 

governing equation and the plate compatibility equation, they 

were able to attain this fit. However, the learners' 

formulations for Airy's stress functions are quite exhaustive 

and lengthy. A solitary exposure to these assertions can 

demotivate an analyst. 

 

These issues serve as the impetus for the current 

investigation. Can Von-Karman strain-displacement relations 

be used to analyse rectangular plates with significant 
deflection without utilising or introducing Airy's stress 

function? is the fundamental research query. It is necessary to 

avoid using Airy's stress function in the analysis of 

rectangular plates with large deflection. However, [8] 

addressed the issue by developing a general mathematical 

model for the nonlinear displacement and engineering strain 

of isotropic thin rectangular plates. They did so in accordance 

with equations (1) and (2). The general equations were 

applied to plates that were supported on all sides and 

clamped on all sides, using a polynomial form function. 

Utilising a polynomial shape function, the present work aims 

to evaluate the effects of coordinates and boundary 

conditions on the displacement and strain of the SSSS and 

CCCC thin rectangular plates. 

 

II. METHODOLOGY 

 
A. The Nonlinear Kinematic Equation 

[8] derived a general mathematical model for 

displacement and strain and also formulated the total 

potential energy functional of an isotropic thin plate under 

pure bending analysis, as shown 

 

 Middle Surface Displacement of the Plate: 

 

 
 

 
 

Where u0 and v0 are the middle surface displacement in 

the x and y axes of the plate. 

 

 Middle Surface Strain of the Plate: 

Differentiating (3) and (4) with respect to x and y 

respectively gives: 

 

 
 

 
 

Where εx0 and εy0 are the middle surface strain in the x 

and y axes of the plate. 

 

 In-Plane Displacement of the Plate:  

Simplifying (1) and making  subject formula gives 

(7) 

 

 
 

 
 

 

 
 

Integrating (7) with respect to x gives (7a) 

 

 
 

 
 

Simplifying (2) and making  subject formula gives 

(7b) 

 

 
 

 

 
 

 
 

Integrating Equations (7b) with respect to y gives 

Equations (7c) 
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Substituting Equation (3) into Equation (7a) gives: 

 

 
 

Further simplification gives: 

 

 
 

Similarly, substituting Equation (4) into Equation (7c) 

gives: 

 

 
 

Where u and v are the in-plane displacement in the x and 

y axes of the plate. 

 

 Nonlinear Strain of the Plate: 

Differentiating (8) and (9) with respect to x and y 
respectively gives: 

 

 
 

 
 

The in-plane shear strain within x-y plane is given as: 

 

 
 

Substituting (10) and (10a) into the in-plane shear strain 

equation as given in (10b): 

 

 

 

 

 
 

 
 

Where γxy is the in-plane shear strain in the xy axes of 

the plate. 

 

 Nonlinear Stress of the Plate 

The basic constitutive relations of a rectangular plate 

with plane stress are  

 

 
 

 
 

 
 

The nonlinear strain in (10), (10b) and (11) were 

substituted into the basic constitutive relations of a 

rectangular plate with plane stress in the (12), (13) and (14) 

to give nonlinear stress of the plate.  

 

 
 

 
 

 
 

Where (15), (16), and (17) are the equations for 

nonlinear stress on the x, y, and xy axes of the plate. 

 

B. Total Potential Energy Functional of a Rectangular Plate 

The nonlinear stress and nonlinear strain relations were 

substituted into the total potential energy functional of a 

classical rectangular plate in pure bending and carrying out 

the closed domain integration with respect to z coordinate 

gives: 

 

 
 

 
 

Expressing the variable (18) in relation to the non-dimensional coordinates (R = x/a, Q = y/b, S = z/t) within the enclosed 

domain can be achieved by utilising the plate lengths along the x and y axes denoted as a and b, respectively. 

 

 
 

The solution of Equation (20) is in the polynomial form and is given as: 
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Substituting Equation (22) into Equation (20) gives: 

 

 
 

 
 

Where Π and w are the total potential energy and deflection of the plate. 

 

 a) Formulas for Analysing the Rectangular Plate:  

In a denotational form, Equation (23) becomes: 

 

 
 

Where: 

 

 
 

 
 

Minimising (24) with respect to the amplitude of deflection, A gives: 

 

 
 

Simplifying and writing (25) in denotational form gives: 

 

 
 

 
 

Substituting (19) for g and D into (26) and dividing through by t gives: 

 

 
 

Rearranging (28) gives: 
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Solving the cubic polynomial, we have: 

 

 
 

Where; 

 

 
 

 
 

So therefore; 

 

 
 

Hence, the amplitude of the out of plan displacement of a plate experiencing large deflection is:  

 

 
 

Substituting (36) into (22) gives: 

 

 
 

Where t, h, D, and Δ are thickness of the plate, shape function, flexural rigidity of the plate and coefficient of deflection. 

Substituting (37) into (8) and (9) and writing them in terms of non-dimensional coordinates gives: 

 

 
 

 
 

Writing (10), (10a) and (10b) in terms of the non-dimensional coordinates gives: 

 

 
 

 
 

 
 

C. Polynomial Deflected Shape Functions 

    According to [6], deflection equation for SSSS and CCCC are shown in Equation (43) and (44) respectively. 
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Where 

 

 
 

D. Numerical Example 

This analysis focuses on the behaviour of SSSS and CCCC plates subjected to a uniformly distributed force, resulting in 

large deflection. The plate material exhibits a Poisson's ratio of 0.316 and a Young's elastic modulus of 200 kN/mm2. The 

dimensions of the plate are as follows: the span is denoted as "a" and measures 500mm, the thickness is represented by "t" and 

measures 5mm, and the surface roughness is indicated by "S" and measures 0.5mm. 

 

Note that for the numerical values in Table 4–6, non-dimensional values were used for the computation of the parameters. 

 

Table 1 Values of Shape Functions and their Derivatives for SSSS Plate 

 

Table 2 Values of Shape Functions and their Derivatives for CCCC Plate 

R Q 
       

0.5 0.5 0 0 -0.0625 -0.0625 0 0 0 

0.25 0.25 0.006592 0.006592 -0.008789 -0.008789 0.000008 0.035156 0.000008 

 

III. RESULTS AND DISCUSSIONS 
 

Table 3 Comparison of Central Deflection for this Present Work and that of Samuel Levy and Ibearugbulem 

 
 

Coefficient  Center  deflection % Diff 

between 

present. & Levy 

% Diff 

Between present & 

Ibearugbulem et al. 
SSSS CCCC Present 

SSSS 

Present 

CCCC 

Samuel Levy 

SSSS 

Ibearugbulem et 

al. SSSS 

0 0 0 0 0 0 0 0 0 

12.1 5.244 44.366 0.512 0.173 0.486 0.498 5.35 2.8 

29.4 10.855 106.707 1.060 0.417 0.962 0.974 10.20 8.8 

56.9 16.655 200.329 1.626 0.783 1.0424 1.439 14.22 13.0 

99.4 22.463 327.148 2.194 1.278 1.87 1.899 17.31 15.5 

161 28.187 474.995 2.753 1.855 2.307 2.353 19.32 17.0 

247 33.900 632.416 3.311 2.470 2.742 2.807 20.74 18.0 

358 39.419 786.389 3.849 3.072 3.174 3.247 21.28 18.5 

497 44.800 935.503 4.375 3.654 3.6 3.678 21.53 18.9 

 

Table 4 Effect of Coordinates on Non-Dimensional Displacements and Strain for SSSS Plates (0.5, 0.5, 0.5) 

       
1.0 0.044668 0 0 0.181717 0.1817172 0 

1.1 0.05355 0 0 0.210057 0.1736011 0 

1.2 0.062203 0 0 0.235182 0.1633207 0 

1.3 0.070471 0 0 0.256896 0.1520093 0 

1.4 0.078258 0 0 0.275299 0.1404585 0 

1.5 0.085516 0 0 0.290661 0.1291827 0 

1.6 0.092229 0 0 0.30332 0.1184845 0 

1.7 0.098405 0 0 0.313688 0.1085427 0 

1.8 0.104065 0 0 0.322082 0.0994079 0 

1.9 0.109242 0 0 0.328838 0.0910908 0 

2.0 0.113969 0 0 0.33424 0.0835601 0 

2.1 0.118283 0 0 0.338532 0.0767646 0 

2.2 0.12222 0 0 0.341916 0.0706438 0 

2.3 0.125814 0 0 0.344562 0.0651346 0 

2.4 0.129098 0 0 0.34661 0.0601753 0 

2.5 0.132101 0 0 0.348173 0.0557077 0 

 

 

R Q 
 

  
 

   
0.5 0.5 0 0 -0.9375 -0.9375 0 0 0 

0.25 0.25 0.153076 0.153076 -0.500977 -0.500977 0.007589 0.472656 0.007589 
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Table 5 Effect of Coordinates on Non-Dimensional Displacements and Strain for SSSS Plate (0.25, 0.25, 0.5) 

       
1.0 0.022676 -0.034744 -0.034744 0.097105 0.097105 -0.18323 

1.1 0.027185 -0.041589 -0.037809 0.112249 0.092768 -0.17505 

1.2 0.031578 -0.048239 -0.040199 0.125675 0.087275 -0.16468 

1.3 0.035775 -0.054573 -0.041979 0.137279 0.08123 -0.15328 

1.4 0.039729 -0.060523 -0.043231 0.147113 0.075058 -0.14163 

1.5 0.043413 -0.066053 -0.044036 0.155322 0.069032 -0.13026 

1.6 0.046821 -0.071156 -0.044473 0.162094 0.063318 -0.11948 

1.7 0.049956 -0.07584 -0.044612 0.167627 0.058003 -0.10945 

1.8 0.05283 -0.080125 -0.044514 0.172112 0.053121 -0.10024 

1.9 0.055457 -0.084035 -0.044229 0.175723 0.048677 -0.09185 

2.0 0.057857 -0.0876 -0.0438 0.17861 0.044652 -0.08426 

2.1 0.060047 -0.090848 -0.043261 0.180903 0.041021 -0.0774 

2.2 0.062046 -0.093808 -0.04264 0.182711 0.03775 -0.07123 

2.3 0.06387 -0.096507 -0.04196 0.184126 0.034806 -0.06568 

2.4 0.065537 -0.09897 -0.041237 0.18522 0.032156 -0.06068 

2.5 0.067062 -0.101219 -0.040488 0.186055 0.029769 -0.05617 

 

Table 6 Effect of Coordinates on Non-Dimensional Displacements and Strain for CCCC Plate (0.5, 0.5, 0.5) 

       
1.0 0.014353 -0.140637 -0.140637 -0.025812 -0.025812 0 

1.1 0.017124 -0.200189 -0.18199 -0.063194 -0.052226 0 

1.2 0.019641 -0.26336 -0.219467 -0.106229 -0.07377 0 

1.3 0.021861 -0.326259 -0.250969 -0.151368 -0.089567 0 

1.4 0.023782 -0.38613 -0.275807 -0.195868 -0.099933 0 

1.5 0.025427 -0.441367 -0.294245 -0.237951 -0.105756 0 

1.6 0.026826 -0.49127 -0.307044 -0.276662 -0.108071 0 

1.7 0.028014 -0.535746 -0.315145 -0.311634 -0.107832 0 

1.8 0.029024 -0.575058 -0.319477 -0.342869 -0.105824 0 

1.9 0.029884 -0.609648 -0.320867 -0.370578 -0.102653 0 

2.0 0.030619 -0.640027 -0.320013 -0.395073 -0.098768 0 

2.1 0.031251 -0.666705 -0.317478 -0.416697 -0.094489 0 

2.2 0.031795 -0.69016 -0.313709 -0.435793 -0.09004 0 

2.3 0.032268 -0.710825 -0.309054 -0.452678 -0.085572 0 

2.4 0.032680 -0.729077 -0.303782 -0.467637 -0.081187 0 

2.5 0.033040 -0.745246 -0.298098 -0.480923 -0.076948 0 

 

Table 7 Effect of Coordinates on Non-Dimensional Displacements and Strain for CCCC Plate (0.25, 0.25, 0.5) 

       
1.0 0.004542 -0.012093 -0.012093 -0.00363 -0.00363 0.029042 

1.1 0.005418 -0.014424 -0.013112 -0.008887 -0.007344 0.058761 

1.2 0.006215 -0.016539 -0.013783 -0.014938 -0.010374 0.083001 

1.3 0.007525 -0.018404 -0.014157 -0.021286 -0.012595 0.100774 

1.4 0.007525 -0.020018 -0.014299 -0.027544 -0.014053 0.112436 

1.5 0.008488 -0.021398 -0.014265 -0.033462 -0.014872 0.118988 

1.6 0.008488 -0.022572 -0.014108 -0.038905 -0.015197 0.121593 

1.7 0.008864 -0.023569 -0.013864 -0.043823 -0.015164 0.121324 

1.8 0.009184 -0.024416 -0.013564 -0.048216 -0.014881 0.119064 

1.9 0.009456 -0.025137 -0.01323 -0.052112 -0.014436 0.115497 

2.0 0.009688 -0.025754 -0.012877 -0.055557 -0.013889 0.111126 

2.1 0.009888 -0.026283 -0.012516 -0.058598 -0.013287 0.106312 

2.2 0.010061 -0.02674 -0.012155 -0.061283 -0.012662 0.101306 

2.3 0.01021 -0.027136 -0.011798 -0.063657 -0.012034 0.096279 

2.4 0.01034 -0.027481 -0.011451 -0.065761 -0.011417 0.091345 

2.5 0.010455 -0.027783 -0.01111 -0.067629 -0.010821 0.086575 
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Table 3 presents the centre deflection values for SSSS 

and CCCC plates that have been examined under a specific 

load condition. The centre deflection values for the different 

plates produced in this study were compared to the values 

reported by Levy (1942) and Ibearugbulem et al. (2020). The 
numbers presented in this study are evidently higher than 

those found in the works of Levy and Ibearugbulem. The 

observed greatest percentage differences are 21.3% and 

18.9%, respectively. The observed discrepancy can potentially 

be attributed to the utilisation of distinct deflection functions. 

In the current study, polynomial shape functions were 

employed, whereas Levy and Ibearugbulem utilised 

trigonometric shape functions. 

 

Tables 4 and 5 show the effect of coordinates on non-

dimensional displacements and strain for a thin rectangular 

plate of SSSS. Along with being measured at two different 

coordinates, these strains and displacements were also 

recorded at R = 0.5, Q = 0.5, and S = 0.5, and R = 0.25, Q = 

0.25, and S = 0.5. The aspect ratio for the first coordinate was 

found to rise when the ratios of w/t increased, although the in-

plane displacements in the directions of x and y are both zero. 
At w/t = 0.132101 and 0.044668, the critical strain for the x 

and y directions, respectively, occurred. The critical strains 

are, respectively, 0.348173 and 0.1817172. For all w/t ratios, 

the shear strain in the xy direction is zero. This suggests that 

near the centre of the SSSS plate, the shear strain is always 

zero. As demonstrated in Table 5, the situation is different in 

the second coordinate (0.25, 0.25, 0.5). When examining the 

relationship between shear strain and w/t ratios, it was 

observed that the shear strain had a height value of -0.05617. 

Furthermore, the critical shear strain was found to occur at a 

w/t ratio of.067062. When compared to the coordinates (0.5, 

0.5, 0.5), the in-plan displacement and the strains in the x and 

y axes are reduced at the coordinates (0.25, 0.25, 0.5). 

 

Tables 6 and 7 show the effect of coordinates on non-

dimensional displacements and strain for a CCCC thin 

rectangular plate. The first coordinate is at R = 0.5, Q = 0.5, 
and S = 0.5, and the second coordinate is at R = 0.25, Q = 

0.25, and S = 0.5. These displacements and strains were 

measured at these two different coordinates. A close 

examination of Table 6 for the first coordinate reveals that 

the aspect ratio rises as the parabolic profile of the non-

dimensional displacements and strains increases. The 

maximum in-plane displacement in both the x and y 

directions is the same, at -0.14065, and it happened at an 

aspect ratio of 1.0. At aspect ratios of 2.5 and 1.9, 

respectively, the minimal plane displacement measured in the 

x and y axes is -0.74525 and -0.32087. Although the pattern 

of the strain in the x and y directions is identical, it is smaller 

than that of the in-plane displacement. The maximum strain 

in both the x and y directions is the same, and it was recorded 

at an aspect ratio of 1.0. Its value is -0.02581. At aspect ratios 

of 2.5 and 1.6, respectively, the minimum strain measured in 

the x and y directions is -0.48092 and -0.10807, respectively. 

For all w/t ratios, the shear strain in the xy direction is zero. 
This suggests that near the centre of the CCCC plate, the 

shear strain is always zero. As shown in Table 6, the situation 

is different at the second coordinate (0.25, 0.25, 0.5). A 

finding was made indicating that the shear strain exhibited a 

parabolic distribution in relation to the w/t ratios. The critical 

shear strain, observed at a deflection of 0.008488, has a value 

of 0.121593. When compared to the coordinates (0.5, 0.5, 

0.5), the in-plan displacement and the stresses in the x and y 

axes are greater at (0.25, 0.25, 0.5). 
 

IV. CONCLUSION 

 

 The bending behaviour of the SSSS plate at the 

coordinate (0.5, 0.5, 0.5) exhibits a range of 0.044668 ≤ 

w/t ≤ 0.132101. Similarly, at the coordinate (0.25, 0.25, 

0.25), the bending range is 0.022676 ≤ w/t ≤ 0.067062. In 

contrast, the CCCC plates demonstrate bending within the 

range of 0.014353 ≤ w/t ≤ 0.033040 at the coordinate 

(0.5, 0.5, 0.5), and within the range of 0.004542 ≤ w/t ≤ 

0.010455 at the coordinate (0.25, 0.25, 0.25). These 

results indicate that the bending of plates increases with 

both the increase in span ratio and the coordinates. 

 Based on the obtained data, it can be inferred that a thin 

rectangular plate subjected to clamping at all edges 

exhibits more stability compared to a plate that is solely 

supported at all edges. This implies that the CCCC plate 
exhibited minimal bending in comparison to the SSSSS 

plate. 
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