Conceptualized Transmutation Reactor to Mass-Produce Helium-3 and Precious Metals

Noriyuki Kodama Independent Researcher

Abstract:- I would like to propose the development of a large-scale transmutation reactor with femto-H₂.

Femto-D₂ transmute element was probed by experiment, and Cold Fusion can be caused by femto-D₂ because femto-D₂ has the covalent electrons which orbit is in deep electron orbit deeper than n=1 at a few femtometers from the nucleus. Because femto-D₂ has so dense electron between d-d, the density of electron between d-d that it can shield the coulomb repulsive force between to cause Cold Fusion.

Brown gas generator is also the transmutation reactor which transmute proton in H_2O to helium-3, thus brown gas a mixed gas of hydrogen, oxygen, helium-3.

Mr. Ohmasa developed Ohmasa gas generator, improved brown gas generator with vertical vibration of the lateral metal plate to generate brown gas, which he named OHMASA gas. Ohmasa gas has higher concentration of helium-3 than conventional brown gas by the vibration.

He also experimentally proved that brown gas generator can transmute tritium and other radioactive element to saver element, and we should note that he produced Ag, Pt, Au from Cu, Cs, Mg, which is a modern alchemy experimentally.

I discovered the rout between such elements by transmutation route analysis based on my femto-H₂ transmutation mechanism.

Femto-H₂ add two protons to the isotope which mass number and atomic increases by 2. In case that that isotope is unstable, it decays to the previous element by electron capture, and in case that that isotope is unstable it decays to the original element with mass increase by 2.

If these steps are repeated, the transmutation route is on the isotopes on smaller mass number side. Therefore, the number of routes is limited.

Based on the transmutation route analysis, I would like to propose the conceptualized transmutation reactor to mass-produce precious elements. Transmutation reactor needs to have the mechanism to improve the element collection to improved transmutation rate. The Conceptualized Transmutation Reactor have the H₂O vibration laterally to the lateral metal plate by ultrasonic transducers, and it has a rapid circulation from transmutation chamber to metal collection chamber, which has the metal plate which voltages are applied negative and ground for the metal precipitates on the negative metal plates. This metal plates collect all of the precious metals. Conceptualized transmutation Reactor has the mechanism to collect Cd and Hg gas in the separate chamber to collect Ag and Au which are the decay product of Cd and Hg respectively.

Keywords:- Brown's Gas, HHO, Transmutation, Cold Fusion, Femto-H₂, Femto-D₂, Alchemy

I. INTRODUCTION

I discovered though the logical thinking that brown gas generator transmute proton in H_2O to generate helium-3, which reminded me of the patents published by Mr. Ohmasa.

In his patent, he experimentally proved that his brown gas generator can lower the tritium concentration in tritium contaminated water from Fukushima nuclear power plant, and it can produce Ag, Pt, Au from Cu and Cs, and Ni from Ca.

We have problems regarding the depletion of rare elements as follows.

Now helium-4 is becoming depleted, which is having a significant impact on various fields such as manufacturing equipment used in the semiconductor industry and medical applications. The helium shortage has also begun to affect medical care. Some medical center stopped using its MRI for the brain testing due to lack of helium.

Helium-3 is used to cool down the quantum computer by ³He/⁴He dilution refrigerator, however helium-3 is also becoming depleted because it is the decay product from tritium, which was produced in the past as fuel for hydrogen bombs, and is obtained by decaying stored tritium into helium-3 (half-life 10 years). For now, no hydrogen bomb is created, and the storage of tritium is running out.

Helium-3 will be used for the fuel for plasma fusion, and US has a plan to build the moon base to generate helium-3 from the sand on the moon and transport helium-3 to the ground to use as an energy source.

Price of the platinum group, has increased. In particular, prices of palladium and rhodium, which account for more than 80% of the demand and are used in exhaust

gas purification catalysts for automobiles (mainly gasolinepowered vehicles), have increased significantly in recent years.

Current industry needs these rare elements, and it is certain that these rare elements will be in short supply in the future. Therefore, it is now important to start the development of a transmutation reactor to mass-produce these rare elements.

II. BACKGROUND

A. Cold Fusion Mechanism by Femto-D2[1],[2],[3]

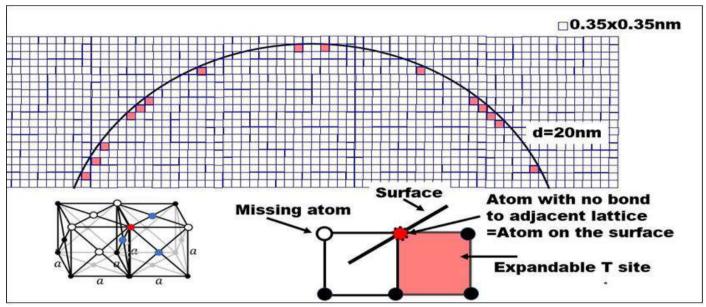


Fig 1 Expandable T Site on the Metal Surface with Nano-Roughness.

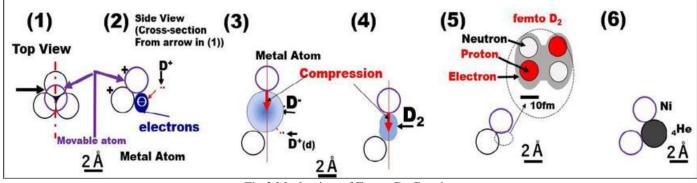


Fig 2 Mechanism of Femto-D2 Creation

On the metal surface on the sidewall of grain-boundary, expandable T site exists, which can be expanded by occupying a negative deuterium which size is by far larger than T site because vertex atom in that site has no bond to the atom in the adjacent lattice, thus atom can move by a negative deuterium occupation; Thus, I named that site, expandable T site. The negative deuterium attracts a negative deuterium to be D_2 , which is compressed by expandable T site, to be femto- D_2 , which can cause Cold Fusion by coulomb repulsive force shielding between covalent electron in deep orbit, as is shown in Fig.2 (5). Because femto- D_2 acts as neutral particles by electron in deep orbit, it fuses with another nucleus.

The mechanism of femto- H_2 creation is the same as femto- D_2 creation; femto- H_2 can be created with H loading into metal with FCC lattice structure with positive voltage in

a strong alkaline aqueous solution. Positive voltage is needed because proton(H^+) exists at grain boundary at positive voltage and because negative voltage induces the free electron which shield coulomb attractive force between protons.

B. Transmutation with Femto- D_2 [4]

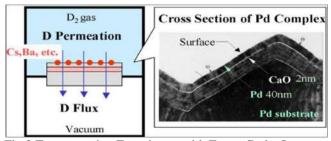


Fig 3 Transmutation Experiment with Femto-D₂ by Iwamura

Transmutation experiment used femto- D_2 with D_2 gas loading into Pd. This is innovative experiment of transmutation based on Cold Fusion.

This experiment's result shows that increase of atomic number is 4 by one femto- D_2 fusion with the target nucleus,

thus, d=2, which means that d is constituted by two protons and one internal electron, which is contradictory to the current nucleus model.

C. Correct Nucleus Model and Neutron Model Proved by Transmutation Experiment [5]

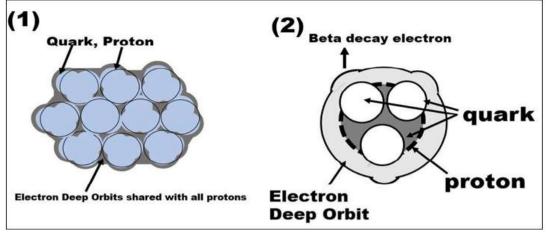


Fig 4 Correct Nucleus Model and Neutron Model

Although d is believed to be a pair of proton and neutron based on current nucleus model, d is proved to be constituted by two protons and one internal electron by transmutation experiment explained above. As is shown in Fig.4(1), The nucleus is constituted only by protons and internal electrons, and no neutron exists; neutron is a pair of proton and electron in deep orbit as is shown in Fin.4(2).

This is the nucleus model before introduction of neutron as a fundamental particle.

In order to prove author's Cold Fusion mechanism based on femto- D_2 , transmutation experiment with femto- H_2 is straightforward without any doubt that proton is proton.

D. Brown Gas Generator[3]

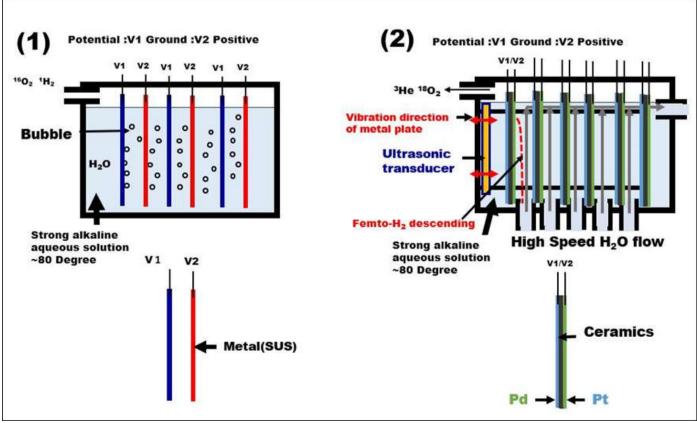


Fig 5 Conceptualized Brown Gas Generator [3]

Volume 8, Issue 10, October - 2023

International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

Conventional brown gas generator in Fig.5 (1) is just electrolyzer, and it may have unintentional vibration of the reactor and may have unintentional H_2O flow which happened to generate femto- H_2 and produce brown gas. Real brown gas generator should be based on femto- H_2 transmutation mechanism shown in Fig.5 (2), which has the controlled vibration laterally and H_2O flow from down side to upside. Transmutation of H2O is as follows.

• $p+2p(femto-H_2) = {}^{3}_{3}Li = {}^{3}_{2}He$ (electron capture)

• ${}^{16}_{8}O+2p(\text{femto-H}_{2}) = {}^{18}_{10}Ne = {}^{18}_{9}F = {}^{18}_{8}O$ (electron capture)

Currently most researchers and companies believe that brown gas is HHO that has a special form of Hydrogen and oxygen, it is because the mass-spectra has a peak at mass 18, which is actually oxygen-18, but everyone thought that it is HHO which mass is 18.

III. TRANSMUTATION RULES

4	0 ₂₀ C	a+2	p=4	² 22 T i	1Sc	alf-li = ⁴² 2	_o Ca	(ele	ctro	on c			T1:	re)					
1	20	Ca		1	21	s c			22	Tİ			23	V			24	Cr	
ISOT	NA	Half-		ISOT	-	Half-	-	ISOT OPE	NA	Half- Life	DP	ISOT OPE	NA	Half- Life	DP		NA	Half- Life	02
40Ca	96.94 %	>5.9x 10 ²¹ y	40.4	425c	syn	681.3 ms		42Ti	syn	199 msec		48V	syn	15.973 5 d	48Ti	SOCr	4.35%	> 1.8x1 0 ¹⁷ y	SOTI
41Ca .		1.03XT	41K	435c	syn	3.891(1 2) h		43Ti	syn	509(5) ms		49V	syn	330 d	49Ti	51Cr	syn	27.702 5 d	51V
42Ca	0.65 %	Stabl e		44mSc	syn	58.61 h		44Ti	syn	63 y	445e	50V	0.25 %	1.5x10'	50Ti,50 Cr	52Cr	83.789	Stable	
43Ca	0.14%	Stable		45Sc	100%	Stable		46Ti	8.00%	Stable		51V	99.75	Stable		53Cr	9.501	Stable	
44Ca	2.09%	Stable		465c	syn	83.79 d	46Ti	47Ti	7.30%	Stable						54Cr	2.365	Stable	
45Ca	syn	162.7 d	455c	475c	syn	3.3492 d	47Ti	48Ti	73.80%	Stable									
46Ca	0.00%	>2.8x1	46Ti	485c	syn	43.67 h	48Ti	49Ti	5.50%	Stable									
470a	syn	4.536 d	475c					SOTI	5.40%	Stable									
48Ca	0.19%	4.3x10'	48Ti,48 Sc																

Fig 6 Transmutation Rule with Femto-H₂

I would like to explain the transmutation rule and transmutation route.

Femto- H_2 created at positive metal electrode at the grain boundary of Pd with FCC lattice structure, or stainless steel with FCC lattice structure. Because femto- H_2 act as neutral particles to fuse with another nucleus to transmute the isotope. Strictly speaking it can just increase the mass number in the same element, which is not the transmutation strictly speaking.

As is shown in Fig.6, femto-H₂ add two protons to the isotope of ${}^{40}_{20}$ Ca, femto-H₂ fusion is

$$^{40}_{20}$$
Ca+2p= $^{42}_{22}$ Ti,

Which half-life is 199msec, and I hypothesized that isotopes not listed in Wikipedia have extremely short halflives compared to the rate of transmutation speed. Probable half-life longer than a few days is in the Wikipedia table.

And electron capture stabilizes the nucleus;

⁴²₂₂Ti=>⁴²₂₁Sc, which has shorter half-life,

And again, electron capture,

 ${}^{42}_{21}$ Sc=> ${}^{42}_{20}$ Ca, which is the same element with mass increase by 2.

This procedure repeated, the transmutation rout is on the isotope with smallest mass number, as is shown in Fig.6, ${}^{43}_{23}$ V and ${}^{50}_{24}$ Cr.

In terms of results, author thinks that the shorter half life is defined correctly in Wikipedia's table is a valid hypothesis because it explained transmutation route of Ohmasa's experiments, however to be more precise, we should calculate the transmutation speed and consider isotopes with longer half-lives. I would like to leave this as a future topic.

Ohmasa added D_2O or used tritium contaminated water to improve transmutation rate. The larger size of d and tritium nucleus than proton can cause larger fusion rate. It can improve the transmutation rate per reaction.

And larger number of protons improve the transmutation rate per elements.

These methods make transmutation so complicated and it can have the diverse generated isotopes, but it will work to have shorter speed of metal production. Ohmasa insists that transmutation with tritium contaminated water nuclear enable the efficient metal production and transmutation simultaneously because tritium enable faster transmutation.

Author thinks that it is possible but not indispensable because it is not so convenient to produce the desired isotopes.

What we can generate is so limited for massproduction, usually isotope with smaller mass number tends to be non-stable isotope though it has very long half-life for the actual use. Because stable Ag and Au has odd mass number, the starting isotopes must have odd mass number, which elements are so limited. Among the candidate, Cu seems to be the best, and other options are discussed in VIII.

IV. TRANSMUTATION FROM CA

The relevant experiments in the embodiments By Ohmasa are described in the patents below and I will show the transmutation route to the desired elements in these embodiments based on my femto- H_2 transmutation mechanism.

P2015-55527A; patent application [6]

P2022-23989A; patent application [7]

A. Embodiment-6(p2015-55527A)

Table 1 Transmutation from 20Ca

P2015-55527A Embodiment-6	Concentration before	Concentration after
date	2013.08.13	2013.09.02
Process time		20days
₂₀ Ca	2800mg/L	1800mg/L
₂₆ Fe	<10µg/L	770µg/L
₂₇ Co	1µg/L	270µg/L
₂₈ Ni	12µg/L	14000µg/L
29 ^{Cu}	3µg/L	370µg/L

- A 0.5% aqueous solution of CaCl2.
- Brown gas generator (the same reactor as embodiment-5)

The increase in iron and nickel concentrations is remarkable.

B. Embodiment-7(p2015-55527A)

Table 2 Production Experiment with Actual Ca Made of
Chicken Eggs.

P2015-55527A Embodiment-7	Concentration before	Concentration after
date	2013.08.13	2013.09.05
Process time		20days
20 Ca	3200mg/L	2500mg/L
27 Co	<1µg/L	180µg/L
28Ni	<1µg/L	11000µg/L

In Embodiment-6, "calcium" can be transmuted to the valuable "nickel" and "cobalt".

Therefore, chicken egg shells, which amount of waste per day is several tens of tons and the disposal costs are huge and have become a problem, were crushed into particles with a particle size of several μ m to several tens of μ m using a crusher, and then added to pure water to form a slurry with a concentration of 10 to 30%, and were transmuted in the same manner as in Embodiment-6.

C. Embodiment-1(p2022-239989A)

	Table	3 Transı	nutatio	n of Ca		
P2022-23989A- embodiment-1(mg/L)	20 ^{Ca}	₂₂ Ti	₂₆ Fe	₂₇ Co	₂₈ Ni	29 ^{Cu}
Concentration before	1400	<0.001	0.116	0.001	0.013	0.012
Concentration after	1050	12	0.5	7	9	11
Concentration after *1	890	23	2	14	26	31

Experimental Condition

- A 0.5% aqueous solution of CaCl₂.
- Added A 0.5% D₂O(5g/L).
- The high frequency stirrer vibrated at 170 Hz for 3 hours.
- Comparison between metal plate and Palladium plated metal plate (*1).

It is clear that palladium increases the transmutation efficiency, by about 2 to 3 times, although it varies depending on the element. Ohmasa insists that this is caused by the catalytic effect of palladium, which author does not agree.

Author thinks that palladium with FCC lattice structure, can generate femto- H_2 effectively because Pd can have Cold Fusion, and metal plate can be stainless steel with FCC grain boundary and it can create femto- H_2 . Because transmutation with femto- H_2 , increase rate of mass is 2 per one transmutation, and the atomic number increase rate of atomic number is 2 or less. By femto- D_2 , increase rate of mass is 4 per one transmutation, and the increase rate of atomic number is 4 or less. Adding D_2O creates femto- D_2 and femto-HD in H_2O , which has the faster transmutation rate in terms of increase in atomic number, so the total number of the generated new element increases, and this misled them.

Although author's route analysis shows that no route from ${}^{43}_{20}$ Ca (0.14%) to ${}^{63}_{29}$ Cu, author thinks that this is caused by transmutation from ${}^{53}_{24}$ Cr (9.5%) due to the larger Natural abondance, and Fe, Cu from Cr are also originated from stainless steel (Fe, Cr). As is shown in Embodiment-4(p2022-239989A), which starting element is Cs, however, these elements were found. Author thinks that Ohmsa gas generator and other brown gas generator has developed before understanding the mechanism of Cold Fusion, they just used stainless steel to be stable in strong alkaline aqueous solution.

D. Transmutation Route from Ca

This is the route trace from the starting isotopes based on my femto- H_2 transmutation mechanism.

Red marked isotopes are on the route, and note that they are on the isotopes with smaller mass number. This is the limitation to generate the isotope with larger mass number with femto-H₂. Ohmasa used D_2O or tritium contaminated water to increase the transmutation variety and to increase the transmutation rate, but I just focused on femto-H₂ transmutation because it is easy to trance the route.

Note that Cu and Cs are not the route, thus generation of Cu is not from Ca. The larger concentration of Ni is caused by the multiple isotopes on the route of transmutation in Ni.

Table 4 Transmutation Route from Ca

	20	Ca			21	Sc			22	T			23	V			24	Cr	
ISOT OPE	NA	Half- Life	DP	ISOT OPE	NA	Half- Life	DP	ISOT OPE	NA	Half- Life	DP	ISOT OPE	NA	Half- Life	DP	ISOT OPE	NA	Half- Life	DP
40Ca	96.94%	>5.9x1 0 ²¹ y	40Ar	44mSc	syn	58.61 h	44Sc,4 4Ca	44Ti	syn	63 y	44Sc	48V	syn	15.973 5 d	48Ti	50Cr	4.35%	> 1.8x1 0 ¹⁷ y	50Ti
41Ca	trace	1.03x1 05 y	41K	45Sc	100%	Stable		46Ti	8.00%	Stable		49V	syn	330 d	49Ti	51Cr	syn	27.702 5 d	51V
42Ca	0.65%	Stable		46Sc	syn	83.79 d	46Ti	47 T i	7.30%	Stable		50V	0.25 %	1.5×10 ¹	50Ti,50 Cr	52Cr	83.789 %	Stable	
43Ca	0.14%	Stable		475c	syn	3.3492 d	47Ti	48Ti	73.80%	Stable		51V	99.75 %				9.501 %		
44Ca	2.09%	Stable		48Sc	syn	43.67 h	48Ti	49 Ti	5.50%	Stable						54Cr	2.365 %	Stable	
45Ca	syn	162.7 d	45Sc					50Ti	5.40%	Stable									
46Ca	0.00%	>2.8x1 0 ¹⁵ y	46Ti																
47Ca	syn	4.536 d	475c																
48Ca	0.19%	4.3×101	48Ti,48 Sc																

	25	Vin			26	Fe			27	Co			28	Ni			29	Cu			30	Zn	
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
52Mn	syn	5.591 d	52Cr	54Fe	5.8 %	> 3.1x1 0 ²² v	54Cr	56Co	syn	77.27 d	56Fe	58Ni	68.07 7 %	> 7×10 ²	58Fe	63Cu	69.15 %	Stabl e		64Zn	48.6 %	Stabi e	
										271.7 9 d										65Zn	syn	243.8 d	65Cu
				56Fe						70.86 d											27.9 %		
55Mn	100%	Stabl e		57Fe	2.2 %	Stabl e		59Co	100 %	Stabl e		61Ni	1.14 %	Stabl e						67Zn	4.1 %	Stabl e	
				58Fe		and the second second			syn	5.271 4 y										68Zn	18.8 %	Stabl e	
							59Co							100.1 y								Stabl e	
				60Fe	syn	2.6x1 0 ⁶ y	60Co					64Ni	0.926 %	Stabl						72Zn	syn	46.5 h	72Ga
	31	Ga			32	Ge			33	As			34	Se			35	Br			36	Kr	
ISO TO PE	NA	Haif Life	DP	ISO TO PE	NA	Half	OP	ISO TO PE	NA	Half	OP	ISO TO PE	NA	Half	DP	ISO TO PE	NA.	Half	DP	ISO TO PE	NA	Half Life	DP
69Ga	60.11 %	Stabl e		68Ge	syn	270.8 d				80.3 d											0.35 %		
71Ga	39.89 %	Stabl e		70Ge	21.23	Stabl e		74As	syn	17.78 d	74Ge, 74Se	74Se	0.87 %	Stabl		81Br	49.31 %	Stabl e				35.04 h	
				71Ge	syn	11.26 d	71Ga	75As	100 %	Stabl		75Se	syn	119.7 79 d	75As					80Kr	2.25 %	Stabl e	
				72Ge	27.66 %	Stabl e								Stabl e						81Kr	trace	2.29 × 105 v	81Br
				73Ge	7.73	Stabl						77Se	7.63 %	Stabl e						82Kr	11.60 %	Stabl	
				74Ge	35.94 %	Stabl e						78Se	23.78 %	Stabl						83Kr	11.50 %	Stabl	
				76Ge	7.44 %	1.78x 1021 y	76Se					79Se	trace	3.27x 105 y	79 B r					84Kr	57%	Stabl e	
						-						80Se	49.61 %	Stabl e						85Kr	syn	10.75 6 y	85Rb
												82Se	8.73 %	1.08× 1020	82Kr					86Kr	17.30 %	Stabl e	

	37	Rb			38	Sr			39	Y			40	Zr			41	Nb			42	No	
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
83Rb	syn	86.2 d	83Kr	82Sr	syn	25.36 d	82Rb	87Y	syn	3.35 d	87Sr	88Zr	syn	83.4 d	88Y	91Nb							92Zr
84Rb	syn	32.9 d	84Kr, 84Sr	83Sr	syn	1.35 d	83Rb	88Y	syn	106.6 d	88Sr	89Zr	syn	78.4 h	89Y	91mN b	syn	60.86 d	91Nb	93Mo	syn	4,000 y	93Nb
85Rb	72.17 %	Stabl e		84Sr	0.56 %	Stabl e		89Y	100%	Stabl e		90Zr	51.45 %	Stabl e		92Nb	syn	3.47x 10 ⁷ y	92Zr	94Mo	9.25	Stabl e	
86Rb	syn	18.65 d	86Sr	85Sr	syn	64.84 d	85Rb	90Y	syn	2.67 d	90Zr	91Zr	11.22 %	Stabl e		92mN b	syn	10.15 d	92Zr	95Mo	15.92 %	Stabl e	
87Rb	27.84 %	4.88 x10 ¹⁰	87Sr	86Sr	9.86 %	Stabl e		91Y	syn	58.5 d	91Zr	92Zr	17.15 %	Stabl e		93Nb	100%	Stabl e		96Mo	16.68 %	Stabl e	
				87Sr	7.00 %	Stabl c						93Zr	trace	1.53x 10 ⁶ y	93Nb	93mN b	syn	16.13 y	93Nb	97Mo	9.55 %	Stabl e	
				88Sr	82.58 %	Stabl e						94Zr	17.38 %	> 1.1x1 0 ¹⁷ y	94Mo	94Nb	syn	2.03x 10 ⁴ y	94Mo	98Mo	24.13 %	>1x1 0 ¹⁴ y	98 R u
				89Sr	syn	50.52 d	89Rb, 89Y					96Zr	2.80 %	2.0x1 0 ¹⁹ y	96Mo	95Nb	syn	34.99 1 d	95Mo	99Mo	syn	65.94 h	99mT c
				90Sr	trace	28.90 y	90Y									95mN b	syn	3.61 d	95Nb	100M 0	9.63 %	7.8x1 0 ¹⁸ y	100R u

	43	Тс			44	Ru			45	Rh			46	Pd			47	Ag			48	Cd	
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half	DP
95mT c	syn	61 d	95Mo ,95Tc	96 R u	5.52 %	Stabi e		99Rh	syn	16.1 d	99Ru	100P d	syn	3.63 d	100R h	105A 9	syn	41.2 d	105P d	d	%	> 9.5 ×10 ¹⁷	106P d
96Tc	syn	4.3 d	96Mo	97Ru	syn	2.9 d	97Tc	101R	syn	3.3 y	101R	102P	1.02	Stabl e		106m Ag	syn	8.28 d	106P d	107C	syn	6.5 h	107A
97Tc	syn	2.6x1 0 ⁶ y	97Mo	98Ru	1.88 %	Stabl e		101m Rh					syn	16.99 1 d	h		51.83 9 %			108C d	0.89	> 6.7 x10 ¹⁷ y	
97mT c	syn	91 d	97Tc	99Ru	12.70 %	Stabi e		102R h	syn	207 d	102R u,102 Pd	104P d	11.14 %	Stabl		108m Ag	syn	418 y	108P d,108 Ag	109C d	syn		109A 9
98Tc	syn	4.2x1 0 ⁶ y	98Ru	100R	12.60 %	Stabl e		102m Rh					22.33 %				48.16 1 %	Stabl e		110C d	12.49 %	Stabl e	
	trace	2.111 ×10 ⁵						103R	100%	Stabl e		106P d	27.33 %	Stabl e		111A 9	syn	7.45 d	111C d	111C d	12.80 %	Stabi e	
99mT c	syn	6.01 h	99Tc	102R u	31.60 %	Stabl e		105R h	syn	35.36 h	105P d	107P d	trace	6.5x1 0 ⁶ y	107A 9					112C d	24.13 %	Stabl e	
				103R u	syn	39.26 d	103R h						26.46 %							113C d		7.7 x10 ¹⁵	
					18.70 %	Stabi e							11.72 %							113m Cd	syn	14.1	113In ,1130 d
				106R u		373.5 9 d														114C d	28.73 %	> 9.3 x10 ¹⁷	1145 n
																				115C d	syn	53.46 h	115In
																				116C d	7.49 %	X10	116S n

	49	In			50	Sn			51	Sb			52	Те			5	3			54	Ke	
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
113In	4.30 %	Stabl e		112S n		Stabl e		121S b		Stabl e		120T	0.09 %	> 2.2x1 0 ¹⁶ y	120S n	1231	syn	13 h	123T e	124X e	0.10 %	1.8x1 0 ²² y	124T
115In		4.41 × 10 ¹⁴ y		114S n	0.66 %	Stabl e				Stabl e				16.78 d		1271	100 %	Stabl e		125X e	syn	16.9 h	1251
					0.34 %	Stabl e		125S b	syn	2.758 2 y	125T e	122T e	2.55 %	Stabl e		1291	trace	15.7x 10 ⁶ y	129X e	126X e	0.09 %	Stabl e	
					14.54 %	Stabl e						123T 8	0.89 %	> 1.0x1 0 ¹³ y	1235 b	1311	syn	8.020 70 d	131X 0	127X 9	syn	36.34 5 d	1271
				117S n	7.68 %	Stabl e								Stabl								Stabl e	
					24.22	Stabl							7.07 %	Stabl e							26.40	Stabl e	
				1195		Stabl						126T		Stabl							4.07	Stabl e	
					32.58	Stabl e						127T	syn	9.35 h	1271						21.20 %	Stabl	
					4.63	Stabl e								2.2x1 0 ²⁴ y							26.90 %	Stabl	
						>1x1 0 ¹⁷ y						129T e	syn	69.6 min	1291					133X 0	syn	5.247 d	133C s
				126S n	trace	2.3x1 0 ⁵ y	126S b							7.9x1 0 ²⁰ y								>1.1x 10 ¹⁶ y	
																				135X e	syn	9.14 h	135C 8
																				136X	8.86	2.11x 10 ²⁰ y	136B

	55	Cs			56	Ba			57	La			58	Ce			59	Pr			60	Nd	
ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half - Life	DP
133Cs	100 %	Stabl e		130B a	0.11%	(0.5- 2.7)x1 0 ²¹ y	130X e	137La	syn	60,00 0 y	137B a	134C e	syn	3.16 d	134La	141Pr	100%	Stabl e		142N d	27.20 %	Stabl e	
134Cs	syn	2.064 8 y	134X e,134 Ba	132B a	0.10%	>3x10 ²⁰ y	132X e	138La	0.09%	1.05x 10 ¹¹ y	138B a,138 Ce	136C e	0.19%	> 3.8x1 0 ¹⁶ y	136 B a	142Pr	syn	19.12 h	142N d,142 Ce	143N d	12.20 %	Stabl e	
135Cs					syn											143Pr							
137Cs	trace	30.17 y	137B a	134B a	2.42%	Stabl e						139C e	syn	137.6 40 d	139La					145N d	8.30%	>6x10 ¹⁶ y	141C e
				135B a	6.59%	Stabl e						140C e	10000	Stabl e						146N d		Stabl e	
				136 B a	7.85%	Stabl e						141C e	syn	32.50 1 d	141Pr					148N d	5.70%	>3x10 ¹⁸ y	144C e
				137B a	11.23 %							142C e	11.11 %	> 5x10 ¹ ⁶ y	142N d					150N d	5.60%	6.7x1 0 ¹⁸ y	150S m
				138 B a	71.70 %	Stabl e						144C e	syn	284.8 93 d	144Pr								

	61	^o m			62	Sm			63	Eu			64	Gd			65	Tb			66	Dy	
ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP
145Pm	syn	17.7 y	145Nd	144Sm	3.07%	Stable		150Eu	syn	36.9 y	150Sm	152Gd	0.20 %	1.08x1 0 ¹⁴ y	148Sm	157Tb	syn	71 y	157Gd	154Dy	syn	3.0x10 ⁶ y	150Gd
146Pm	syn	5.53 y	146Nd, 146Sm	146Sm	syn	1.03x1 0 ⁸ y	142Nd	151Eu	47.8 %	5 x10 ¹⁸ y	147Pm	154Gd	2.18 %	Stable		158Tb	syn	180 y	158Gd, 158Dy	156Dy	0.06 %	>1x10 ¹ ⁸ y	152Gd
147Pm	trace	2.6234 y	147Sm	147Sm	14.99 %	1.06x1 0 ¹¹ y	143Nd	152Eu	syn	13.516 y	152Sm ,152Gd	155Gd	14.80 %	Stable		159Tb	100 %	Stable		158Dy	0.10 %	Stable	
				148Sm	11.24 %	7x10 ¹⁵ y	144Nd	153Eu	52.2 %	Stable		156Gd	20.47 %	Stable						160Dy	2.34 %	Stable	
				149Sm	13.82 %	>2x101 5 y	1 45Nd					157Gd	15.65 %	Stable						161Dy	18.91 %	Stable	
				150Sm	7.38%	Stable						158Gd	24.84 %	Stable						162Dy	25.51 %	Stable	
				152Sm	26.75 %	Stable						160Gd	21.86 %	> 1.3x10 ²¹ y	160Dy					163Dy	24.90 %	Stable	
				154Sm	22.75 %	>2.3x1 0 ¹⁸ y	154Gd													164Dy	28.18 %	Stable	

	67	10		l	68	Er	}		69	ſm			70	Yb			71	Lu			72	Hf	
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half - Life	DP
163Ho	syn	4570 y	163Dy	160Er	syn	28.58 h	160Ho	167T m	syn	9.25 d	167Er	166Yb	syn	56.7 h	166T m	173Lu	syn	1.37 y	173ҮЬ	172Hf	syn	1.87 y	172Lu
164Ho	syn	29 mi n	164Dy	162Er	0.14%	>1.4x 10 ¹⁴ y	158Dy ,162D	168T m	syn	93.1 d	168Er	168Yb	0.13%	>1.3x 10 ¹⁴ y	164Er, 168Er	174Lu	syn	3.31 y	174ҮЬ	174Hf	0.16%	2x10 ¹⁵ y	170Yb
165Ho	100 %	Stable		164Er	1.601 %	Stable		169T m	100 %	Stable		169Yb	syn	32.02 6 d	169T m	175Lu	97.41 %	Stable		176Hf	5.21%	Stable	
166Ho	syn	26.76 3 h	166Er	165Er	syn	10.36 h	165 H o	170T m	syn	128.6 d	170Yb	170Yb	3.04 %	Stable		176Lu	2.59 %	3.78x 10 ¹⁰ y	176Hf	177Hf	18.61 %	Stable	
167Ho	syn	3.1 h	167Er	166Er	33.50 3 %	Stable		171T m	syn	1.92 y	171Yb	171Yb	14.28 %	Stable						178Hf	27.30 %	Stable	
				167Er	22.86 9 %	Stable						172Yb	21.83 %	Stable						178m 2Hf	syn	31 y	178Hf
				168Er	26.97 8 %	Stable						173ҮЬ	16.13 %	Stable						179Hf	13.63 %	Stable	ŝ
				169Er	syn	9.4 d	169T m					174ҮЬ	31.83 %	Stable						180Hf	35.10 %	Stable	
				170Er	14.91 %	>3.2x 10 ¹⁷ y	166Dy ,170Y b					175¥Ь	syn	4.185 d	175Lu					182Hf	syn	9x10 ⁶ y	182Ta
						7.516 h	171T					176ҮЬ	12.76 %	>1.6x 10 ¹⁷ y	172Er, 176Hf								
				172Er	syn	49.3 h	172T m					177ҮЬ	syn	1.911 h	177Lu								

	73	Га			74	W			75	Re			76	Os			77	Ir			78	Pt	
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Haif Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
							176Hf					1000	0.02%	1.1x1 0 ¹³ y	180W	188Ir	syn	1.73 d	1880 5	190 P t	0.014 %	6.5x1 0 ¹¹ y	1860 5
178Ta	syn	2.36 h	178Hf	181W	syn	121.2 d	181Ta	187R 9	62.60 %	4.12× 10 ¹⁰ y	183Ta ,1870	1850 5	syn	93.6 d	185R e	189Ir	syn	13.2 d	1890 5	192 P t	0.782 %	>6x10	1880 S
179Ta	syn	1.82 y	179Hf	182W	26.50 %	>1.7x 10 ²⁰ y	178Hf					1860 5	1.59%	2.0x1 0 ¹⁵ y	182W	1901r	syn	11.8 d	1900 S	193Pt	syn	50 y	1931r
180Ta	syn	8.125 h	180Hf	183W	14.31 %	>8x10	179Hf					1870 5	1.96%	Stabl		191Ir	37.30	Stabl e		194 P t	32.96 7 %	Stabl e	
180m Ta	0.01%		40044				180Hf					1880 s	13.24 %	Stabl e		192Ir	syn	73.82 7 d	192Pt ,1920 s	195 P t	33.83 2 %	Stabl e	
181Ta	99.99 %	Stabl e		185W	syn	75.1 d	185R e					1890 5	16.15 %	Stabl e		192m 2lr	syn	241 y	192ir	196Pt	25.24	Stabl	
182Ta	syn	114.4 3 d	182W	186W	28.43 %	>4.1x 10 ¹⁸ y	182Hf ,1860					1900 s	26.26 %	Stabl e				Stabl e			7 386	>3.2x 10 ¹⁴ y	1940
183Ta	syn	5.1 d	183W								1	1910 s	syn	15.4 d	1911r	193ml r	syn	10.5 d	193ir				
												1920 s	40.78 %	> 9.8x1 0 ¹² y	192Pt	194Ir	syn	19.3 h	194Pt				
															1931r	194m 2lr	syn	171 d	1941r				
												1940 s	syn	6 y	1941r								

1	79	Au			80	Hg			81	TI			82	Pb									
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Haif Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
		5.3							102	Stable				0" y									
196Au	syn	6.183 d	196Pt, 196Hg	195Hg	syn	9.9 h	195Au	204TI	syn	119 Ms	204Pb ,204H	205Pb	syn	1.53x 10 ⁷ y	205TI								
197Au	100 %	Stable		196Hg	0.15%	>2.5x 10 ¹⁸ y	192Pt, 196Pt	205TI	70.48 %	Stable		206Pb	24.1 %	Stable									
198Au	syn	2.695 17 d	198Hg	197Hg	syn	64.14 h	197Au					207Pb	22.1 %	Stable									
199Au	syn	3.169 d	199Hg	198Hg	9.97 %	Stable						208Pb	52.4 %	Stable									
				199Hg	16.87 %	Stable						210Pb	trace	22.3 y	206Hg ,210Bi								
				200Hg	23.1 %	Stable																	
				201Hg	13.18	Stable																	
				202Hg	29.86	Stable																	
				203Hg	syn	46.61 2 d	203TI																
				204Hg	6.87 %	Stable																	

V. TRANSMUTATION FROM CU

A. Embodiment-2(p2022-239989A)

P2022-23989A- embodiment-2 (mg/L)	₂₈ Ni	29 ^{Cu}	₃₀ Zn	₄₇ Ag	₇₉ Au
Concentration before	0.015	4200	0.018	<0.012	<0.001
Concentration after	12	2800	16	11	8
Concentration after *1	27	1900	31	34	26

➢ Experimental Condition

- A 0.5% aqueous solution of $CuCl_2$.
- Added A 0.5% D₂O.
- The high frequency stirrer vibrated at 170 Hz for 3 hours.
- Comparison between metal plate and Palladium plated metal plate (*1).

B. Embodiment-3(p2022-239989A)

Table	6 Transm	utation fro	om Mg	
P2022-23989A- embodiment-3 (mg/L)	₁₂ Mg	₂9Cu	₄₇ Ag	₇₉ Au
Concentration before	1760	<0.001	<0.001	<0.001
Concentration after *1	1020	48	32	14

➢ Experimental Condition

- 0.5% aqueous solution of MgCl₂.
- Added 0.5µsv tritium water (5g/L).
- The high frequency stirrer vibrated at 170 Hz for 3 hours.
- Palladium plated metal plate (*1).

Author thinks that this include Cu as the generated element, however no route to Cu

C. Transmutation from Mg to Cu

	12	Ng			13	AI			14	Si			15	P			16	S			17	CI	
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Haif Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
24Mg	78.99 %	Stabl e		26AI	trace	7.17 ×105 y	26Mg	2851	92.23 %	Stabl e		31P	100%	Stabl e		325	95.02 %	Stabl e		35 C I	75.77 %	Stabl e	
25Mg	10%	Stabl e		27AI	100 %	Stabl		29 S i	4.67 %	Stabl e		32P	syn	14.28 d	325	335	0.75 %	Stabl e		36 C I	trace	3.01 × 105 y	36Ar, 365
26Mg	11.01	Stabl e						30 S I	3.1 %	Stabl e		33P	syn	25.3 d	335	345	4.21 %	Stabl e		37CI	24.23 %	Stabl	
								325i	syn	170 y	32P					355		87.32 d Stabl	35CI				
																300	%	e					
	18	Ar			19	,K			20	Ca			21	Sc									
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
36Ar	0.337 %	Stabl e		39K	93.26 %	Stabl e		40Ca	96.94 %	>5.9x 1021 y	40Ar	44mS c	syn		44Sc, 44Ca	9 2				1			
37Ar	syn	35 d	37CI		0.012	1.248 (3) ×		41Ca		1.03x 105y		45Sc	100%	Stabl									
38Ar	0.063 %	Stabl e		41K	6.73 %	Stabl		42Ca	10	Stabl e		46Sc	syn	83.79 d									
		269 y Stabl	39K					43Ca	%	Stabl Stabl		47Sc		3.349 2 d									
4UAF	0 %	e 109.3 4 min	416					44Ca 45Ca	%	e 162.7 d		48Sc	syn	43.67 h	48Ti								
	syn	22.0	42K					46Ca	0.00	d >2.8x 1015													
		У							% syn	y													
								48Ca	0.19	4.3x1 019y	48Ti,												
	20 Ca 21						Sc				22	Ti				23	V	j			24 C	r	
ISOT OPE		н	alf- ife	DP	ISOT OPE	NA	Hal	P-	DP	ISOT OPE	NA	Haif- Life	DF		OT PE	NA	Half- Life	DP	ISC	т	NIA	Half- Life	DP

Table 7 Transmutation Route from Mg to Cu

	20	Ca			21	Sc			22	Ti			23	V			24	Cr	
ISOT OPE	NA	Half- Life	DP	ISOT OPE	NA	Half- Life	DP	ISOT OPE	NA	Half- Life	DP	ISOT OPE	NA	Half- Life	DP	ISOT OPE	NA	Half- Life	DP
40Ca	96.94%	>5.9x1 0 ²¹ y	40Ar	44mSc	syn	58.61 h	445c,4 4Ca	44 T i	syn	63 y	44Sc	48V	syn	15.973 5 d	48 T i	50Cr	4.35%	> 1.8x1 0 ¹⁷ y	50Ti
41Ca	trace	1.03x1 0 ⁵ y	41K	45Sc	100%	Stable		46Ti	8.00%	Stable		49V	syn	330 d	49Ti	51Cr	syn	27.702 5 d	51V
42Ca	0.65%	Stable		46Sc	syn	83.79 d	46Ti	47 T i	7.30%	Stable		50V	0.25 %	1.5x10 ¹	50Ti,50 Cr	52Cr	83.789 %	Stable	
43Ca	0.14%	Stable		47Sc	syn	3.3492 d	47Ti	48Ti	73.80%	Stable		51V	99.75 %				9.501 %	Stable	
44Ca	2.09%	Stable		48Sc	syn	43.67 h	48Ti	49 T i	5.50%	Stable						54Cr	2.365	Stable	
45Ca	syn	162.7 d	45Sc					50Ti	5.40%	Stable									
46Ca	0.00%	>2.8×1 0 ¹⁵ y	46Ti																
47Ca	syn	4.536 d	47Sc																
48Ca	0.19%	4.3x101	48Ti,48 Sc																

	25	Mn			26	Fe			27	Co			28	Ni			29	Cu			30	Zn	
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
52Mn	syn	5.591 d	52Cr	54Fe	5.8 %	> 3.1x1 0 ²² v	54Cr	56Co	syn	77.27 d	56Fe	58Ni	68.07 7 %	> 7x10 ² v	58Fe	63Cu	69.15 %	Stabl e		64Zn	48.6 %	Stabl e	
53Mn	trace	3.74x 10 ⁶ y	53Cr	55Fe	syn	2.73 y	55Mn	57Co	syn	271.7 9 d	57Fe	59Ni	trace	7600 0 y	59Co	65Cu	30.85 %	Stabl e		65Zn	syn	243.8 d	65Cu
54Mn	syn	312.3 d	54Cr	56Fe	91.72 %	Stabl		58Co	syn	70.86 d	58Fe	60Ni	26.22 3 %	Stabl e						66Zn	27.9 %	Stabl e	
55Mn	100%	Stabl e		57Fe	2.2 %	Stabl e		59Co	100 %	Stabl e		61Ni	1.14 %	Stabl e						67Zn	4.1 %	Stabl e	
				58Fe	0.28 %	Stabl e		60Co	syn	5.271 4 y	60Ni	62Ni	3.634	Stabl e						68Zn	18.8 %	Stabl	
				59Fe	syn	44.50 3 d	59Co					63Ni	syn	100.1 y	63Cu					70Zn	0.6 %	Stabl	
				60Fe	syn	2.6x1 0 ⁶ y	60Co					64Ni	0.926	Stabl						72Zn	syn	46.5 h	72Ga

Because transmutation from Mg to Cu has a route,

Transmutation from Mg has the same rout after Cu, and has Ag, Au. $% \left({{{\rm{A}}_{{\rm{B}}}}_{{\rm{A}}}} \right)$

D. Transmutation Route from Cu to Ag to Cs(to Au)

Transmutation from Cu has Ag and Au. As is shown in the below table, from Cu has a route to $^{133}_{55}$ Cs, which leads to Au. Therefore, Au and Ag can be produced from the same isotopes.

Stabl

2.03x 10⁴ y

34.99

1 d

3.61

93Nb 100%

93mN

95mN

svn

94Mo 94Nb

96Mo 95Nb

93Nb

	O NA - I				26	Fe				Co				Ni			29	Cu			30	Zn	
ISO		1000000000		ISO		Half		150		Half		ISO		Half		150	_	Half		ISO		Half	
TO PE	NA		DP	TO PE	NA	- Life	DP	TO PE	NA	- Life	DP	TO PE	NA	- Life	DP	TO PE	NA	- Life	DP	TO PE	NA	Life	DP
52Mn	syn	5.591 d	52Cr	54Fe	5.8 %	> 3.1x1 0 ²² y	54Cr	56Co	syn	77.27 d	56Fe	58Ni	68.07 7 %	> 7x10 ² ⁰ y	58Fe	63Cu	69.1 5 %	Stabl e		64Zn	48.6 %	Stabl e	
						2.73 y									59Co	65Cu	30.85 %	Stabl e				243.8 d	
						Stabl e		58Co				60Ni	26.22 3 %	Stabl e								Stabl e	
55Mn	100%	Stabl e				Stabl e		59Co					1.14 %									Stabl e	
						Stabl		60Co	syn	5.271 4 y	60Ni											Stabl	
						44.50 3 d							syn									Stabl e	
				60Fe	syn	2.6x1 0 ⁶ y	60Co					64Ni	0.926 %	e						72Zn	syn	46.5 h	72Ga
þ	31	Ga			32	Ge			33	As			34	Se			35	Br			36	Kr	
ISO TO PE	NA	Half -	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
	60.11 %					270.8 d		73As	syn	80.3 d	73Ge	72Se	syn	8.4 d	72As	79Br	50.69 %	Stabl e		78Kr	0.35 %		
71Ga	39.89 %	Stabl e			/0	Stabl e		74As				74Se	0.87 %	Stabl e		81Br	49.31 %	Stabl e		79Kr	syn	35.04 h	79 B r
						11.26 d	71Ga	75 A s	100 %	Stabl e			syn		75As					80Kr	2.25 %	Stabl e 2.29	
					70	Stabl e							9.36 %									× 105	
						Stabl e							7.63 %								11.60 %	•	
					70								23.78 %	•							11.50 %	e	
				76Ge	7.44 %	1.78x 1021 y	76Se						trace	1.								Stabl e	
												80Se	49.61 %	Stabl e						85Kr	syn	10.75 6 y	85Rb
												82Se	8.73 %	1020 y	82Kr					86Kr	17.30 %	Stabl e	
1	27	Rb			20	Sr			20	Y			40	Zr			44	Nb			42	No	
ISO TO	1000	Half	DP	ISO TO	NA	Real Co.	DP	ISO TO	39 NA	10-10	DP	ISO TO	1	Helle	DP	ISO TO		Half	DP	ISO TO		Half	DP
PE		Life		PE		the second second second second	-	TO PE		And a second second		-				TO PE				TO PE	0 8		
																						>1.9x 10 ²⁰ y 4,000	
84Rb 85Rb	72.17	d Stabl		845-	0.56	d Stabl	SSRD			d Stabl		907r	51.45	h Stabi						93Mo 94Mo		4,000 y Stabl	
86Rb	70	e 18.65	86Sr			e 64.84 d				-				-		92mN	syn	10 ⁷ y 10.15	92Zr	95Mo	% 15.92	e Stabl	

Table 8	Transmutation	Route	from	Cu

87Rb 27.84

4.88

10

87Sr 86Sr

87Sr

88Sr

89Sr

9.86 Stabl

7.00

SVN

90Sr trace

Stabl

e

d 89Y

28.90

50.52 89Rb

90Y

82.58 Stabl

91Y

svn

58.5 91Zr 92Zr 17.15 Stabl

93Zr

94Z

96Zr

trace

10

[%] 0¹⁷ y 2.80 2.0x1

1x1

98Ru

65.94 99mT

16.68 Stabl

9.55

svn

95Nb 100M 9.63 7.8x1 100R o % 0¹⁸ y u

Stabl

01

h

96Mo

16.13 93Nb 97Mo

94Mo 98Mo

95Mo 99Mo

	43	Тс			44	Ru			45	Rh			46	Pd			47	Ag			48	Cd	
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half - Life	DP
95mT c	syn	61 d	95Mo ,95Tc	96Ru	5.52 %	Stabl e		99Rh	syn	16.1 d	99Ru	100P d	syn	3.63 d	100R h	105A g	syn	41.2 d	105P d	106C d	1.25 %	> 9.5 x10 ¹⁷ y	106P d
96Tc	syn	4.3 d	96Mo	97Ru	syn	2.9 d	97Tc	101R h	syn	3.3 y	101R u	102P d	1.02 %	Stabl e		106m Ag	syn	8.28 d	106P d	107C d	syn	6.5 h	107A 9
97Tc	syn	2.6x1 0 ⁶ y	97Mo	98Ru	1.88 %	Stabl e		101m Rh	syn	4.34 d	101R u	103P d	syn	16.99 1 d	h	-	9 %	0		d	70	> 6.7 x10 ¹⁷ y	u
97mT c	syn	91 d	97Tc	99Ru	12.70 %	Stabi e		102R h	syn	207 d	102R u,102 Pd	104P d	11.14 %	Stabl e		108m Ag	syn	418 y	108P d,108 Ag	109C d	syn	462.6 d	109A 9
98Tc	syn	4.2x1 0 ⁶ y	98Ru	100R u	12.60 %	Stabl e		102m Rh	syn	2.9 y	102R	105P d	22.33 %	Stabl e		109A 9	48.16 1 %	Stabl			12.49 %	Stabl e	
99Tc		2 444			17.00 %			103R h					27.33 %			Concernant of					12.80 %	Stabl e	
99mT c	syn		99Tc	102R u	31.60 %	Stabl e		105R h	syn	35.36 h	105P d	107P d	trace	6.5x1 0 ⁶ y	107A 9					112C d	24.13 %	Stabl e	
				103R u	syn	39.26 d	103R h					108P d	26.46 %							113C d	12.22 %	7.7 ×10 ¹⁵ y	113In
				104R u	18.70 %	Stabl e							11.72 %	Stabl e						113m Cd	syn	14.1 y	113In ,113C d
				106R u	syn	373.5 9 d	106R h														28.73 %	> 9.3 x10 ¹⁷	114S n
																				115C d	syn	53.46 h	115In
																				116C d	7.49	20	1165

	49 In				50	Sn			51	Sb			52	Те			5	3 <mark>1</mark>			54	Xe	
ISO TO PE	NA	Half	DP	ISO TO PE	NA	Haif Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
113In	4.30 %	Stabl e		1125 n		Stabl e		121S b	57.36 %	Stabl e		120T e	0.09 %	> 2.2x1 0 ¹⁶ y	1205 n	1231	syn	13 h	123T e	124X e	0.10 %	1.8x1 0 ²² y	1241 e
115In		4.41 × 10 ¹⁴ v		1145 n	0.66 %	Stabl				Stabl e		121T e	syn	16.78 d	1215 b	1271	100 %	Stabl e		125X e	syn	16.9 h	125
					0.34 %	Stabl e		125S b	syn	2.758 2 y	125T e									126X e			
				1165 n		Stabl e						123T	0.89 %	> 1.0x1 0 ¹³ y	1235 b	1311	syn	8.020 70 d	131X e	127X •	syn	36.34 5 d	1271
				117S n	7.68 %									Stabl								Stabl e	
					24.22								7.07	Stabl							26.40	Stabl	
					8.59 %							126T		Stabl						130X		Stabl	
					32.58							127T e	syn	9.35 h	1271						21.20	Stabl e	
					4.63 %								31.74	2.2x1 0 ²⁴ y	128X					132X		Stabl	
						>1x1 017 y						129T e	syn	69.6 min	1291					133X e	syn	5.247 d	1330
				1265 n	trace	2.3x1 0 ⁵ y	1265 b					130T	34.08	7.9x1 0 ²⁰ y	130X							>1.1x 10 ¹⁶ y	
																				135X e	syn	9.14 h	1350
																				136X	8.86	2.11x 10 ²⁰ y	136B

	55 Cs				56	Ba			57	La			58	Ce			59	Pr			60	Nd	
ISO TO PE	NA	Half	DP	ISO TO PE	NA	Half	DP	ISO TO PE	NA	Half	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
133Cs	100 %	Stabl e		130B a	0.11%	(0.5- 2.7)x1 0 ²¹ y	130X e	137La	syn	60,00 0 y	137B a	134C e	syn	3.16 d	134La	141Pr	100%	Stabl e		142N d	27.20 %	Stabl e	
134Cs	syn	2.064 8 y	134X e,134 Ba	132B a	0.10%	>3x10 ²⁰ y	132X e	138La	0.09%	1.05x 10 ¹¹ y	138 B a,138 Ce	136C e	0.19%	> 3.8x1 0 ¹⁶ y	136B a	142Pr	syn	19.12 h	142N d,142 Ce	143N d	12.20 %	Stabl e	
135Cs					syn										138B			13.57 d	143N d	144N d	23.80 %	2.29x 10 ¹⁵ y	1400 e
137Cs	trace	30.17 y	137B a	134B a	2.42%	Stabl e						139C e	syn	137.6 40 d	139La					145N d	8.30%	>6x10	141C
				135B a	6.59%	Stabl e						140C e	88.45 %	Stabl e						146N d	17.20	Stabl e	
				136B a	7.85%	Stabl e						141C e	syn	32.50 1 d	141Pr					148N d	5.70%	>3x10	144C e
				137B a	11.23 %	Stabl e						142C e	11.11 %	> 5x101	142N d					150N d	5.60%	6.7x1 0 ¹⁸ y	150S m
				138B a	71.70 %	Stabl						144C	syn	284.8 93 d	144Pr								

VI. TRANSMUTATION FROM CL, MN, GA, BR TO AG

Mononuclidic elements are only those with odd atomic numbers. Elements with two stable isotopes also have odd atomic numbers such as Cl, V, Ga, and Br.

Conversely, elements with even atomic numbers have 10 stable isotopes. According to the transmutation rule, mass number is monotonically increases by 2, thus odd mass number isotope transmutes to odd mass number isotope, thus I checked the other elements with odd mass number; Cl, V, Ga, and Br as is the table below.

Surprisingly all of elements with odd atomic number has the route to Ag and Au.

Table 9 Transmutation Route from Cl to Ag, Au;(Cu to Ag & Au)

	17	CI			18	Ar			19	,K		20	Ca			21	Sc	
											ISOT OPE	NA	Half- Life	DP	ISOT OPE	NA	Half- Life	DP
35CI	75.77 %	Stable		36Ar	0.337 %	Stable		39K	93.26 %	Stable	40Ca	96.94%	>5.9x1 0 ²¹ y	40Ar	44mSc	syn	58.61 h	44Sc,4 4Ca
36 CI	trace	3.01x1 05 y	36Ar,3 6S	37Ar	syn	35 d	37CI	40K	0.012 %	1.248(3)x109 y	41Ca	trace	1.03x1 0 ⁵ y	41K	45Sc	100%	Stable	
37CI	24.23 %	Stable		38Ar	0.063	Stable		41K	6.73 %	Stable	42Ca	0.65%	Stable		46Sc	syn	83.79 d	46Ti
				39Ar	trace	269 y	39K				43Ca	0.14%	Stable		47Sc	syn	3.3492 d	47T i
				40Ar	99.600 %	Stable					44Ca	2.09%	Stable		48Sc	syn	43.67 h	48Ti
				41Ar	syn	109.34 min	41K				45Ca	syn	162.7 d	45Sc				
				42Ar	syn	32.9 y	42K				46Ca	0.00%	>2.8x1 0 ¹⁵ y	46T i				
											47Ca	syn	4.536 d	47Sc				
											48Ca	0.19%	4.3x10	48Ti,48 Sc				

	20	Ca			21	Sc			22	Ti			23	,V			24	Cr	
ISOT OPE	NA	Half- Life	DP	ISOT OPE	NA	Half- Life	DP	ISOT OPE	NA	Half- Life	DP	ISOT OPE	NA	Half- Life	DP	ISOT OPE	NA	Haif- Life	DP
40Ca	96.94%	>5.9x1 0 ²¹ y	40Ar	44mSc	syn	58.61 h	44Sc,4 4Ca	44Ti	syn	63 y	44Sc	48V	syn	15.973 5 d	48Ti	50Cr	4.35%	> 1.8x1 0 ¹⁷ y	50Ti
41Ca	trace	1.03x1 0 ⁵ y	41K	45Sc	100%	Stable		46Ti	8.00%	Stable		49V	syn	330 d	49Ti	51Cr	syn	27.702 5 d	51V
42Ca	0.65%	Stable		46Sc	syn	83.79 d	46 T i	47Ti	7.30%	Stable		50V	0.25 %	1.5x10 ¹ 7 y	50Ti,50 Cr	52Cr	83.789 %	Stable	
43Ca	0.14%	Stable		47Sc	syn	3.3492 d	47Ti	48Ti	73.80%	Stable		51V	99.75 %	Stable		53Cr	9.501 %	Stable	
44Ca	2.09%	Stable		48Sc	syn	43.67 h	48Ti	49Ti	5.50%	Stable						54Cr	2.365 %	Stable	
45Ca	syn	162.7 d	45Sc					50Ti	5.40%	Stable									
46Ca	0.00%	>2.8x1 0 ¹⁵ y	46Ti																
47Ca	syn	4.536 d	47Sc																
48Ca	0.19%	4.3x10 ¹ ⁹ y	48Ti,48 Sc																

	25 Mn				26	Fe			27	Co			28	Ni			29	Cu		30	Zn	
ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	ISO TO PE	NA	Half - Life	DP
52Mn	syn	5.591 d	52Cr	54Fe	5.8 %	> 3.1x1 0 ²² y	54Cr	56Co	syn	77.27 d	56Fe	58Ni	68.07 7 %	> 7x10 ² v	58Fe	63Cu	69.15 %	Stabl e	64Zn	48.6 %	Stabl e	11
53Mn	trace	3.74x 10 ⁶ y	53Cr	55Fe	syn	2.73 y	55Mn	57Co	syn	271.7 9 d	57Fe	59Ni	trace	7600 0 y	59Co	65Cu	30.85 %	Stabl e	65Zn	syn	243.8 d	65Cu
54Mn	syn	312.3 d	54Cr	56Fe	91.72 %	Stabl		58Co	syn	70.86 d	58Fe	60Ni	26.22 3 %	Stabl					66Zn	27.9 %	Stabl e	
55Mn	100%	Stabl e		57Fe	2.2 %	Stabl e		59Co	100 %	Stabl e		61Ni	1.14 %	Stabl e					67Zn	4.1 %	Stabl e	
				58Fe	0.28 %	Stabl e		60Co	syn	5.271 4 y	60Ni	62Ni	3.634	Stabl e					68Zn	18.8 %	Stabl e	
				59Fe	syn	44.50 3 d	59Co					63Ni	syn	100.1 y	63Cu				70Zn	0.6 %	Stabl e	
				60Fe	syn	2.6x1 0 ⁶ y	60Co					64Ni	0.926 %	Stabl					72Zn	syn	46.5 h	72Ga

Table 10 Transmutation Route from Mn to Cu to Ag, Au;(Cu	-to Ag, Au)
--	-------------

	25	٧n			26	Fe			27	Co			28	Ni			29	Cu			30	Zn	
ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP
52Mn	syn	5.591 d	52Cr	54Fe	5.8 %	> 3.1x1 0 ²² y	54Cr	56Co	syn	77.27 d	56Fe	58Ni	68.07 7 %	> 7x10 ² v	58Fe	63 C u	69.15 %	Stabl e		64Zn	48.6 %	Stabl e	
53Mn	trace	3.74x 10 ⁶ y	53Cr	55Fe	syn	2.73 y	55Mn	57Co	syn	271.7 9 d	57Fe	59Ni	trace	7600 0 y	59Co	65 C u	30.85 %	Stabl e		65 Z n	syn	243.8 d	65 C u
54Mn	syn	312.3 d	54Cr	56Fe	91.72 %	Stabl e		58Co	syn	70.86 d	58Fe	60Ni	26.22 3 %	Stabl e						66Zn	27.9 %	Stabl e	
55Mn	100%	Stabl e		57Fe	2.2 %	Stabl e		59Co	100 %	Stabl e		61Ni	1.14 %	Stabl e						67Zn		-	
				58Fe	0.28 %	Stabl e		60Co	syn	5.271 4 y	60Ni	62Ni	3.634 %	Stabl e						68Zn	18.8 %	Stabl e	
				59Fe	syn	44.50 3 d	59Co					63Ni	syn	100.1 y	63Cu					70Zn	0.6 %	Stabl e	
				60Fe	syn	2.6x1 0 ⁶ y	60Co					64Ni	0.926	Stabl						72Zn	syn	46.5 h	72G:

Table 11 Transmutation Route from Ga to Ag, Au

	31 <mark>Ga</mark>				32	Ge			334	As			34	Se		<u>.</u>	35	Br			36	Kr	
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Haif Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
69 G a	60.11 %	Stabl e		68 G e	syn	270.8 d	68 G a	73As	syn	80.3 d	73 G e	72Se	syn	8.4 d	72As	79 B r	50.69 %	Stabl e		78 K r	0.35 %	Stabl e	
71Ga	39.89 %	Stabl e		70Ge	21.23 %	Stabl e		74As	syn	17.78 d	74Ge, 74Se	74Se	0.87 %	Stabl e		81 B r	49.3 1 %	Stabl e		79Kr	syn	35.04 h	79 B r
				71Ge	syn	11.26 d				Stabl e										80Kr	2.25	Stabl e	
				72Ge	27.66 %	Stabl e						76Se	9.36 %	Stabl e						81 K r	trace	2.29 ×105 y	81 B r
				73Ge	7.73	Stabl e						77Se	7.63 %	Stabl e						82Kr	11.60 %		
						Stabl e						78Se	23.78 %	Stabl e						83Kr	11.50 %	Stabl e	
				76Ge	7.44	1.78x 1021 y	76Se					79Se	trace	3.27x 105 y	79Br					84 K r	57%	Stabl e	
														Stabl e						85Kr	syn	10.75 6 y	85Rb
												82Se	8.73 %	1.08x 1020 y	82Kr					86Kr	17.30 %	Stabl e	

	37	Rb			38	Sr			39	Y			40	Zr			41	Nb			42	No	
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half - Life	DP
83 R b	syn	86.2 d	83Kr	82Sr	syn	25.36 d	82Rb	87Y	syn	3.35 d	87Sr	88Zr	syn	83.4 d		91Nb			-	92Mo	14.84 %	>1.9x 10 ²⁰ y	92Zr
84Rb	syn	32.9 d	84Kr, 84Sr	835r	syn	1.35 d	83Rb	88Y	syn	106.6 d	88Sr	89Zr	syn	78.4 h	89Y	91mN b	syn	60.86 d	91Nb	93Mo	syn	4,000 y	93Nb
85 R b	72.17 %	Stabl e		84Sr	0.56 %	Stabl e		89Y	100%	Stabl e		90Zr	51.45 %	Stabl e		92Nb	syn	3.47x 10 ⁷ y	92Zr	94Mo	9.25 %	Stabl e	
86 R b	syn	18.65 d	86Sr	85Sr	syn	64.84 d	85Rb	90Y	syn	2.67 d	90Zr	91Zr	11.22 %	Stabl e		92mN b	syn	10.15 d	92Zr	95Mo	15.92 %	Stabl e	
87Rb	27.84 %	4.88 x10 ¹⁰ v	87Sr	86Sr	9.86 %	Stabl e		91Y	syn	58.5 d	91Zr	92 Z r	17.15 %	Stabl e		93Nb	100%	Stabl e		96Mo	16.68 %	Stabl e	
				87Sr	7.00 %	Stabl e										93mN b							
						Stabl e						94Zr	17.38 %	> 1.1x1 0 ¹⁷ y	94Mo	94Nb	syn	2.03x 10 ⁴ y	94Mo	98Mo	24.13 %	>1x1 0 ¹⁴ y	98Ru
				89Sr	syn	50.52 d	89Rb, 89Y									95Nb							
				90Sr	trace	28.90 y	90Y									95mN b	syn	3.61 d	95Nb	100M o	9.63 %	7.8x1 0 ¹⁸ y	100R u

1	43 Tc				44	Ru			45	Rh			46	Pd			47	Ag			48	Cd	
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
95mT c	syn	61 d	95Mo ,95Tc	96Ru	5.52 %	Stabl e		99Rh	syn	16.1 d	99Ru	100Pd	syn	3.63 d	1000	105Ag			105P d	106Cd	1.25 %	> 9.5 x10 ¹⁷ v	106P d
96Tc	syn	4.3 d	96Mo	97Ru	syn	2.9 d	97Tc	101R	syn	3.3 y	101R	102Pd	1.02%	Stabl e		106m Ag	syn	8.28 d	106P d	107Cd	syn	6.5 h	107A
97Tc	syn	2.6x1 0 ⁶ y	97Mo	98Ru	1.88 %	Stabl e		101m Rh	syn	4.34 d	101R u	103Pd	syn	16.99 1 d	103R h	107Ag	51.83 9 %	Stabl e		108Cd	0.89 %	> 6.7 x10 ¹⁷	108P d
97mT c	syn	91 d	97 T c	99Ru	12.70 %	Stabl e		102R h	syn	207 d	102R u,102 Pd	104Pd	11.14 %	Stabl e		108m Ag	syn	418 y	108P d,108 Ag	109Cd	syn	462.6 d	109A 9
98Tc	syn	4.2x1	98Ru	100R	12.60 %	Stabl e		102m Rh	syn	2.9 y	102R	105Pd	22.33 %	Stabl		109Ag	48.16	Stabl		110Cd	12.49 %	Stabl e	
99Tc		2 444						103R h	100%	Stabl e		106Pd	27.33 %	Stabl e		111Ag	syn	7.45 d	111C d	111Cd	12.80 %	Stabi e	
99mT c	syn	6.01 h	99Tc	102R	31.60 %	Stabl		105R	syn	35.36 h	105P d	107Pd	trace	6.5x1 0 ⁶ y	107A					112Cd			
				103R u	syn	39.26 d	103R h					108Pd								113Cd	12.22 %	7.7 ×10 ¹⁵	113In
					18.70 %	Stabi e						110Pd	11.72 %	Stabl e						113m Cd		14.1 y	d
				106R u	syn	373.5 9 d	106R h													114Cd	28.73 %	> 9.3 x10 ¹⁷	114S n
																				115Cd	syn	53.46 h	115In
																				116Cd	7.49 %	2.9 x10 ¹⁹ y	116S n

Table 12 Transmutation Route from Br to Ag, Au

	₃₁ Ga				32	Ge			33	As			34	Se			35	Br			36	Kr	
ISO TO PE	NA	Half	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half	DP	ISO TO PE	NA	Half	DP	ISO TO PE	NA	Half Life	DP
69Ga	60.11 %	Stabl e		68Ge	syn	270.8 d	68Ga	73As	syn	80.3 d	73Ge	725e	syn	8.4 d	72As	79 B r	50.69 %	Stabl e		78Kr	0.35 %	Stabl e	
71Ga	39.89 %	Stabl		70Ge	21.23	Stabl		74As	syn	17.78 d	74Ge, 74Se	745e	0.87 %	Stabl		81Br	49.31 %	Stabl		79Kr	syn	35.04 h	79 B r
				71Ge	syn	11.26 d	71Ga	75As	100 %	Stabl		75Se	syn	119.7 79 d	75As					80Kr	2.25	Stabl e	
				72Ge	27.66 %	Stabl e						765e	9.36 %	Stabl e						81Kr		2.29 ×105 v	
				73Ge	7.73	Stabl e						77Se	7.63	Stabl e						82Kr	11.60 %	Stabl	
					35.94							78Se	23.78	Stabl e						83Kr	11.50 %	Stabl e	
				76 G e	7.44 %	1.78× 1021	76Se					79Se	trace	3.27x 105 y	79Br					84Kr	57%	Stabl e	
														Stabl						85Kr	syn	10.75 6 y	85Rb
												825e	8.73 %	1.08x 1020	82Kr					86Kr	17.30	Stabl	

	37 Rb				38	Sr			39	Y			40	Zr			41	Nb			42	ON	
ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP
83Rb	syn	86.2 d	83Kr	82Sr	syn	25.36 d	82Rb	87Y	syn	3.35 d	87Sr	88Zr	syn	83.4 d	88Y	91Nb	syn	6.8x1 0 ² y	91Zr	92Mo	14.84 %	>1.9x 10 ²⁰ y	92Zr
																						4,000 y	
85Rb	72.17 %	Stabl e		84Sr	0.56 %	Stabl e		89Y	100%	Stabl e		90Zr	51.45 %	Stabl e		92Nb	syn	3.47x 10 ⁷ y	92Zr	94Mo	9.25 %	Stabl e	
86Rb	syn	18.65 d	86Sr	85Sr	syn	64.84 d	85Rb	90Y	syn	2.67 d	90Zr	91Zr	11.22 %	Stabl e		92mN b	syn	10.15 d	92Zr	95Mo	15.92 %	Stabl e	
87Rb	27.84 %	4.88 ×10 ¹⁰ V				Stabl e		91Y	syn	58.5 d	91Zr	92Zr	17.15 %	Stabl e		93Nb	100%	Stabl e		96Mo	16.68 %	Stabl e	
				87Sr	7.00 %	Stabl e						93Zr	trace	1.53x 10 ⁶ y	93Nb	93mN b	syn	16.13 y	93Nb	97Mo	9.55 %	Stabl e	
												94Zr	17.38 %	> 1.1x1 0 ¹⁷ y	94Mo	94 N b	syn	2.03x 10 ⁴ y	94Mo	98Mo	24.13 %	>1x1 0 ¹⁴ y	98Ru
				89Sr	syn	50.52 d	89Rb, 89Y					96Zr	2.80 %	2.0x1 0 ¹⁹ y	96Mo	95Nb	syn	34.99 1 d	95Mo	99Mo	syn	65.94 h	99mT c
				90Sr	trace	28.90 y	90Y									95mN b	syn	3.61 d	95Nb	100M 0	9.63 %	7.8x1 0 ¹⁸ y	100R u

	43	Тс			44	Ru			45	Rh			46	Pd			47	Ag			48	Cd	
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half	DP	ISO TO PE	NA	Half	DP	ISO TO PE	NA	Half - Life	DP
95mT c	syn	61 d	95Mo ,95Tc	96Ru	5.52 %	Stabl e		99Rh	syn	16.1 d	99 R u	100Pd	syn	3.63 d	100R	105Ag	syn	41.2 d	105P d	106Cd	1.25 %	> 9.5 x10 ¹⁷ v	106P d
96Tc	syn	4.3 d	96Mo	97 R u	syn	2.9 d	97Tc	101R	syn	3.3 y	101R u	102Pd	1.02 %	Stabl e		106m Ag	syn	8.28 d	106P d	107Cd	syn	6.5 h	107A 9
97Tc	syn	2.6x1 0 ⁶ y	97Mo	98Ru	1.88 %	Stabl e		101m Rh	syn	4.34 d	101R u	103Pd	syn	16.99 1 d	103R h	107Ag	51.83 9 %	Stabl e		108Cd	0.89 %	> 6.7 x10 ¹⁷	108P d
97mT c	syn	91 d	97Tc	99 R u	12.70 %	Stabl e		102R h	syn	207 d	102R u,102 Pd	104Pd	11.14 %	Stabl e		108m Ag	syn	418 y	108P d,108 Ag	109Cd	syn	462.6 d	109A g
98Tc	syn	4.2x1 0 ⁶ y	98Ru	100R	12.60 %	Stabl e		102m Rh	syn	2.9 y	102R	105Pd	22.33 %	Stabl e		109Ag	48.16 1 %			110Cd	12.49 %	Stabl e	
99Tc		2.111 x10 ⁵ v								Stabl e		106Pd				111Ag				111Cd			
99mT c	syn	6.01 h	99Тс	102R u	31.60 %	Stabl e		105R h	syn	35.36 h	105P d	107Pd	trace	6.5x1 0 ⁶ y	107A 9					112Cd	24.13 %	Stabl e	
				103R u		39.26 d	103R h					108Pd			12 m								113In
					18.70 %	Stabl e						110Pd	11.72 %	Stabl e						113m Cd	syn	14.1 y	113In ,113C
				106R u	syn	373.5 9 d	106R h													114Cd	28.73 %	> 9.3 x10 ¹⁷	114S n
																				115Cd	syn	53.46 h	115In
																				116Cd	7.49 %	2.9 ×10 ¹⁹ y	1165 n

VII.

. TRANSMUTATION FROM CS

A. Embodiment-5(p2015-55527A)

Table 13 Radiation dose reduction by brown gas generator 133Cs (reagent) was added to monitor the change of Cs concentration

P2015-55527A Embodiment-5	Concentration before	Concentration at intermediate time	Concentration after
date	2012.12.01	2012.12.12	2012.12.25
Process time		11days	24days
133Cs	350mg/L	350mg/L	350mg/L
Ba	10µg/L	80µg/L	60µg/L
Pt	3µg/L	30µg/L	8µg/L

- 133Cs(reagent) Radioactive cesium contaminated water
- Brown gas generator

It was confirmed that cesium-133 was transmuted to barium and platinum after approximately two weeks of treatment. The intermediate value is larger than the final value, which is caused by continuous transmutation.

B. Embodiment-4(p2022-239989A)

			1 40	ne 14 fran	Sinutation	of C3 with	170 CuC12				
P2022- 23989A - embodim ent-4 (mg/L)	₂₆ Fe	27 Co	28 Ni	29Cu	₃₀ Zn	47 Ag	55 Cs	₅₆ Ba	74 W	₇₈ Pt	₇₉ Au
Concentr ation Before Transmu tation	0.116	0.001	0.013	0.012	0.018	<0.001	6700	0.21	<0.01	<0.001	<0.001
Concentr ation After Transmu tation *2	0.5	7	12	11	<mark>16</mark>	11	4800	48	22	24	18
Concentr ation After Transmu tation *3	2	14	27	34	31	34	3880	58	40	40	42

Table 14 Transmutation of Cs with 1% CaCl₂

International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

- ➢ Experimental Condition
- A 1% aqueous solution of CsCl2.
- *2 Added 0.5µsv tritium water (5g/L)
- *3 The high frequency stirrer vibrated at 170 Hz for 3 hours.

After transmutation of 3 hours, radiation dose decreased from $0.5\mu sv$ to less than $0.05\mu sv$.

Adding tritium water increases the concentrations of all elements.

Author thinks that elements with lower atomic numbers than ${}_{55}Cs$ are experimental mistake, and they must be foreign elements. Fe can be from metal plate in brown gas generator of stainless steel. (Fe is transmuted to Ni, and Zn)

Cr from stainless steel is transmuted to Fe, Co, Ni and Cu.

C. Transmutation route from Cs via W via Pt to Au

Table 15 Transmut	ation Route from	n Cs via W.	via Pt and to Au.
		,	

	55	Cs			56	Ва			57	La			58	Ce			59	Pr			60	Nd	
ISO TO PE	NA	Haif Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
133Cs	100 %					021 V	130X 8			100 m	а	134C 9				141Pr				142N d	27.20	Stabl e	
134Cs	syn	2.064 8 y	134X e,134 Ba	132B a	0.10%	>3x10	132X 0	138La	0.09%	1.05x 10 ¹¹ y	138B a,138 Ce	136C e	0.19%	> 3.8x1 0 ¹⁶ y	136 B a	142 P r	syn	19.12 h	142N d,142 Ce	143N d	12.20	Stabl e	
135Cs	trace	2.3x1 06 y		133B a	syn	10.51 y	133Cs	139La	99.91 %	Stabl e		138C e	0.25%	1200 1000	138B a	143Pr	syn	13.57 d		144N d	23.80 %	2.29x 10 ¹⁵ y	140C e
137Cs	trace	30.17 y	137B a	134B a	2.42%	Stabl e						139C	syn		139La					145N d	8.30%	>6x10	141C e
				-	6.59%							140C e	%	Stabl						146N d	17.20	Stabl	
				136B a	7.85%	Stabl						141C e			141Pr					148N d	5.70%	>3x10	144C e
				137B a	11.23 %	Stabl e						142C 8	11.11 %	5x10 ¹ ⁶ y	142N d					150N d	5.60%	6.7x1 0 ¹⁸ y	150S m
				138B a	71.70 %	Stabl e						144C e	syn	284.8 93 d	144Pr								
	61	m			62	Sm			63	Eu			64	Gd			65	Тb			66	Dy	
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
145Pm	syn	17.7 y	145Nd	1445m	3.07%	Stable		150Eu	syn	36.9 y	150Sm	152Gd	0.20 %	1.08x1 0 ¹⁴ y	1485m	157Tb	syn	71 y	157Gd	154Dy	syn	3.0x10 ⁶ y	150Gd
146Pm	syn	5.53 y	146Nd, 146Sm	146Sm	syn	1.03x1 0 ⁸ y	142Nd	151Eu	47.8 %	5 x10 ¹⁸ y	147Pm	154Gd	2.18 %	Stable		158Tb	syn	180 y	158Gd, 158Dy	156Dy	0.06 %	>1x10 ¹ ⁸ y	152Gd
147Pm	trace	2.6234 y								13.516 y	152Sm ,152Gd	155Gd	14.80 %	Stable		159ТЬ	100 %	Stable		158Dy	0.10 %	Stable	
					70	,	144Nd	153Eu	52.2 %	Stable		156Gd	70									Stable	
				149Sm	13.82	>2x10'	145Nd					157Gd	70									Stable	
				150Sm	7.38%	Stable						158Gd	70								01	Stable	
				152Sm	26.75 %	Stable						160Gd	21.86 %	1.3x10 21 y	160Dy					163Dy	24.90 %	Stable	
				154Sm	22.75 %	>2.3x1 0 ¹⁸ y	154Gd													164Dy	28.18 %	Stable	
<u> </u>	67	Но			68	Er			₆₉ 7	۲m			70	Yb			71	Lu			72	Hf	
ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP
163Ho	syn						160Ho		syn	9.25 d	167Er	166Yb	syn	56.7 h	166T m	173Lu	syn	1.37 y	173Yb	172Hf	syn	1.87 y	172Lu
164Ho	syn	29 mi n	164Dy	162Er	0.14%	>1.4x 10 ¹⁴ y	158Dy ,162D y	168T m	syn	93.1 d	168Er	168Yb	0.13%	>1.3x 10 ¹⁴ y	164Er, 168Er	174Lu	syn	3.31 y	174¥Ь	174Hf	0.16%	2x10 ¹⁵ y	170Yb
165Ho	100 %	Stable		164Er	1.601	Stable		169T		Stable		169Yb				175Lu						Stable	
166Ho						1.22	165Ho			128.6 d						176Lu	2.59 %	3.78× 10 ¹⁰ y				Stable	
167Ho	syn	3.1 h	167Er			Stable		171T m	syn	1.92 y	171ҮЬ										70	Stable	
						Stable						172Yb										31 y	178Hf
						Stable 9.4 d						173¥Ь 174¥Ь										Stable Stable	
				170Er	%	>3.2x 10 ¹⁷ y 7.516	,170Y					175¥Ь								182Hf	syn	9x10 ⁶ y	182Ta
						7.516 h						176Yb											
				172Er	syn	49.3 h	m					177ҮЬ	syn	h	177Lu								

	73	Га			74	W			75	Re			76	0s			77	Ir			78	Pt	
ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half - Life	DP
							176Hf						0.02%	1.1x1 0 ¹³ y	180W	188Ir	syn	1.73 d	1880 S	190 P t	0.014 %	6.5x1 0 ¹¹ y	1860 s
178Ta	syn	2.36 h	178Hf	181W	syn	121.2 d	181Ta	187R e	62.60 %	4.12× 10 ¹⁰ y	183Ta ,1870	1850 S	syn	93.6 d	185R e	1891r	syn	13.2 d	1890 s	192Pt	0.782 %	>6x10 ¹⁶ y	1880 s
179Ta	syn	1.82 y	179Hf	182W	26.50 %	>1.7x 10 ²⁰ y	178Hf					1860 s	1.59%	2.0x1 0 ¹⁵ y	182W	190ir	syn	11.8 d	1900 s	193 P t	syn	50 y	193lr
180Ta	syn	8.125 h	180Hf ,180W	183W	14.31 %	>8x10	179Hf					1870 s	1.96%	Stabl e		1911r	37.30 %	Stabl e		194Pt	32.96 7 %	Stabl e	
180m Ta	0.01%	> 1.2x 1015 y	180Hf ,180W ,180T a	184W	30.64 %	>1.8x 10 ²⁰ y	180Hf						13.24 %	Stabl e		192Ir	syn	73.82 7 d	192Pt ,1920 S	195Pt	33.83 2 %	Stabl e	
181Ta	99.99 %	Stabl e		185W	syn	75.1 d	185R e					1890 s	16.15 %	Stabl e		192m 2lr	syn	241 y	1921r	196Pt	25.24 2 %	Stabl e	
182Ta	syn	114.4 3 d	182W	186W	28.43 %	>4.1x 10 ¹⁸ y	182Hf ,1860 S						26.26 %	Stabl e		193Ir	62.70 %	Stabl e		198 P t	7.356 %	>3.2x 10 ¹⁴ y	1940 s,198 Hg
		5.1 d										1910 5	syn	15.4 d	1911r	193ml r	syn	10.5 d					
												1920 s	40.78 %	> 9.8x1 0 ¹² y	192 P t	194Ir	syn	19.3 h	194Pt				
														30.11 d		194m 2lr	syn	171 d	1941r				
												1940 5	syn	6 y	1941r								

	79	Au			80	Hg			81	TI			82	Pb									
ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half Life	DP
		200										204Pb		01' y									
196Au	syn	6.183 d	196Pt, 196Hg	195Hg	syn	9.9 h	195Au	204TI	syn	119 Ms	204Pb ,204H g	205Pb	syn	1.53x 10 ⁷ y	205TI								
197Au	100 %	Stable		196Hg	0.15%	>2.5x 10 ¹⁸ y	192Pt, 196Pt	205TI	70.48 %	Stable		206Pb	24.1 %	Stable									
198Au	syn	2.695 17 d	198Hg	197Hg	syn	64.14 h	197 A u					207Pb	22.1 %	Stable									
199Au	syn	3.169 d	199Hg	198Hg	9.97 %	Stable						208Pb	52.4 %	Stable									
				199Hg	16.87 %	Stable						210Pb	trace	22.3 y	206Hg ,210Bi								
				200Hg	23.1 %	Stable																	
				201Hg	13.18 %	Stable																	
				202Hg	29.86 %	Stable																	
				203Hg	syn	46.61 2 d	203TI																
				204Hg	6.87 %	Stable																	

VIII. TRANSMUTATION MECHANISM DISCUSSION

A. Inconsistent Data with Route Analysis

Ohmasa's embodiment data has the inconsistent element creation with transmutation route analysis based on femto-H₂ transmutation mechanism, which is no route from ${}^{40}{}_{20}$ Ca (NA=96.94%) to 63 29Cu nor ${}^{65}{}_{29}$ Cu, because Cu has odd mass number and ${}^{40}{}_{20}$ Ca had even mass number, and mass number increases by2.

As is shown below, ${}^{43}_{20}Ca$ (NA=0.14%) has the route to Cu, but NA is too small.

 $^{53}_{24}$ Cr (NA=9.5%) has route to Cu.

Author thinks that Cr and Fe are caused by metal plate of the stainless steel in Ohmasa gas generator.

B. Ni Concentration is Very High.

Ohmasa wants to use Ca to generate Ni, which concentration is very high, because Ni has multiple isotopes with longer half-life, thus mass increase in Ni 3 times.

As I discussed in IX, Fe and Ni can be collected in strong alkaline aqueous.

C. Cr to $Cu [{}^{53}{}_{24}Cr$ has the Route to ${}^{63,65}{}_{29}Cu]$

	24	Cr			25	Vin			26	Fe			27	Co			28	Ni			29	Cu			30	Zn	
ISOT OPE	NA	Half Life	DP	ISOT OPE	NA	Half Life	DP	ISOT OPE	NA	Half Life	DP	ISOT OPE	NA	Half Life	DP	ISOT OPE	NA	Half Life	DP	ISOT OPE	NA	Half Life	DP	ISOT OPE	NA	Half Life	DP
50Cr	4.35%	× 1.8 × 10 ¹⁷ ¥	50Ti	52Mn	syn	5.591 d	52Cr	54Fe	5.8 %	3.1x1 0 ²² y	54Cr	56Co	syn	17.27 d	56Fe	58Ni	68.07 7 %	>7 x10 ²⁰ V	58Fe	53Cu	69.15 %	Stable		64Zn	48.6	Stable	
51Cr	syn	27.70 25 d	51V	53Mn	trace	3.74x 10 ⁶ y	53Cr	55Fe	syn	2.73 y	55Mn	57Co	syn			_		22	8900					65Zn	syn	243.8 d	65Cu
52Cr	83.78 9 %	Stable	-	54Mm	syn	312.3 d	54Cr	56Fe	91.72 %	Stable		58Co	syn	70.86 d	58Fe			Stable		55Cu	30.85 %	Stable		66Zn	27.9 %	Stable	
53Cr	9.501 %	Stable		55Mn	100%	Stable		57Fe	2.2 %	Stable		59Co	100 %	Stable		61Ni	1.14 %	Stable	E 1		7	5		67Zn	4.1 %	Stable	
54Cr	2.365 %	Stable						58Fe	0.28 %	Stable	2	00C 0	syn	5.271 4 y	60Ni	62Ni	3.634 %	Stable	2	T	O A	g, Au	с., .	68Zn	18.8 %	Stable	
								59Fe	syn	44.50 3 d	59Co								63Cu								
								60Fe	syn	2.6x1 0 ⁶ y	60Co					64Ni	0.926 %	Stabl e						70Zn	0.6 %	Stable	
											61Co																
											62Co													72Zn	syn	46.5 h	72Ga

Table 16 Transmutation Route to Cu from Cr

D. From Ca to Cu [$^{43}_{20}$ Ca (0.65% Stable) to $^{53}_{29}$ Cu, 53 Cu]

	₂₀ Ca ₂₁ Sc										22	Ti				23	V			2	4 C	7	
ISOTOP	NA	н	alf- ife	DP	ISOTOP	NA	Half	D		SOTOP	NA	Half- Life	DP	150	TOP E	NA	Half- Life	DP	ISOTOP	NA	ľ	alf- ife	DP
40Ca	96.9	4% >5.	9x10 1y	40Ar	44mS c	syn	58.61	h 4450	,44	l4Ti	syn	63 y	-	4	BV	syn	15.9735 d	48Ti	50C	4.35	6 >1	8*1 7y	50Ti
41Ca	trac	e 1.0	3x10 5y	418	445c	_					/			49	v	syn	330 d	49Ti	51C	syn	27.	7025 d	51V
4203	0.65	% St	able	-	45Sc	100%	Stab	e	ł	6Ti	8.00%	Stable	-	50	v	0.25 %	1.5 × 10 ¹ 7 y	50Ti,50 Cr	52Cr	83.78	9 54	alete	-
43Ca	0.14	% St	able		46Sc	syn	83.79	d 48	*** 4	17Ti	7.30%	Stable		51	IV s	99.75 %	Stable		53C	9.501	% St	able	
44Ca	2.09	% Sta	able		47Sc	syn	3.349	2 d 47	m 4	I8Ti	73.80%	Stable							54Cr	2.365	% St	able	
45Ca	syn	n 16	2.7d	45Sc	48Sc	syn	43.67	h 48	Ti 4	9Ti	5.50%	Stable											
46Ca	0.00	% >2.6	x10 ¹ y	46Ti					5	60 Ti	5.40%	Stable											
47Ca	syn	1 4.5	36 d	47Sc																			
48Ca	0.19	% 4.3	x10 ¹⁹ 4 y	8Ti,48S c																			
	25	Vin			26	Fe			27	Co			28	Ni			29	Cu			304	Zn	
ISOT OPE	NA	Half Life	DP	ISOT OPE	NA	Half	DP	ISOT OPE	NA	Half	DP	ISOT OPE	NA	Half	OP	ISOT		Half - Life	DP	ISOT OPE	NA	Half	DP
52Mn	syn	5.591 d	52Ci	54Fe	5.8 %	3.1x1	54Cr	56Co	syn	77.27 d	56Fe	58Ni	68.07 7 %	> 7 ×10 ²⁰	58F	e 63C	u % ^{69.15}	Stable		4Zn 4	18.6 %	Stable	
53Mn	trace	3.74x	59CI	p5Fe	syn	2.73 y	55Mn	57Co	syn	271.7 9 d	57Fe	59Ni	trace	76000	590			/	-	5Zn	syn	243.8 d	65C
		and the second second				Stable					58Fe						u 30.85 %	Stable	e	6Zn	27.9 %	Stable	
55Mn	100%	Stable		57Fe	2.2 %	Stable		59Co	100 %	Stable	-	INI	1.14	otable				Ļ		67Zn 4	1.1 %	Stable	
				58Fe	0.28	Stable	-	ouCo	syn	5.271 4 y	60Ni	62NI	3.634 %	Stable				g, Au		8Zn ⁽	18.8 %	Stable	
				59Fe	syn	44.50 3 d	59Co					63Ni	syn	100.1 y	63C								
				60Fe	syn	2.6x1 0 ⁶ y	60Co					64Ni		and the second second					7	ozn d	.6 %	Stable	
							61Co																
							62Co													270	even	46.5 h	726

Table 17 Transmutation Route to Cu from Ca

E. From ${}^{63}_{29}$ Cu to ${}^{107}_{47}Ag$ [${}^{63}Cu$ and ${}^{65}Cu$ has the route to ${}^{105,107,109}_{47}Ag$]

Table 18 Transmutation	Route from Cu to Ag
------------------------	---------------------

		S			1		Table			iutatio	on Rou			u to A	g	12				-	
	29	111			30Zr	1		STATISTICS.	Ga		-	32		10.52		33A	a subscription of the		and the second se	34Se	Concernance of the second
isot ope			nalf- life	isot ope	NA	half- life	iso op	•	A	half- life	isot ope	N	A	half- life	isot ope	NA	hali life		sot pe	NA	half- life
63Cu	69. %	15 S	table	64Zn	70	Stabl	T	* %	.11 ;	Stable	68G	e sy	ⁿ 2	70.8 d	73As	syn	80.3 17.7	d 72	Se	syn	8.4 d
	30.	85 _		65Zn	27.9	d	100	20	.89		-	21.	23 _			syn	d		-		
65Cu	%			66Zn	% 4.1 %	Stabl		a %		Stable	70G	° %	3	table	75As	100	% Stab	++	Se Se :	even.	Stable 119.7 79 d
				68Zn	18.8	Stabl	•				72Ge	27.	⁶⁶ s	table				76	Se		Stable
				69Zn	70						73Ge	7.7	3 _	table				177	Se	7.63%	Stable
				70Zn	0.6 %	Stabl	e				74Ge	35.	。 94 e	table				78	Se	23.78	Stable
				72Zn	syn	46.5	h				76Ge	7.4	4 1	.78x				79	Se 1	wace	3.27x
												- %	• 1	0 ²¹ y				80			10° y Stable
																		82	Se		1.08x 10 ²⁰ y
	35	r		36	Kr		37R	b		38	Sr		3	₃₉ Y			40 Zr		1	41N	
isot ope	NA	1.00			A hal		NA			-	IA h		sot pe	NA	half -life	isot ope	NA	half -life	iso ope		half -life
79Br	50.69 %	Stab	le 781	Kr 0.3	35% Stabl	e 83Rb	syn	86.2	d 825	Br sy	n 25. d			syn	3.35 d	88Zr	syn 8	13.4 d	DIND	syn	6.8x1 0 ² y
6.8-27	49.31		791		n and a second	0410	syn		a 83			5 d 88		syn	106.6 d	89Z	54 45	8.4 }			3.47x 10 ⁷ y
81Br	%	Stat	le 801	Kr 2.1	25% Stab			17 Stat % Stat	2	+	56% Sta				Stable					100%	<mark>& Stable</mark> 2.03x
Fro	m77	Se [*]	81		· · ·	¹⁴ 86Rb		d 344.88	800						2.67 d		11.22				10 ⁴ y 34.99
			821		% Stabl		21.0	%010		šr 9.	86% Sta	ble 91	Y s	syn	58.5 d		17.15		95Nb	syn	1 d
			831	Kr '	%Stab	e			875		00% Sta					93Zr	trace	06 v			
			841	Kr f	7% Stabl	e			889	sr 8	2.58 %Sta	ble				94Zr	17.38	nry			
			851	Kr syn	10.78 y	6			895	ŝr sy	n 50. d	52				96Zr	2.80%0	2.0×1)19 y[]			
			861	6r 17	%Stabl	e			905	sr tra	ce 28. y	90									
4	12M	•		43	C	4	4Ru	j,	į.	45 R	h		46 P	Pd		47	g		48	Cd	
isot ope	NA	hait -life			half -life	isot ope	NA	half -life	isot ope	NA	half -life	isot ope	NA	ha -lif			half -life	isot ope		A hat	
92Mo	14.8	4>1.9x 60 ²⁰ y	¹ 95m	Tc syn	61 d	96Ru	5.52%	Stable	99Rh	syn	16.1 d	100Pd	syn	3.63	d 1054	g ayo	41.2 d	1060	d 1.2	> 5%9.5x1	10 106Pd
93Mo	syn	4,000 y	вете	c syn	4.3 d	97Ru s	syn :	2.9 d	101Rh	syn	3.3 y	102Pd	1.02	2% Stab	le 106n g	^{nA} syn	8.28 d	1070	d syn	6.5	h 107Ag
From 94Mo	93 <mark>NI 9.25</mark> 9	Stabl	e 97To	syn	2.6×1 06 y	98Ru	1.88% \$	Stable	101mF h	² syn	4.34 d	103Pd	syn	16.9 d	91 107A	g 51.83	³⁹ Stable	1080	d 0.8	9%6.7x1 17 y	10 108Pd
95Mo	15.9	2 Stabl	e 98To	syn	4.2×1 06 y	99Ru	12.70	Stable	102Rh	syn	207 d	104Pd	11.	14 %Stab	le g	nA syn	418 y	1090	d syn	462.	6 109Ag
96Mo	16.6	⁸ Stabl	e 99To	c trace	2.111 ×105 y	100Ru	12.60 %	Stable	103Rh	100%	6 Stable	105Pd	22.	³³ Stab	le 109/	9 48.10	⁵¹ Stable	1100	d 12	49 % Stabl	e
97Mo	9.55%	6 Stabl	e			101Ru	17.00	Stable				106Pd	27.	³³ Stab	le 111A	g syn	7.45 0	1110	12	80 % Stabl	e
98Mo	24.1	3 <mark>>1x1</mark>	014 y			102Ru	31.60	Stable	105Rh	syn	35.36 h	107Pd		6 Y				1120	d 24	.13 % Stabl	e
99Mo	syn	65.94 h				103Ru :		39.26 1				108Pd	26.	46 % Stab	le			1130	d 12		113In, 113Cd
100Mo	9.63%	67.8x1	018 y			104Ru	18.70 %					110Pd	11:	72 %Stab	le			1140	d 28	.73 > 9.3x1 % 17 v	10 114Sn
						106Ru :	svn	373.59 1										1150	ed seening	53.46 h	³ 115In
																		1160	d 7.4	9% <mark>2.9x1</mark> 19 y	¹⁰ 116Sn

The rout from Cu to Ag is so complicated as is in table 18.

It is important to understand the mechanism of higher concentration of Ag, and Au generation is similar.

 ${}^{63}{}_{29}Cu+2p={}^{65}{}_{30}Zn; {}^{65}{}_{30}Zn+2p={}^{67}{}_{30}Zn$ or ${}^{63}{}_{29}Cu+2p={}^{65}{}_{39}Cu; {}^{65}{}_{39}Cu+2p={}^{67}{}_{30}Zn$ ${}^{67}{}_{30}Zn+2p={}^{69}{}_{31}Ga; {}^{69}{}_{31}Ga+2p={}^{71}{}_{32}Ge; {}^{71}{}_{32}Ge+2p={}^{73}{}_{33}As;$ ${}^{97}{}_{44}Ru+2p={}^{99}{}_{45}Rh; {}^{99}{}_{45}Rh+2p={}^{101}{}_{45}Rh; {}^{101}{}_{45}Rh+2p={}^{103}{}_{46}Pd$ ${}^{103}{}_{46}Pd+2p={}^{105}{}_{47}Ag;$

¹⁰⁵47Ag+2p=¹⁰⁷47Ag (Stable,100%);

¹⁰⁷47Ag+2p=¹⁰⁹47Ag (48%)

 $^{107}_{47}$ Ag+2p= $^{109}_{47}$ Ag (48%) or $^{107}_{47}$ Ag+2p= $^{109}_{48}$ Cd[463d]

Because transmutation continues beyond the desired element/isotope, Ag must have transmuted to the next element of Cd. Actually, Ag is detected in many embodiments, thus there must have cause. Transmutation route tend to be on the isotopes with lower mass number, the route in the table. $^{107}_{48}$ Cd and $^{109}_{48}$ Cd, which decay to $^{107}_{47}$ Ag and $^{109}_{47}$ Ag, and they are on the isotopes with smaller mass number, and it is important to note that starting isotope must have odd mass number because femto-H₂ add two protons, and stable Ag and Au with largest NA has odd mass number.

F. $^{133}_{55}Cs$ to $^{197}_{79}Au$; From $^{181}_{74}W$ to $^{197}_{79}Au$ (Latter half)

					0					1 a0	10 19	IIa	151110	natio	л кс	oute i	TOIII	vv t	0 Au	•								
	74	۹N				75	Re			76	Os			77	,lr			78	Pt			79	Au			80	Hg	
ISO TO PE	NA	Ha Lii		DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half - Life	DP	ISO TO PE	NA	Half Life	DP
180 W	0.12 %	1.1	8x 18 y	176H f	185 Re	0.37 4	Stab	-	184 Os	0.02 %	1.1x 10 ¹³ y	180 W	188 Ir	syn	1.73 d	1880 S	190 Pt		6.5x 10 ¹¹ y	1860 5	195 Au	syn	186. 10 d	195P	194 Hg	syn	444 y	194A U
181 W	syn	12	1. 4	181T a	-			_	185 Os	syn	93.0 d	185R e	189 ir	syn	13.2	1890 S	192 Pt	0.78	>6x4	1890 S	196 Au	syn	6.18 9 d	196P t,196 Hg		syn	9.9 h	195A u
182 W	26.5 %	×1	.7 0 ²⁰	178H	197 Re	0.62 6	4.12 x10 ¹⁰	1831 a,18	186 Os	1.59 %	2.0x 10 ¹⁵ y	182 W	190 Ir	syn	11.8 d	1900 S	193 Pt	syn	50 y	193ir	197 Au	100 %	Stabl	1	196 Hg	0.15 %		192P t,196 Pt
W	14.3 1%	019	y	179H	-				187 Os	1.96	Stabl e		191 Ir	37.3 0%	Stabl e			32.9 67 %	Stabl		198 Au	syn	2.69 517 d	198H g	197 Hg	syn	<u>64.1</u> <u>4 h</u>	<u>197A</u> <u>u</u>
184 W	30.6 4%	XI	.8 0 ²⁰	180H	-	-			188 Os	13.2 4%	Stabl e		192 Ir	syn	73.8 27 d	192P t		33.8 32 %			199 Au	syn	3.16 9 d	199H g	198 Hg	9.97 %	Stabi e	
185 W	syn	75		185R	-	-			COLUMN THE	16.1 5%	Stabl e	F	193 Ir	62.7 0%	Stabl e	193ir (193 m)	196 Pt	25.2 42 %	Stabl		201 Au					16.8 7 %	Stabl e	l
186 W	28.4 3%	x1	018 1	182H f,186 Os						26.2 6%	Stabl e		194 Ir	syn		194P t,194 lr(me ta)					203 Au				200 Hg	23.1 %	Stabl e	
									191 Os	syn		191 ir					198 Pt	7.35 6 %	>3.2x 10 ¹⁴ y	1940 s,19 8Hg					201 Hg	13.1 8 %	Stabl	04 P k
											> 9.8x 10 ¹² y	192P t													202		Stabl	
									193 Os	syn	20.4	193ir													203 Hg	syn	12 d	
									194 0s	syn	6 y	194ir														6.87 %	Stabl e	

Table 19 Transmutation Route from W to Au.

> Route

 $^{191}_{77}$ Ir+2p= $^{193}_{78}$ Pt; $^{193}_{78}$ Pt+2p= $^{195}_{80}$ Hg[9.9h]=> $^{195}_{79}$ Au[186d]

 $^{195}_{79}Au+2p=^{197}_{80}Hg[64.14h]=>^{197}_{79}Au[Stable];$

 $^{197}_{79}$ Au+2p= $^{199}_{80}$ Hg[Stable]; $^{199}_{80}$ Hg+2p= $^{201}_{80}$ Hg[Stable]

²⁰¹₈₀Hg+2p=²⁰³₈₁Tl [Stable]

This route is similar with the rout to Ag because Ag and Au belong to the same group on the periodic table, so they have similar chemical characteristics.

Similarity is the decay from Hg, or Cd.

This is discussed later.

G. From ⁶³₂₉Cu to Ag Embodiment-2(p2022-239989A) shows the transmutation from ₂₉Cu to ₃₀Zn,₄₇Ag,₇₉Au. From ₄₇Ag, to ₇₉Au, is so long, thus I separate at ¹³³₅₅Cs, which is transmuted to ¹⁹⁷₇₉Au.

1 1	29CL			30Zn	3		31Ga			32Ge	2		33AS	8		34Se	Y
isot ope	NA	half- life	isot ope	NA	half- life	isot ope	NA	half- life	isot ope	NA	half- life	isot ope	NA	half- life	isot ope	NA	half- life
63Cu	69.15 %	Stable	66Zn	27.9 %	Stable	69Ga	60.11 %	Stable	68Ge	syn	270.8 d	73As	syn	80.3 d	72Se	syn	8.4 d
			67Zn	4.1 %	Stable	70Ga					/	74A5	syn	17.78 d			
65Cu	30.85 %	Stable	68Zn	18.8 %	Stable	71Ga	39.89 %	Stanple	70Ge	21.23	Stable	75As	100 %	Staple	745e	0.87%	Stable
			69Zn						71Ge	syn	11.26 d				75Se	syn	119.7 79 d
			70Zn	0.6 %	Stable				72Ge	27.66 %	Stable				76Se	9.36%	
			72Zn	syn	46.5 h				73Ge	7.73	Stable	i.			77Se	7.63%	
											Stable				78Se	23.78	Stable
									76Ge	7.44 %	1.78x 10 ²¹ y				795e	trace	3.27x 10 ⁵ y
															80Se		Stable
															82Se	8.73%	1.08x

Table 20 Transmutation Route from Cu to ⁵⁵Cs.

	35 ^{BI}	7		36K	7		37RI	b		38 ^{SI}	7		39Y			40Z	7		41N	b
isot ope	NA	half -life	isot ope	I NA	half -life	isot ope	NA	half -life	isot ope	NA	half -life	isot ope	NA.	half -life	isot ope	NA	half -life	isot ope	NA ⁹³ Mo	half -life
79Br	50.69 %	Stable	78Kr	0.35%	Stable	83Rb	syn	86.2 d	82Sr	syn	25.36 d	87Y	syn	3,35 d	88Zr	syn	83.4 d	91Nb	syn	6.8x1 0 ² y
77Se			79Kr	syn	35.04 h	84Rb	syn	32.9 d	State and the	syn	1.35 d	88Y	syn	106.6 d	89Zr	syn	78.4 h	2Nb	syn	3.47x 10 ⁷ y
81Br	49.31 %	Stable	BOKr	2.25%	Stable	85Rb	72.17	Stable	84Sr	0.56%	Stable	89Y	100%	Stable	90Zr	51.4	Stable	93Nb	100%	6 Stable
			81Kr	trace	2.29x1 0 ⁵ y	86Rb	syn	18.65 d	85Sr	syn	64.84 d	90Y	syn	2.67 d	91Zr	11.23 %	Stable	94Nb	syn	2.03x 10 ⁴ y
			82Kr	11.60 %	Stable	87Rb	27.84 %	44.88x1 6010 y	86Sr	9.86%	Stable	91Y	syn	58.5 d	92Zr	17.1	5 Stable	95Nb	syn	34.99 1 d
			83Kr	11.50 %	Stable				87Sr	7.00%	Stable				93Zr	trace	1.53 × 106 y			
			84Kr	57%	Stable				88Sr	82.58 %	Stable				94Zr	17.30 %	3 ^{>} 1.1×1 017 y			
			85Kr	syn	10.756 У				89Sr	syn	50.52 d				96Zr		2.0×1 6019 y[3]			
			86Kr	17.30	Stable				90Sr	trace	28.90 y									

	12 ^M	0		43T	C		44 Ru	J.		45 R	h		46P	•		47 A	9		48C0	0	
isot ope	NA	half -life		I NA	half -life	isot ope	NA	half -life	isot ope	NA	half -life		NA	half -life	isot ope	NA	half -life	isot ope	NA	haif -life	DP
92Mo Nb	14.84 %	>1.9x1	95mTc	syn	61 d	96Ru	5.52%	Stable	99Rh	syn	16.1 d	100Pd	syn	3.63 d			41.2 d	106Cd		> 9.5x10 17 v	106Pd
93Mo	syn	4,000 y	96Tc	syn	4.3 d	97Ru	syn	2.9 d	101Rh	syn	3.3 y	102Pd	1.02%	Stable	106mA 9	syn	8.28 d	107Cd	syn	6.5 h	107Ag
94Mo	9.25%	Stable	97Tc		2.6 [×] 1 06 y	98Ru	1.88%	Stable	101mR h	syn	4.34 d	103Pd	syn	16.991 d	107Ag	51.839 %	Stable	108Cd	0.89%	> 6.7x10 17 v	108Pd
95Mo	15.92	Stable	98Tc	syn	4.2×1 06 y	99Ru	12.70	Stable	102Rh	syn	207 d	104Pd	11.14	Stable	108mA	syn	418 y	109Cd		<u>462.6</u> d	109Aq
96Mo	16.68 %	Stable	99Tc		2.111 ×105 y			Stable	103Rh	100%	6 Stable	105Pd	22.33 %	Stable	109Ag	48.161 %	Stable	110Cd	12.49 %	Stable	
97Mo	9.55%	Stable				101Ru	17.00 %	Stable				106Pd	27.33 %	Stable	111Ag	syn	7.45 d	111Cd	12.80 %	Stable	
98Mo	24.13 %	>1x10	14 y			102Ru	31.60 %	Stable	105Rh	syn	35.36 h	107Pd	trace	6.5x10 6 y				112Cd	24.13 %	Stable	
99Mo	syn	65.94 h				103Ru		39.26 d				108Pd	26.46	Stable				113Cd		7.7x10 15 y	
100Mo	9.63%	7.8x10	18 y			104Ru	18.70 %	Stable				110Pd	11.72 %	Stable				114Cd	28.73 %	> 9.3x10 17 y	114Sn
						106Ru	syn	373.59 d										115Cd	syn	53.46 h	115In
																		116Cd	7.49%	2.9x10 19 y	116Sn

ISSN No:-2456-2165

4	8 C	d		49 l i	n	5	_o S	n	5	15	6	5	2 T	8		53		5	4 X	8	5	5 C	S
ISOT OPE	NA	Half- Life	ISOT OPE	NA	Half- Life	ISOT OPE	NA	Half- Life	ISOT OPE	NA	Hall- Life	ISOT OPE	NA	Half- Life		-					1		
106C d	1.25%	> 9.5x10	113in	4.30%	Stable	112S n	0.97 %	Stable	121S b	57.36 %	Stable	120Т е	0.09%	> 2.2x10	1231	syn	13 h	124Xe	0.10%	1.8x10 22 y	133Cs	100 %	Stable
107C d	syn	6.5 h									1	121T e	syn	16.78 d	+			125Xe	syn	16.9 h	134Cs	syn	2.0648 y
108C d	0.89%	> 6.7x10	115In	95.70	4.41x1	114S n	0.66 %	Stable	123S b	42.64 %	Stable	122T e	2.55%	Stable				126Xe	0.09%	Stable	135Cs	trace	2.3 × 1 06 y
109C d	syn	462.6 d				115S n	0.34 %	Stable		/		123T e	0.89%	> 1.0x10			1	127Xe	syn	36.345 d	137Cs	trace	30.17 y[2]
110C d	12.49 %	Stable				116S n	14.54 %	Stable	1	/					1271	100 %	Stabl	128Xe	1.91%	Stable			
		Stable				117S	7.68 %	Stable	/									129Xe	26.40 %	Stable			
112C d	24.13 %	Stable				118S n	24.22 %	Stable							1291	trace	15.7x 0 ⁶ y	130Xe	4.07%	Stable			
		7.7x10	ŀ			1195 n	8.59 %	Stable									,	131Xe	21.20 %	Stable			
114C d	28.73 %	> 9.3x10 ¹⁷ y				120S n	32.58 %	Stable							1311	syn	8.0207 0 d	132Xe	26.90 %	Stable			
		53.46 h																133Xe	syn	5.247 d			
		2.9x10 ¹⁹ y																134Xe	10.40 %	>1.1x1 016 y			
																		135Xe	212100				
																		136Xe	8.86%	2.11x1 020 y			

H. $^{133}_{55}Cs$ to $^{197}_{79}Au(^{133}_{55}Cs$ to $^{181}_{74}W)$

	55Cs			56Ba	1		57La			58Ce			59Pr	
ISOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life
133Cs	100 %	Stable	130Ba	0.11%	(0.5- 2.7)x1021	137La	syn	60,000 y	134Ce	syn	3.16 d	141Pr	100%	→ 143No Stable
134Cs	syn	2.0648 y	132Ba	0.10%	>3x1020 y	138La	0.09%	1.05 × 1011 y	135Ce			142Pr	syn	19.12 h
135Cs	trace	2.3x106 y	133Ba	syn	10.51 y	139La		Stable	136Ce	0.19%	3.8 ² 101 6 y	143Pr	syn	13.57 d
136Cs			134Ba	2.42%	Stable				137Ce		9.0(3) h			
137Cs	trace	30.17 y[2]	135Ba	6.59%	Stable				138Ce	0.25%	1.5 [×] 101 4 y			
			136Ba	7.85%	Stable				139Ce	syn	137.640 d			
			137Ba	11.23%	Stable				140Ce	88.45%	Stable			
			138Ba	71.70%	Stable				141Ce	syn	32.501 d			
									142Ce	11.11%	> 5 1016 y			
									143Ce					
									144Ce	syn	284.893 d			

Table 21 transmutation route from Cs to W.

	60Nd			₆₁ Pm	1		₆₂ Sm	ř.		63Eu		1	64Gd	
SOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life
142Nd	27.20%	Stable	145Pm	syn	17.7 y	144Sm	3.07%	Stable	150Eu	syn		152Gd	0.20 %	1.08x10 14 y
143Nd	12.20%	Stable	146Pm	syn	5.53 y				151Eu	47.8 %	5x10 ¹⁸ y	154Gd	2.18 %	
144Nd	23.80%	2.29x 10 ¹⁵ y	147Pm	trace	2.6234 y	146Sm	syn	1.03 x 10 ⁵ y	152Eu	syn	13.516 y	155Gd	14.80 %	► 157 TI Stable
145Nd	8.30%	>6x 10 ¹⁶ y				1475m	14.99%	1.06 x 10 ¹¹ y	+53Eu	52.2 %	Stable	156Gd	20.47 %	Stable
146Nd	17.20%	Stable				1485m	11.24%	7 x 10 ¹⁵ y	154Eu			157Gd	15.65 %	Stable
148Nd	5.70%	>3x 10 ¹⁸ y				1495m	13.82%	>2 x 10 ¹⁵ y	155Eu			158Gd	24.84 %	Stable
150Nd	5.60%	6.7x 10 ¹⁸ y				150Sm	7.38%	Stable				160Gd		> 1.3x102 1 y
						152Sm	26.75%	Stable						
						154Sm	22.75%	>2.3 x 10 ¹⁸ y						

	65Tk)		66D)	<u>/</u>		67 H	0		68Er	(₆₉ Tn	n
ISOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life
157Tb	syn	71 y	154Dy	syn	3.0x106 y	163Ho	syn	4570 y	164Er	1.601 %	Stable	167Tm	syn	9.25 d 169Y
158Tb	syn	180 y	156Dy	0.06 %	>1x1018 y	164Ho	syn	29 min	165Er	syn	10.36 h	168Tm	syn	93.1 d
159Tb	100 %	Stable	58Dy	0.10 %	Stable	165Ho	100 %	Stable	166Er	33.503 %	Stable	169Tm	100 %	Stable
			60Dy	2.34 %	Stable	166Ho	syn	26.763 h	167Er	22.869 %	Stable	170Tm	syn	128.6 d
			161Dy	18.91 %	Stable	167Ho	syn	3.1 h	168Er	26.978 %	Stable	171Tm	syn	1.92 y
			162Dy	25.51 %	Stable				169Er	syn	9.4 d			
			163Dy	24.90 %	Stable				170Er	14.91	%>3.2x1017 y			
			164Dy	28.18 %	Stable				171Er	syn	7.516 h			
									172Er	syn	49.3 h			

	70 Yb			71Lu			72Hf			₇₃ Ta			74W	
ISOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life	ISOTOPE	NA	Half-Life
166Yb	syn	56.7 h	173Lu	syn	1.37 y	172Hf	syn	1.87 y	177Ta	syn	56.56 h	180W	0.12%	1.8×1018 V
168Yb	0.13%	>1.3x101 4 y	174Lu	syn	3.31 y	173Hf		23.6(1) h	178Ta	syn	2.36 h	181W	syn	121.2 d
169Yb	syn	32.026 d	175Lu	97.41 %	Stable	174Ht	0.16%	2 1015 3	179Ta	syn	1.82 y	182W	26.50%	>1.7 × 102 0 y
170Yb	3.04 %	Stable	176Lu	2.59 %	3.78 × 1010 y	175Hf		70(2) d	180Ta	syn	8.125 h	183W	14.31%	>8 × 1019 A
171Yb	14.28 %	Stable				176Hf	5.21%	Stable	180mTa	0.01%	> 1.2x101 5 y	184W	30.64%	>1.8 × 102 0 y
172Yb	21.83 %	Stable				177Hf	18.61%	Stable	181Ta	99.99%	Stable	185W	syn	75.1 d
173Yb	16.13 %	Stable				178Hf	27.30%	Stable	182Ta	syn	114.43 d	186W	28.43%	>4.1 [⊻] 101 8 y
174Yb	31.83 %	Stable				178m2Hf	syn	31 у	183Ta	syn	5.1 d			185Os
175Yb	syn	4.185 d				179Hf	13.63%	Stable						=> ¹⁹⁷ 79 A
176Yb	12.76%	>1.6x101 7 y				180Hf	35.10%	Stable						
177Yb	syn	1.911 h				182Hf	syn	9×106 y						

I. $^{133}_{55}Cs$ to $^{197}_{79}Au$ ($^{181}_{74}W$ to $^{197}_{79}Au$)

Table 22 Transmutation Route from $^{181}\mathrm{W}$ to $^{107}\mathrm{Au}.$

	74	w			75	Re			76	Os			7	, Ir			78	Pt			79	Au			80	Hg	1
ISO TO PE	NA	Half	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half Life	DP	ISO TO PE	NA	Half	DP	ISO TO PE	NA	Half	DP	ISO TO PE	NA	Half	DP	ISO TO PE	NA	Haff Life	DP
180 W	0.12	1.8× 1018	176H	185 Re	0.37 4	Stabl	_	184 Os	0.02 %	1.1x 10 ¹²	180 W	188 Ir	syn	1.73 d	1880 S	190 Pt	0.01 4 %	6.5x 10 ¹¹ V	1860 S	195 Au	syn	10 d	195P	Hg	syn	444 ¥	194A u
181 W	syn	121.	181T		ITO	197	u	185 03	syn	93.0 d	185R e	189 Ir	syn	13.2	189Q 8	192 Pt	0.78	>611	1880 8	196 Au	syn	6.18 8 d	196P t,196 Ha	Hg		9.9 h	
182 W	26.5 %	>1.7	1784	187 Re	0.62 6	4.12 ×10 ¹⁰	183T a,18	186 Os	1.59	2.0x	182 W	190 Ir	syn	11.8 d	1900 S	193 Pt	syn	50 y	193ir	197 Au	100 %	Stab		Hg	%	>2.5 x10 ¹⁸ V	192P t,196 Pt
w	1%	012		-				187 Os	1.96	Stabi		191 Ir	37.3 0%	Stabl e			32.9 67 %	Stabl		198 Au	syn	2.69 517 d	198H g	197 Hg	syn	<u>64.1</u> 4 h	197A
184 W	30.6 4%	>1.8 x10 ²	180H	-			_	188 Os	13.2 4%	Stabl		192 Ir	syn	73.8 27 d	192P t		33.8 32 %			199 Au	syn	3.16 9 d	199H g	198 Hg	9.97 %	Stabl e	
185 W	syn	75.1 d	185R					189 Os	16.1 5%	Stabl e		193 Ir	62.7 0%	Stabl e	193lr (193 m)	196 Pt	25.2 42 %	Stabl		201 Au					16.8 7 %	Stabl e	
186 W	28.4 3%	x10"	182H 1,186 Os						26.2 6%	Stabl e		194 Ir	syn		194P t,194 lr(me ta)					203 Au					23.1 %	Stabl e	
								191 Os	syn	15.4 d	1911r					198 Pt	7.35 6 %	>3.2x 10 ¹⁴ y	1940 s,19 8Hg					201 Hg	13.1 8 %	Stabl e 2	04Pt
								192 Os		> 9.8x 10 ¹² Y														202	_	Stabl	
								193 Os		30.1 1 d	193lr													203 Hg	syn	46.6 12 d	1
								194 Os	syn	6 y	19 4 1r															Stabl	

All isotope of W has the route to 190 Pt, 192 Pt and 193 Pt. Although 193 Pt has shorter half-life of 50 y, which can be used for industry.

J. Thransmutation stops at Ag and Au by vaporizing Cd and Hg.

Although the transmutation continues beyond the desired element, both transmutations can be stopped by the vaporized Cd, or Hg in the air in the chamber for a long time to decay to AG or Au to move back to the aqueous solution.

Author thinks that the following reaction by gas phase Cd and Hg, which increase the concentration during mass analysis because Ag and Au drops into the aqueous solution.

¹⁹⁷₈₀Hg [64.14h] =¹⁹⁷₇₉Au [Stable]

¹⁰⁷48Cd [6.5h] =¹⁰⁷47Ag[stable]

IX. CONCEPTUALIZED TRANSMUTATION REACTOR

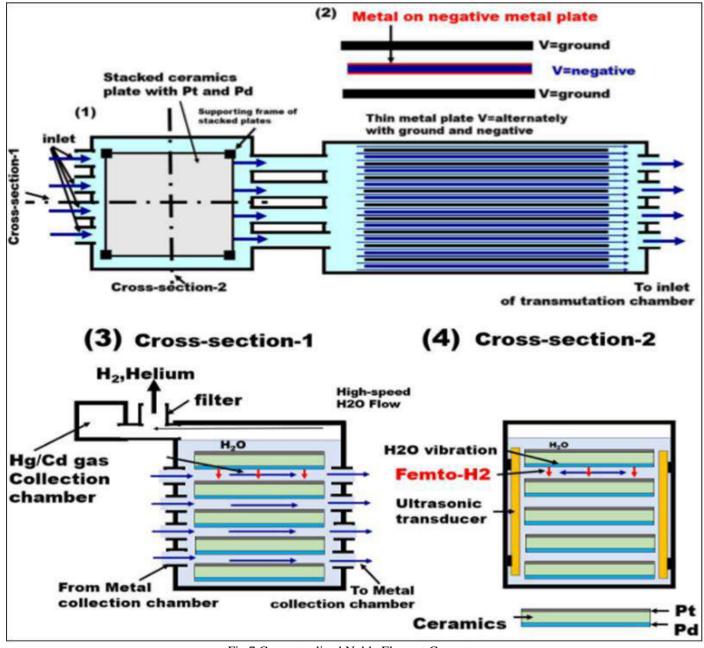


Fig 7 Conceptualized Noble Element Generator

The conceptual transmutation reactor is to High-speed H_2O flow is to improve the transmutation efficiency and metal collection efficiency by H_2O vibration and high-speed H_2O flow to circulate the lower concentration of generated metal, which is collected by the separate chamber with negative metal plate.

A. Metal collection

Ionization tendency is Li K Ba Sr Ca Na Mg Al Zn Fe Ni Sn Pb (H) Cu Hg Ag Pt Au. In strong alkaline aqueous solution, [H+] is so low, and if the concentration of the metal is by far larger than [H+] in strong aqueous solution the metal metals with moderate ionization tendency can precipitate on the negative metal electrode, such as Fe, Ni.

Therefore, the negative electrode of the conventional brown gas generator has the precipitation of such metals.

Thus, in order to improve the metal production efficiency, generated element needs to be removed from the production chamber as soon as possible after generation.

Because the conventional brown gas generator in ref [8] has the vibration perpendicular to the electrode, it increases the precipitation on the negative electrode in the brown gas generator. Therefore, I would like to propose the new transmutation reactor which has H_2O vibration along with lateral metal electrode to improve the transmutation rate and to have high-speed H_2O flow from transmutation chamber to the metal collection chamber with metal plate which collect the metals as is shown in Fig.6.

B. Transmutation rate

Transmutation rate is improved by the H_2O motion perpendicular to the femto- H_2 trajectory, but Ohmasa gas generator (conventional brown gas generator) uses the metal electrode vibration perpendicular to metal electrode, it increases the collision rate of H_2O onto metal electrode and increase the precipitation of generated metals.

Thus, to improve the transmutation rate, H_2O vibration along the metal electrode with ultrasonic transducers, and high speed H_2O flow along with metal electrode which is also for the improvement of metal generation to collect metals in the separate chamber.

C. Gas Collection

As is discussed, Hg and Cd are volatile and they evaporate and stay as gases in the chamber till they decay to metal. Thus, brown gas generator needs to have Hg and Cd collection mechanism of Hg and Cd gas to collect Ag and Au. It is also for the safety because both of them are hazardous. Conceptualized Transmutation Reactor needs to have precious metal collection mechanism and H₂O flow to with lower noble metal concentration needs to be circulated after collecting precious metals. Precious metal can be collected by their precipitation on the metal electrode with negative voltage.

Hg and Cd gas can be collected in potassium permanganate solution.

D. W to Au

As is shown in Table 22, ¹⁸¹W and ¹⁸³W are transmuted to 187Au, all isotopes are transmuted to ^{184~188}Os, ^{188,189,191}Ir, ^{190~193}Pt. Production of Au, Pt form W is possible, and if Au can be collected from vaporized Hg, Pt also can be produced effectively with negative metal plate electrode. Otherwise, production of metal of from Os to Pt, and Au can compete. Therefore, starting element is important, and for Au and Pt production, W is available because Cu has issue which also produce Ag, meaning that Ag and Au cannot be separated.

E. Mo to Ag

				-	2	Te	8			_						10	_			5 10 1	0	Act	_		-	e d	-	-		100	
	42	Mo			43	Тс	6		44	Ru	_		45	Rh	_	_	46	Pd			47	Ag	_		48	Cd	_		49	In	
is ot p e	N A	h ai f- lif e	D P	is ot p e	NA	h al f- líf e	D P	is ot p e	N A	h al f- lif e	D P	is ot p e	NA	h al f- lif e	D P	is ot p e	N A	h al f- lif e	DP	is ot p e	N A	h ai f- lif e	Dp	is ot p e	NA	h al f- lif e	D P	is ot p e	N A	h al t- lif e	Ð
92 Mo	14.8 4%	>1.9 ~ 10 20 y	92Z1	95 mT c	syn	61 d	95M 0,95 Tc	96R Y	5.52 %	Stab le	T	99 Rh	syn	16.1 d	99R U	100 Pd	syn	3.63 d	100 Rh	105 Ag	syn	41.2 d	105 Pd	106 Cd	1.25	> 9.5x 10 ¹⁷ V	106 Pd	113 In	4.30 %	Stab le	
93 Mo	syn	4,00 0 y	93N b	96 Tc	syn	4.3 d	96M	97R u	syn	2.9 d	97T C	101 Rh	syn	3.3 y	Ru	Pe	1.02	Stab le		106 mA 9	syn	8.28 d	106 Pd	107 Cd	syn	6.5 h	107 Ag	115 In	95.7 0%	4.41 ×10 ¹	115 Sn
94 Mo	9.25 %	Stal		97 Tc	syn	2.6x 106 y	97M 0	98R	1.88	Stab le		101 mR h	syn	4.34 d	101 Ru,1 01R	103 Pd	syn	16.9 91 d	103 Rh	107 Ag	51.8 39 %	Stab le		108 Cd	%	6.71 0x ¹⁷	Pd				
		Stat		97 mT c	syn	91 d	971 C	99R	12.7 0%	Stab le	.,	102 Rh	syn	207 d		104 Pd		Stab le		108 mA g	syn	418 y	108 Pd,1 08A 9	109 Cd	syn	462. 6 d	109 Ag				
		Stal le		98 Tc	evn	4.2x 106 y	98R u	100 Bu	12.6 0%	Stab le	2	102 mR h				105 Pd		Stab le		109 Ag	48.1 61 %	Stab le		110 Cd		Stab le					
	%	le		IC	e	05 y	u.	101 Ru	0%	Ie	e i	103 Rh	100 %	Stab le			27.3 3%	Stab le		111 Ag	syn	7.45 d	111 Cd	111 Cd	12.8 0%	Stab le					
98 Mo	24.1 3%	>1x 10 ⁴⁴ y	98R 4,99 mTc	99 mT c	syn	6.01 h	99T C	102 Ru	31.6 0%	Stab le		105 Rh	syn	35.3 6 h	105 Pd	107 Pd	trac e	6.5x 10 ⁶ y	107 Ag						24.1 3%	Stab le					
	svn	65.9	99m Tc					10.000		39.2 6 d	103 Rh						26.4 6%	Stab le						113 Cd	12.2 2%	7.7x 10 ¹⁵ y	113I n				
100 Mo	9.63 %	7.8x 10 ¹⁸ y	100 Ru						18.7 0%	Stab le							11.7 2%	Stab le						113 mC d	syn		113I n,11 3Cd				
								106 Ru	syn	373. 59 d	106 Rh															> 9.3x 101 7 y	Sn				
																									syn	53.4 6 h	115I n				
																								116 Cd	7.49 %	2.9x 101 9 y	116 Sn				

Table 23 Transmutation Route from Mo to Ag

In order to produce Ag and Pd from base metal, Mo is option because molybdenum has an atomic number close to those of these precious metals. Because Ru, Rh are also noble element, production of Pd and Ag competes with Ru and Rh.

Platinum group elements such as ruthenium (Ru), rhodium (Rh), and palladium (Pd) are used as exhaust gas catalysts for automobiles to reduce nitrogen oxide (NOX) generation, catalysts for chemical industries such as petrochemicals and pharmaceuticals, etc. they are widely used. Therefore, production of these element benefits these industries. For the production of these element, starting metal of Mo is available.

Some of the transmuted isotopes are unstable with the half-life is longer than a few days, which will decay to the stabler isotopes in platinum group.

X. DISCUSSION

A. Precious Metal Production

Platinum group elements are ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt), which are widely used in automobile exhaust gas catalysts to reduce nitrogen oxide (NOX) generation, and catalysts for chemical industries such as petrochemicals and pharmaceuticals.

All platinum group metals are fairly rare, but rhodium, osmium (Os), and iridium (Ir) are particularly rare.

They can be mass produced by transmutation from W and Mo. Some of them is stable isotopes, but many of them is isotopes with shorter half-life and decay to other platinum group elements.

B. Helium-3 Production and Tritium Transmutation from Nuclear Power Plants.[8]

This reactor can produce helium-3 and simultaneously reduce tritium concentration in tritium contaminated water from nuclear power plants by transmutation. Thus, impact on the industry is enormous.

C. Diffilulty in Finding the Transmutation Route

Now I used Wikipedia data of Isotope, and it is tedious and may have some mistakes. Thus, I would like the researcher to develop software to find the rout of transmutation based on the latest study of nucleus stability.

XI. FOR MASS-PRODUCTION OF NOBLE METALS

Other than Ag and Au, if the reactor has a mechanism to collect the desired element, mass production of the desired element becomes possible. Thus the noble metal can be collected in the transmutation reactor in strong allaline aqueous with plate applied the negative voltage to precipitate the noble metal.

 A. Brown Gas Generator that has Collecting Mechanism of the Desired Target Element.(Noble Metals Collection)
I think that noble metal can be precipitate on the metal

with negative voltage in strong alkaline aqueous.

But this competes with B.

B. Brown Gas Generator that has Collecting Mechanism of the Desired Target Element.(Hg and Cd Gas Collection)

I would like to propose the brown gas generator to have the mechanism that collecting gas and generated elements in the chamber for $^{197}_{79}$ Au[stable] and $^{107}_{47}$ Ag[stable].

XII. POWER GENERATION BY BURNING BROWN'S GAS WITH COLLECTION OF HELIUM-3 AND HYDROGEN[3],[8]

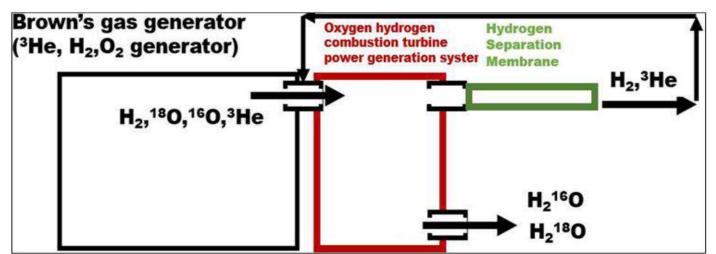


Fig 8 Conceptualized Hydrogen Turbine System to Generate Power and to Collect 3He and ^{16,18}O.

Because this transmutation reactor created helium-4, helium-3 hydrogen oxygen18, oxygen-16, burning in hydrogen turbine can produce power greater than input power of electrolysis in transmutation reactor due to the mixture of helium, and it is easier to retrieve oxygen-18 from $\rm H_2O.$

And helium can be filtered with hydrogen and they need to be return to hydrogen turbine input to increase the produced power.

Study on the mixing helium-4 with hydrogen and oxygen is reported. They use helium-4 and they showed the clear difference between other gas and helium-4.

XIII. PRECIOUS ELEMENT MASS-PRODUCTION AND OF HELIUM-3

Because transmutation is continuous and it proceeds beyond the target metal towards higher atomic number elements, transmutation reactor needs to have the mechanism to stop transmutation to the target element. For precious metal it can be collected by standard method to use negative metal electrode for precious metals to be precipitated on.

Possibility is to use gas phase element; Hg in strong alkaline aqueous evaporates from the aqueous, and decay to gold.

Due to the limitation of production of precious metal and helium-3 from earth, we should have the large-scale Transmutation reactor to produce the precious rare elements for the industry.

XIV. CONCLUSION

A. Ohmasa's Experiments are Proved to be Correct by Route Analysis Based on My Femto-H₂ Transmutation Mechnaims.

Cu and Cs have the routes to Ag and Au proved by the transmutation route analysis based on my femto-H $_2$ transmutation mechanism.

B. Porposition to Devalop Large-Scale Conceptualized Transmutation Reactor to Produce the Desired Rare Element on Earth

Because transmutation proceeds beyond the desired element, it needs the mechanism to collect the desired element before the transmutation to the next isotope.

Due to the risk in shortage of rare element, such as helium-3, helium-4, Pd Rh Pt, etc, large scale transmutation reactor can mass-produce these rare elements.

REFERENCES

- [1]. Noriyuki Kodama, Novel Cold Fusion Reactor with Deuterium Supply from Backside and Metal Surface Potential Control, in International Journal of Innovative Science and Research Technology, Jun(2021), Volume 6, Issue 6, available from Scribd : https://bit.ly/2S3m5Tu
- [2]. Noriyuki Kodama, Conceptualized Cold Fusion Reactor with Improved Reaction Rate by Segregating Deuterium at Grain Boundaries, in International Journal of Innovative Science and Research Technology, May (2023), DOI : https://doi.org/10.5281/zenodo.7943342

- [3]. Noriyuki Kodama, Brown Gas Generator by Transmutation of H2O with Femto-H2 based on Cold Fusion (Brown Gas is a Mixture of Hydrogen, Oxygen, and Helium-3), in International Journal of Innovative Science and Research Technology, September (2023), Volume 8, Issue 9, DOI : https://doi.org/10.5281/zenodo.8343492
- [4]. IWAMURA, T. ITOH, M. SAKANO, S. SAKAI, S. KURIBAYASHI, Low Energy Nuclear Transmutation in Condensed Matter Induced by D2 Gas Permeation Through Pd Complexes: Correlation Between Low Energy Nuclear Transmutation in Condensed Matter Induced by D2 Gas Permeation Through Pd Complexes: Correlation Between Deuterium Flux and Nuclear Products, in Tenth International Conference on Cold Fusion. 2003, https://www.lenrcanr.org/acrobat/IwamuraYlowenergyn.pdf
- [5]. Noriyuki Kodama, Correct Nucleus Model proved by Transmutation Experiment by Cold Fusion (Neutron to be Tightly Bound Proton-Electron Pair and Nucleus to be Constituted by Protons and Internal Electrons and no Neutrinos Exist), in International Journal of Innovative Science and Research Technology, May(2022), Volume 7, Issue 5, DOI : https://doi.org/10.5281/zenodo.6655161
- [6]. Ryuushin Ohmasa, Techniques and methods for detoxifying radioactive substances such as radioactive cesium 137 and 134, March 23, 2015, [Publication number] JP 2015-55527 (P2015-55527A) https://www.j-platpat.inpit.go.jp/c1800/PU/JP-2015 055527/969A0660E4FC5281EC3C72164407ED7A45 DF2C4EAB912E9CAC680EE2D49F975A/11/ja
- [7]. Ryuushin Ohmasa, A method of converting elements such as calcium, copper, magnesium, cesium, etc. into more useful elements, and a method of rendering radioactive materials harmless by applying this element conversion technology, Japanese patent application number, [Release date] 2022/2/08 [Publication number] P2022-23989A Available from https://www.jplatpat.inpit.go.jp/c1800/PU/JP-2022-023989/E168B2BC2F97F5FD4E656F5362655E23E72 A529C305C99EBA1B8749CE0D33FA6/11/ja
- [8]. Noriyuki Kodama, Conceptualized Brown Gas Generator to Transmute Tritium and to Mass-Produce Helium-3, in International Journal of Innovative Science and Research Technology, October(2023), Volume 8, Issue 10, DOI : https://doi.org/10.5281/zenodo.10017701