
Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1019 www.ijisrt.com 1104

Vulnerability Analysis of GraphQl Api’s after

Integrated with React Js

1Vinayak Iswalkar

University of Mumbai

Institute of Distance & Open Learning

(IDOL), Mumbai, India

2Prashant Singh

University of Mumbai

Institute of Distance & Open Learning

(IDOL), Mumbai, India

3Neha Mahesh Raut

Assistant Professor (AI&DS)

Vidyavardhini's College of Engineering and Technology

4Dr. Uday Aswalekar

HOD (Mechanical Engineering)

Vidyavardhini's College of Engineering and Technology

Abstract:- GraphQL is a novel query language proposed

by Facebook to implement Web-based APIs. In this

paper, we will present a practical analysis of graphql

api’s while integrating with react js. First, we will see

how graphql works in web applications and How we can

integrate it with react js. After that, we will work on the

vulnerability finder tools to check the loopholes in the

api’s. For the result, we will show the various

vulnerability issues in graphql and provide the solution

to fix those issues.

Keywords:- Web Development, Full Stack Development,
React.js, Graphql, Vulnerability, Bug Bounty.

I. INTRODUCTION

A flexible and intuitive query language called GraphQl

is intended for use in the development of client applications

and systems that need to describe their data requirements

and interactions. GraphQL adopts a declarative model for

data retrieval, allowing clients to define precisely what

information they require from the API. Hence, unlike REST

APIs, which offer several endpoints to enable the client to
access the data it requires, GraphQL offers a single

endpoint. GraphQL clients usually use a single query to

obtain all the data required to complete a task; in contrast,

REST clients generally require clients to request numerous

endpoints. Thus, the number of endpoints accessed by REST

clients and the number of endpoints reached by the same

client after refactoring to utilize GraphQL are compared in

this RQ. Major web services are now supporting GraphQL

as it gains popularity.

II. METHODOLOGY

The answer to a more fluid and personalized method

for sophisticated API data retrieval turned out to be

GraphQL. The abundance of queries and endpoints in

classical REST adds to the complexity and duplication of

data in API interactions. GraphQL is essentially a server-

side runtime and query language for APIs that let clients

submit numerous resource requests using different kinds and

attributes.

This is the difference between REST and GraphQL
requests.

A. REST:

Since it is not restricted to any particular transfer

protocol, REST (Representational State Transfer) is an API

(Application Programming Interface) that facilitates client-

server communications on a web application using the

HTTP protocol. RESTful clients retrieve resources and

either display or utilise them, while RESTful servers offer a

way to access resources (data sources). Using the supplied

parameters, GraphQL resolvers can be used as a REST API
gateway to create and submit requests to the API. If the

parameters are not correctly validated, resolvers may be

susceptible to SSRF attacks.

Fig 1 Sample Raw Inputs REST Multiple Endpoints

B. GraphQL:

Facebook Inc. has developed GraphQL, an open-source

query language for building new APIs. Only the data

specified by a type system in the relevant Web Service is

returned by GraphQL after it has completed server-side
queries. GraphQL is not directly tied to any database, even

though it is a query language; that is, it is not restricted to

any particular database, be it SQL or NOSQL. GraphQL is

independent of the server-side programming language and

database since it is merely a translator (query language) and

runtime.

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1019 www.ijisrt.com 1105

Fig 2 Sample Graphql Query Single Endpoint

GraphQL's fundamental concept is based on mutations

and queries that only return and specify the data we actually

need. This is an illustration of a mutation and query in

GraphQL.

Without over- or under-fetching, the clients describe

the needed data and its format in queries they send to the

server.

In contrast to REST, GraphQL has become more

popular for the main reasons listed below:

 Easier to Fetch and Manage Data:

A single endpoint is used for both data queries and

modifications. This covers making changes or requesting

data (e.g., CRUD methods).

 Schema as API Documentation:

Both queries and changes to the data are made using a

single endpoint. This includes requesting data or making

changes (e.g., CRUD methods).

 Use in Parallel with REST:

It takes gradual adoption to move away from legacy

artefacts rather than just deleting and switching. Developers
can improve existing REST APIs without disrupting current

clients thanks to GraphQL's built-in versioning.

Because it doesn't need to make numerous calls to

different endpoints to obtain our data, it is faster than REST

APIs.

III. INTEGRATION WITH REACT JS

We must first learn how to call a GraphQL API over

HTTP before we can begin testing the various GraphQL

components. There are various methods by which we could
initiate an API. I've listed a few simple, often used methods

below:

Let's review the top five methods for using React to

retrieve data from GraphQL APIs.

Although there are several well-known libraries

designed to interface with GraphQL APIs from a React

application, there are numerous methods for retrieving data

using GraphQL.

I've included code samples that demonstrate how to use

each of these various methods to connect React with

GraphQL and how to fetch or "query" data in the shortest

amount of code possible.

 Apollo Client :

Apollo Client is the most widely used and extensive

GraphQL library.

We can manage data locally using an internal cache

and a comprehensive state management API, in addition to

using GraphQL to fetch remote data, as we are doing here.

In order to utilize Apollo Client, we must first install

GraphQL and the primary Apollo Client dependency:

The Apollo Client is intended to be utilized throughout

our whole application. In order to accomplish this, we will

pass a created Apollo client down our entire component tree
using a unique Apollo Provider component. A GraphQL

endpoint must be specified as the URI value when creating

an Apollo Client. Furthermore, a cache needs to be

specified. Apollo Client has a built-in in-memory cache that

it uses to manage and cache our queries and the data they

return locally:

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1019 www.ijisrt.com 1106

We can use all of the various React hooks that Apollo

Client provides for all of the various GraphQL operations

once we've set up the Provider and client within our App

component. With a special hook called useApolloClient, we

can even use the created Apollo Client directly. We'll make
use of the useQuery hook because this is just a data query.

 Urql :
Urql is another feature-rich library that links React

apps and GraphQL APIs. It is slightly smaller in size and

requires less setup code, but it aims to give you many of the

features and syntax of Apollo. While it lacks Apollo's

integrated state management library, it does offer caching

capabilities if desired. Installing the urql and GraphQL

packages is required in order to use urql as your GraphQL

client-library.

npm install urql graphql

You should use the specific Provider component and

create a client with your GraphQL endpoint, just like Apollo

did. Keep in mind that you are not required to specify a

cache by default.

Urql is very similar to Apollo in that it provides you

with custom hooks that manage all of the common GraphQL

operations—thus, the names are similar. Once more, the urql

package's useQuery hook is available to you. That being

said, you can write your query using a template literal and

do away with the need for the gql function. You can

destructure the array you receive back from useQuery as an

array rather than an object. This array's first element is an
object called result, which provides you with several

destructible properties, including data, fetching, and error.

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1019 www.ijisrt.com 1107

You can manage both your error and loading states

while you're fetching your remote data, just like how Apollo

displays the data that you fetch.

 React Query + GraphQL Request :

As we will see later, it's crucial to note that you can

interact with your GraphQL API without a complex, heavy-

weight GraphQL client library like urql or Apollo. Libraries
such as Apollo and urql were developed to provide you with

more tools to manage the server state in your React client in

addition to assisting you with all the standard GraphQL

operations. In addition, they have unique hooks that simplify

handling loading, errors, and other related states, among

other repetitive tasks. Let's look at how you can use a very

simplified GraphQL library for your data fetching in

conjunction with an improved method for handling and

caching the server state that you're integrating into your

application, keeping that in mind. Data can be easily

retrieved with the aid of the graphql-request package.

Using the Provider component of React Query, you

build a query client with the option to configure default data

fetching parameters. The useQuery hook can then be used

within your app component or any of its offspring.

You only need to pass it a key value as the first

argument to act as an identifier in order for the result of your

operation to be stored in the React Query cache. This makes

it very easy to refer to and retrieve data from the cache, as

well as to invalidate or refetch a specific query in order to

retrieve updated data. Once more, the outcome of executing

that request will be returned by this hook. You must indicate

how to retrieve the data in order for the second argument,

useQuery, to function. React Query will handle resolving the

promise that the GraphQL request returns.

 React Query + Axios :

To fetch your data, you can use even more

straightforward HTTP client libraries that are unrelated to

GraphQL. The popular library axios can be applied in this

situation. Once more, it can be combined with React Query

to obtain all the unique hooks and state management

features.

A POST request must be made to your API endpoint in

order to execute a query from a GraphQL API using an

HTTP client such as Axios. You will supply an object with a

property called query, which will be set to your film's query,

for the data that you send along with the request.

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1019 www.ijisrt.com 1108

You'll need to provide a little more details with Axios

regarding how to fulfil this commitment and retrieve your

data. For the data to appear on the data property that

useQuery returns, you must tell React Query where the data
is located.

Specifically, you receive the data back on the property

of response.data International Journal of Innovative Science

and Research Technology SEM VI, 3rd year, October- 2023

 React Query + Fetch API :

Using React query in conjunction with the fetch API is

the most straightforward method of data retrieval among all

of these approaches.

You just need to install react-query within your

application; no thirdparty libraries need to be installed

because the fetch API is built into all current browsers.

You can replace your axios code with fetch once the

entire application has the React Query client. The only slight

variation is that you must include the content type of the

data you want returned from your request in a header that

you specify. It's JSON data in this instance. Additionally,
you must stringify the object you're sending as payload by

setting its query property to your movie's query:

The fact that axios handles errors automatically is one

advantage over fetch. As the code above illustrates, in order

to use fetch, you must look for a specific status code—more

specifically, one that is greater than 400. This indicates that
there is a problem with your request. If so, you will need to

manually throw an error, which your useQuery hook will

handle. Otherwise, just return the JSON data and display it if

the response falls between the 200 and 300 range, indicating

that the request was successful.

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1019 www.ijisrt.com 1109

IV. VULNERABILITY FINDERS

 Scanning a GraphQL API for Vulnerabilities :

GraphQL-based APIs can be scanned using tools such

as Invicti, ManageEngine, PortSwigger, graphql.security,

etc., which make use of the web application's current

security checks.

 GraphQL Security Escape

Escape builds its products with developers in mind,

and the same is true of its security checker for GraphQL.

You can be sure that the brand-new vulnerability will be

quickly scanned because we are one of the very few

suppliers of security services.

 There's More, Though:

The initial scan takes roughly 60 seconds to begin.

Vulnerabilities have been updated in Escape's database.

demonstrates actual risks as opposed to potential risks.

Fig 3 Escape Security Response

 Inviciti GraphQL Scanner

Inviciti is one of the most trusted and popular names

among the scanning APIs. But what a customer wants to

know is how many types of attacks it can take care of, so

here’s a list of severe attacks and vulnerabilities that can be

scanned with this product:

Fig 4 Invinciti Tool Response

 StackHawk GraphQL Security Testing

The best part of using StackHawk’s GraphQL testing is

it checks for all the GraphQL vulnerabilities at every pull

request.

And if that key feature is not enough to win your heart,

here are more exciting features from StackHawk:

Automated security testing. Lightning-fast testing and
fixing. Easy UI. Magnificent documentation for easy self-

fixing

Fig 5 StackHawk Response

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1019 www.ijisrt.com 1110

 Qualysec GraphQL API Penetration Testing

Qualysec provides professional GraphQL API

Penetration Testing and is a cybersecurity assessment

service, so you can uncover vulnerabilities and fix them and

be assured of all security issues. And here are some

interesting features that they provide:

Product analyzed for the OWASP Top 10 GraphQL
API Testing to get protected against the most common

threats. Dynamic API testing. Static API testing. Software

composition analysis. Apart from security features, their

report for vulnerability scan is outstanding as it includes a

penetration report, retest report, Letter of attestation, and

Security certificate.

 Bright Security API Testing

Bright security services are designed for modern

microservice environments and provide seamless integration

with SDLC, CI/CD, and git workflows so the vulnerabilities

can be detected as easily as possible. And here are some key
features of Bright security: Convenient CLI for developers.

100% SaaS-based. CI/CD Integration. Vulnerabilities

mapped to OWASP API Security Top 10.

Fig 6 Bright Security Response

There are other tools as well. But these 4 are market

leaders.

V. FIXING VULNERABILITY

Because React is so simple to use, scale, and maintain,

it has revolutionised the web development ecosystem.

Unidentified assets, which can be a part of a library or a

third-party integration, can raise the likelihood of

vulnerabilities existing, so a stable codebase is not always a

secure codebase. Furthermore, every new library and update

release may raise the possibility of introducing new

vulnerabilities that are not immediately noticeable.

 Cross-Site Scripting (XSS)

 CWE-79:
One of the most prevalent vulnerabilities on the

internet, cross-site scripting (XSS) has been listed in the

OWASP top 10 for a number of years. When a hacker

inserts malicious client-side scripts into online applications,

XSS occurs. These scripts will probably run as valid code,

giving the attacker complete control over the programme.

XSS attacks come in a variety of forms, including DOM-

based, stored, and reflective attacks.

Developers should be aware that React packages, like

graphqlplayground-react, Semantic-UI, and React-DOM,

may be vulnerable to XSS attacks if the code has not been

developed securely.

Best Practices for Preventing Cross-Site Scripting

(XSS) in React

 Recognise how data is auto-escaped by JSX and React

createElement before it is rendered.

 Recognise why dangerouslySetInnerHTML is named

that way, and try to avoid it at all costs. Make sure you

are escaping anything you are passing to it if you do

need to use it.

 Use the "DOMPurify" library to sanitise data before

rendering it in DOM

 Use blacklists and whitelists for validation testing

Server-Side Rendering Attacks in React

Server-side rendering is a key feature in React that

helps developers improve performance.

This is because, in order to speed up the page loading

process, HTML is rendered in the back end and sent to the

front end rather than being generated by JavaScript on the

client-side. Search engine optimisation (SEO) is also aided

by it.

Fig 7 SSR Attacks

Make sure you initialise the state from the server-side
if you are using Redux for state management. "Inject Initial

Component HTML and State" is one of these.

For instance, the script's JSON.stringify function won't

look for potentially harmful inputs. Thus, it is possible to

insert malicious JavaScript code that modifies valid data.

window.__STATE__ = ${JSON.stringify({ username:

"AYX", Letter: "

 JavaScriptConduct data sanitization before rendering in
DOM with the use of the “DOMPurify” library -Use a

module that will avoid serialization, such as Serialize

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1019 www.ijisrt.com 1111

 SQL Injections in React

Many web applications have SQL injection

vulnerabilities, and React is no exception. SQL

vulnerabilities are a means by which attackers can get

around user permission and ultimately compromise

databases. This is a serious concern because there could be

significant financial losses and compliance issues in the

event of a database breach involving sensitive or personal
data.

Error-based, logic-based, and time-based injections can

be common in React applications. This is primarily because

the principles of least privilege are not followed, or there

may be a coding bug that prevents user input from being

filtered.

Fig 8 SQL Injection Attack

Best Practices for Preventing SQL Injections in React

 In order to guard against SQL injection, all user inputs

must pass through a stringent whitelist filter, which

guarantees that all inputs are carefully examined before

being processed.

 Applying the least privilege principle by granting each

account the minimal amount of privileges. For

example, a website should only be granted the ability to
extract content using SELECT statements; it should not

be granted access to other privileges such as UPDATE,

INSERT, or DELETE.

 It is possible to find and fix security flaws in your

React applications before hackers take advantage of

them by routinely scanning them with vulnerability

scanners like Acunetix. Also checking that every API

function complies with its corresponding API schema,

especially to prevent time-based SQL injection.

 Broken Authentication

One serious security flaw that can impact all web apps,
including React apps, is broken authentication. Hackers can

easily circumvent or compromise the authentication

solutions implemented in the app by taking advantage of

poorly implemented session management functions and

authentication processes.

Fig 9 Broken Auth

 How to avoid broken authentication in React?

 Whenever feasible, using multi-factor authentication

 Enforcing password strength checks

 Employing NIST 800-63 B recommendations for the

length and complexity of passwords;

 Using uniform messages for all outcomes related to

authentication
 Generating a fresh session ID for each user login via a

secure, server-side session manager.

 To keep the app safe, it's also essential to store session

IDs safely and invalidate them at the end of the session.

 Zip Slip

A security flaw in React apps that allows users to

upload zip files is called zip slip. This feature can be turned

on by web developers to minimise file sizes during

uploading. After that, the app decompresses these files in

order to extract the original zip files. Hackers can use zip

slip, which is essentially a directory traversal, to extract
files, usually from archives.

A file system's components may occasionally stay

outside of the folder for which they are intended. The

assailant might

 Obtain entry to these file sections

 Replace them

 Call these files from a distance or have the system do

so.

They are able to execute commands remotely on the

user's device in this manner.

You have to be extra cautious about this React security

vulnerability. It can lead to overwriting of sensitive

resources like configuration files. What’s worse? The

attacker can exploit this not only on the client-side but also

on the server-side.

Fig 10 Zip Slip Attack

 How can I prevent zip slippage in React?

 Making sure that no malicious file gets into the

application is the only way to avoid this security

hazard.

 Making certain that the file names are standard -

Prohibiting the use of special characters in file names

 Constantly matching and comparing the names with

standard, regular expressions

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1019 www.ijisrt.com 1112

 Generating new names for each uploaded file and

renaming them all before the app uses or stores them in

a zip file.

 Implementing JWT Authentication in React

Applications

Web applications frequently employ SON Web Tokens

(JWT) for authentication. An example of how to incorporate
JWT authentication into a React application that

communicates with a GraphQL API can be found here:

In the below example, the React component captures

the username and password from the user, sends a request to

the /api/login endpoint, and receives a JWT token in

response. The token is then stored in the local storage for

future API requests.

 Securing GraphQL Resolvers with Authorization

Middleware

It is imperative to secure GraphQL resolvers in order to

manage access to particular information or features. Here's

an example of how authorization middleware is

implemented using Apollo Server in a GraphQL resolver:

The privateData resolver in the aforementioned

example accesses the context object to determine whether

the user is authenticated. A ForbiddenError is raised,

preventing access to the private data, if the user is not

authenticated.

 Protecting Sensitive Data in GraphQL Queries and

Mutations
Protecting sensitive data in GraphQL queries and

mutations involves input validation and sanitization. Here’s

an example of implementing input validation in a GraphQL

resolver using a library like joi:

http://www.ijisrt.com/

Volume 8, Issue 10, October – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23OCT1019 www.ijisrt.com 1113

In the example above, the registerUser mutation

validates the input fields (email and password) using joi. If

the input is invalid, an error is thrown, preventing the

registration process.

 Role-Based Access Control in GraphQL APIs

Role-based access control (RBAC) allows different

levels of access based on user roles. Here’s an example of
implementing RBAC in a GraphQL API using middleware:

VI. CONCLUSION

By implementing authentication and authorization

mechanisms, utilizing JWT authentication, XXS Fix,

Broken Auth fix, Zip Slip Fix and SQL Injection fix to

Securing GraphQL APIs in React applications is essential to

protect against security threats., incorporating role-based

access control, and securing GraphQL resolvers, you can

build secure and robust React applications that handle
sensitive data with confidence. By following the best

practices outlined in this guide, you can ensure the security

of your React application and GraphQL API.

REFERENCES

[1]. F. Inc, "Introduction to GraphQL," 2018. [Online].

[2]. Intro to React, 2022 React Legacy [Online]

[3]. Helgason, Arnar Freyr. "Performance analysis of

Web Services: Comparison between RESTful &

GraphQL web services." (2017).
[4]. Reddy, Ch Ram Mohan, and RV Raghavendra Rao.

"QoS of Web service: Survey on performance and

scalability." Computer Science and Information

Technology 3.9 (2013): 65-73.

[5]. M. Host, B. Regnell, and C. Wohlin, “Using students

as subjects—a ¨comparative study of students and

professionals in lead-time impact assessment,”

Empirical Software Engineering, vol. 5, no. 3, pp.

201–214, 2000.

[6]. B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A

large scale study of programming languages and code

quality in GitHub,” in 22nd International Symposium

on Foundations of Software Engineering (FSE), 2014,

pp. 155–165.

[7]. Facebook Inc., “GraphQL specification (draft),”

https://facebook.github.io/graphql/draft/, 2015,

[accessed 15- October-2018].

http://www.ijisrt.com/

