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Abstract:- Metallocene complexes have gained 

significant attention in the field of biomedical research 

due to their versatile chemical properties and potential 

applications in various the srapeutic areas. This mini 

review provides a concise overview of recent 

advancements in the synthesis of metallocene complexes 

and their emerging roles in biomedical applications. The 

synthesis of metallocene complexes involves the 

coordination of transition metals, typically from the 

ferrocene family, with organic ligands. This process 

yields compounds with unique structural features, 

allowing for tailored designs that can be optimized for 

specific biomedical purposes. The mini review highlights 

key synthetic methodologies employed in the preparation 

of metallocene complexes, emphasizing the importance 

of precision and control in achieving desired molecular 

structures. In the biomedical context, metallocene 

complexes have demonstrated promising properties for 

therapeutic applications. Their ability to interact with 

biological systems at the molecular level opens avenues 

for the development of novel drugs, imaging agents, and 

diagnostic tools. The review explores the potential of 

metallocene complexes in cancer treatment, 

antimicrobial activity, and as contrast agents in medical 

imaging. Finally, the synthesis of metallocene complexes 

and their biomedical applications represent a 

burgeoning area of research with the potential to 

significantly impact healthcare. This mini review serves 

as a snapshot of the current state of the field, 

summarizing key developments and paving the way for 

further exploration of metallocene complexes in the 

realm of biomedicine. 
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I. INTRODUCTION AND GOALS 

 

In recent years, the intersection of inorganic chemistry 

and biomedical research has witnessed a surge of interest, 

with the synthesis of metallocene complexes emerging as a 

focal point in this dynamic and interdisciplinary field. 

Metallocene, characterized by the bonding of transition 

metals with organic ligands, presents a unique class of 

compounds with diverse structural features and intriguing 

chemical properties [1,2]. The marriage of metal-containing 

compounds and biomedical sciences has opened new 

avenues for the development of innovative therapeutic 

agents, diagnostic tools, and imaging agents. Metallocene 

complexes, particularly those derived from the ferrocene 

family, offer a versatile platform for molecular design, 

allowing researchers to tailor structures for specific 

biomedical functions. As such, the controlled synthesis of 

these complexes has become a critical focal point, requiring 

precision and innovation to unlock their full potential in the 

realm of healthcare [3,4]. Specially, metallocene 

incorporating β-Diketones exhibit a diverse array of 

applications, spanning from their utilization in metal 

extraction through chelation processes [5-7] to their 

incorporation in biomedical contexts, notably as constituents 

of antibacterial antibiotics [8,9]. Additionally, these 

compounds find application as ligands in metal complexes, 

contributing to catalytic processes [10,11].  

 

Platinum, rhodium, iridium, and palladium are among 

the frequently employed catalytic metals. In the Monsanto 

process, rhodium compounds serve as catalysts, facilitating 

the conversion of alcohols into carboxylic acids [12,13]. 

Additionally, rhodium (I) complexes of β-diketonates find 

application in the low-temperature hydrogenation of 

unhindered alkenes [14,15].  

 

Catalytic processes conventionally proceed through a 

mechanistic sequence, beginning with oxidative addition to 

the metal facilitated by a compatible substrate. Subsequent 

stages encompass migration, insertion of a suitable ligand 

between the metal and the coordinated product, culminating 

in the reductive elimination of the final product [16,17]. The 

impact of various substituents on oxidative addition 

reactions is significant, and this concise review aims to 

delve into diverse synthetic approaches of the cutting-edge 

metallocene. 

 

II. SYNTHETIC METHODS OF METALLOCENE 

 

The pursuit of synthesizing metallocene moieties is 

driven by their significance in a variety of applications and 

their distinctive chemical properties. Additionally, a detailed 

analysis of the fundamental chemistry underpinning 

metallocene derivatives will be incorporated. 
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 Fundamental of Ruthenocene Chemistry 

The extensive organic chemistry associated with 

ruthenocene, pertinent to this investigation, is elucidated in 

Schemes 1 and 2. Scheme 1 illustrates the chemical 

processes governing mono-substitution or di-substitution for 

ruthenocene, leading to 1 and 1' substituted products. The 

synthesis of monolithiated and dilithiated ruthenocene 

species involves the reaction of ruthenocene with n-

butyllithium [18-20]. Likewise, monoacetylated and 

diacetylated derivatives are acquired by reacting 

ruthenocene with the corresponding anhydride in the 

presence of aluminum trichloride. Significantly, the 1,1'-

diacylation patterns in di-substituted products result from 

the deactivation of cyclopentadienyl rings following the 

initial acylation at the 1 position, facilitated by electron-

withdrawing and deactivating aroyl groups. As a result, the 

second substitution necessitates occurrence at the 1' 

position. 

 

The formation of mercurated products involves the 

reaction of ruthenocene with mercury acetate in a methanol-

ether solution [18-21]. Following separation, the mercurated 

products can be isolated and subsequently lithiated, leading 

to the production of pure monolithiated or dilithiated 

products, as illustrated in Scheme 2. The synthesis of 

ruthenocene aldehyde involves the reaction of ruthenocene 

with N-methylformanilide in the presence of phosphorus 

oxychloride [18,22]. Aryl or alkyl-substituted ruthenocene 

derivatives are acquired by reacting ruthenocene with the 

corresponding diazonium salt [18,23]. Conversely, lithiated 

ruthenocenes can be transformed into carboxylic acids 

through a reaction with carbon dioxide followed by 

hydrochloric acid [20,23], as exemplified in Scheme 2. The 

reduction of carboxylated ruthenocenes to their respective 

aliphatic chains can be achieved by reacting them with 

lithium aluminum hydride in the presence of aluminum 

trichloride [23,24]. Subsequently, conversion to the lithiated 

product is achievable through reaction with n-butyllithium. 

In this instance, the substitution pattern is observed to be 

1,2, as opposed to 1,1', owing to the activation of the 

substituted cyclopentadienyl ring by the electron-donating 

aliphatic group. 

 

Simultaneously, the lithiated forms of ruthenocenes 

undergo transformation into carboxylic acids through their 

reaction with carbon dioxide, followed by hydrochloric acid 

[20,25], as illustrated in Scheme 2. Subsequent reduction of 

the carboxylated ruthenocenes to their respective aliphatic 

chains is achieved by subjecting them to lithium aluminum 

hydride in the presence of aluminum trichloride [18,26]. The 

ensuing aliphatic products can be reverted to the lithiated 

state through a reaction with n-butyllithium. In this 

particular context, the observed substitution pattern is 1,2, in 

contrast to 1,1', and is ascribed to the activation of the 

substituted cyclopentadienyl ring by the electron-donating 

aliphatic group. 

 

 
Scheme 1 Production of a Diverse of Ruthenocene Precursors (LiBu = n-butyllithium, Hg(OAC)2 = mercury acetate, ArN2

+ = aryl 

or alkyl diazonium salt). 
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Scheme 2 Generation of Different Substituted Ruthenocene from Precursors in Scheme 1. (LiBu = n-butyllithium, LiAlH4 = 

Lithium Aluminum Hydride) 

 

A. Preparation of Metallocene Carboxylic Acids  

The generation of β-diketones via a Claisen 

condensation reaction requires the presence of a metallocene 

ester and/or an acetyl metallocene. While the lithiation 

pathway for ruthenocenic acid production is outlined in 

Scheme 2, the synthesis of metallocene carboxylic acids has 

predominantly been documented for ferrocene. Scheme 3 

delineates three distinct methods employed in the synthesis 

of ferrocenecarboxylic acid. 

 

Schmitt and Özman conducted the synthesis of 

ferrocenecarboxylic acid, revealing that the carboxylic acid 

could be derived from aliphatic-substituted ferrocenes. The 

yields for these reactions exhibited variation within the 

range of 25-86%, depending on the nature of the substituent 

(R= CH2OH, CHO, COCH3, CH2N(CH3)2), when the 

substituted ferrocene underwent reaction with potassium 

tert-butoxide in hexamethylphosphoric triamide (HMPT) 

[27]. An alternative approach to synthesizing 

ferrocenecarboxylic acid involves the reaction of ferrocene 

aldehyde in the presence of potassium hydroxide in ethanol 

[28,29]. The most commonly employed method for 

obtaining ferrocenecarboxylic acid is detailed in the Organic 

Synthesis series [30]. In this process, ferrocene undergoes an 

initial reaction with 2-chlorobenzoylchloride, yielding 2-

chlorobenzoylferrocene, as illustrated in Scheme 3. 

Subsequent reaction with potassium tert-butoxide in the 

presence of water results in the desired carboxylic acid, with 

yields ranging from 74-83%. This method was adapted in 

the current study to obtain ruthenocenoic acid. 
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Scheme 3 Production of Ferrocenecarboxylic Acid via Three Different Pathways (K-t-OC4H9 = Potassium tertiary-butoxide, 

HMPT= hexamethylphosphoric triamide) 

 

B. Synthesis of Acetyl Metallocenes    

Acetylation reactions using the Friedel-Crafts method 

have primarily been conducted on group VIII metallocenes, 

as depicted in Scheme 4. Graham and colleagues 

determined that the most effective method for acetylating 

ferrocene involves utilizing 85% m-phosphoric acid as the 

Lewis acid [31,32]. After chromatographic separation, the 

yield for this reaction reached 71%, and due to the use of the 

relatively weak Lewis acid, H3PO4, only monoacetylation 

occurs. However, phosphoric acid proves ineffective for 

acetylating the less reactive ruthenocene. In this case, 

aluminum trichloride serves as the requisite Lewis acid, 

given the diminishing reactivity of metallocenes down 

Group VIII. Remarkably, both diacetylation and 

monoacetylation are evident in this situation, attributable to 

the heightened strength of the Lewis acid involved. The 

overall yield for this reaction is 67%, and product separation 

is achieved through column chromatography. An efficient 

method for acetylating osmocene has been elucidated by 

Rausch and collaborators, involving the use of acetyl 

chloride [20]. The documented yield for this reaction stands 

at 89%, and exclusive monoacetylation is observed for 

osmocene when using acetyl chloride. In contrast, both 

monoacetylation and diacetylation are viable for 

ruthenocene and ferrocene. Diacetylation is secured with an 

excess of the reagent, while attaining monoacetylation 

demands precise stoichiometric control. 

 

 
Scheme 4 Acetylation Reactions for Group VIII Metallocenes Necessitate More Severe Conditions for M=Os Compared to 

M=Ru, while M=Fe Requires the Mildest Conditions. 
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C. Synthetic Methods of Metallocene Esters  

Metallocene esters are conventionally produced through the classical method, involving the reaction of a carboxylic acid 

with an alcohol in the presence of a catalytic quantity of a mineral acid like H2SO4 or HCl. Nevertheless, alternative pathways 

exist. It has been reported that the cobaltocene ester can be synthesized by reducing cobaltocene to the cobaltocenium anion, 

followed by its reaction with carbon dioxide in a solution of dimethylformamide/methyl iodide [33, 34], as illustrated in Scheme 

5. Esterification based on diazomethane is also prevalent, and this method has been employed for the synthesis of the methyl ester 

of 2-methyl ruthenocenoic acid [35], as illustrated in Scheme 6. 

 

 
Scheme 5 Synthesis of the Cobaltocene Methyl Ester 

 

 
Scheme 6 Synthesis of Methyl-Ruthenocene Ester 

 

D. Synthesis of β-Diketones  

Typically, β-diketones are synthesized via Claisen condensation, however, alternative pathways are available. Suzuki et al. 

have presented an alternative method for preparing β-diketones. In their approach, they heat an α,β-epoxy ketone at 80-140°C in 

toluene with small quantities of (Ph3P)4Pd and 1,2-bis(diphenylphosphino)ethane. The formation of β-diketones occurs through a 

pinacol rearrangement [36-39]. The reaction of 2-methyl-3,4-epoxy-5-hexanone under these conditions yields 80% 2-methyl-3,5-

hexanedione, as depicted in Scheme 7.  

 

 
Scheme 7 Synthesis of 2-Methyl-3,5-Hexanedione According to Suzuki Method 

 

Roth and colleagues employed a method involving the conversion of a thioester containing a β keto group in the alkyl 

position. The production of the β-diketone is achieved by exposing it to a tertiary phosphine in the presence of basic conditions 

[40, 41]. A reaction yield of 72% was achieved when butyl butanethioate was transformed into octane-3,5-dione, as illustrated in 

Scheme 8. 

 

 
Scheme 8 Synthesis of Octa-3,5-Dione by the Roth Method 
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Several innovative β-diketones, such as the 4-pivaloyl–3-methyl-1-phenyl-5-pyrazolone complex, have been synthesized by 

Umetani et al. [42,43]. This synthesis involved the condensation reaction of 3-methyl-1-phenyl-5-pyrazalone with pivaloyl 

chloride in the presence of calcium hydroxide. The yield for this reaction is 19%, as illustrated in Scheme 9. 

 

 
Scheme 9 Synthesis of 4-Pivaloyl -3-Methyl-5-Pyrazolone According to Umetani Method 

 

The synthesis approach for β-diketones, as illustrated by Cravero et al., employs acid-catalyzed condensation [44,45]. p-

NO2-benzoylacetone was synthesized by combining a mixture of p-NO2-acetophenone and acetic anhydride with an acetic acid-

BF3 complex, initially at 0°C for 30 minutes, followed by incubation at 25°C for 24 hours. The reaction is depicted in Scheme 10.  

 

 
Scheme 10 Synthesis of P-Nitrobenzoylacetone According to Cravero Method 

 

The advent of enzyme-catalyzed reactions motivated Gunslus and collaborators to clarify the microbial degradation process 

of camphor by Corynebacterium T1. Their observations revealed the degradation pathway yielding the symmetrical β-diketone 

2,6-diketocamphane from optically pure camphor [46,47]. This enzymatic degradation is depicted in Scheme 11. 

 

 
Scheme 11 Synthesis of 2,6-Diketocamphane According to Gunslus Method 

 

E. Synthesis of Metallocene β-Diketones  

 Metallocene-containing β-diketones have been 

synthesized through Claisen condensation, involving 

acetylferrocene and corresponding methyl or ethyl esters, in 

the presence of a potent base, as detailed in Schemes 12 and 

13. Hauser and collaborators [48] demonstrated an effective 

strategy for obtaining ferrocene-containing β-diketones by 

employing potassium amide as the strong base in a mixture 

of liquid ammonia and ether, as illustrated in Scheme 12. 

This method yielded 65% for 1-ferrocenylbutane-1,3-dione 

(R=CH3) and 63% for 1-ferrocenyl-3-phenylpropane-1,3-

dione (R=C6H5). Another approach by Weinmayr utilized 

sodium methoxide as the base, resulting in a yield of 29% 

for 1-ferrocenylbutane-1,3-dione (R=CH3) and 80% for 1-

ferrocenyl-4,4,4-trifluorobutan-1,3-dione (R=CF3), as 

depicted in Scheme 12 [49]. Cullen and colleagues 

introduced the hindered base lithium diisopropylamide [50] 

in the synthesis of 1-ferrocenylbutane-1,3-dione, a method 

subsequently adopted by Du Plessis et al. for the synthesis 

of various ferrocene-containing β-diketones [51]. 
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Scheme 12 Synthesis of ferrocene-containing β-diketone by Claisen condensation with the use of three different bases. R'=methyl 

or ethyl, (LiN(ipr)2 = Lithium diisopropylamide) 
 

Hauser's work demonstrated the feasibility of Claisen condensation between bisacetylferrocene and a suitable ester utilizing 

potassium amide in liquid ammonia [52,53], as depicted in Scheme 13. The resulting yields were 72% for 1,1'-bis(1-butan-1,3-

dione)ferrocene (R=CH3), and 1,1'-bis[1-(3-phenyl)propane-1,3-dione]ferrocene (R=C6H5) was isolated with a yield of 46%. 

 

 
Scheme 13 Synthesis of Ferrocene-Contaiming bis- β-Diketones. (R= CH3, or C6H5, R'= CH3, or C6H5). 

 

F. Synthesis using Grignard Reagents  

Throughout this investigation, the need arose to 

formulate novel electrolytes for electrochemical 

applications, necessitating the utilization of Grignard 

reagents [54]. Grignard reagents have been employed in 

diverse synthesis reactions, including the formation of 

alkanes, carboxylic acids, alcohols, and ketones, along with 

their application in solid-phase synthesis.        

 

 Preparation of Grignard Reagents  

Baker and colleagues observed that certain halides did 

not react with Grignard reagents unless activated 

magnesium was employed. The activated magnesium 

underwent a reaction with the halide, resulting in the 

formation of the Grignard reagent with a yield typically 

exceeding 90%. In the case of the reaction depicted in 

Scheme 14, the generation of the Grignard reagent achieved 

100% yield [55]. 

 

 
Scheme 14 Generation of a Grignard reagent according to Baker method 

 

Knochel and collaborators discovered that the conversion of iodonaphthalene to its Grignard reagent achieves a 90% 

conversion when the reagents are reacted with iPrMgBr or iPr2Mg in THF, as illustrated in Scheme 15 [56]. 
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Scheme 15 Preparation of a Grignard reagent according to Knochel method 

 

Traditionally, Grignard reagents have been synthesized in ether solvents. However, Ashby & Reed demonstrated that 

Grignard reagents could be generated in hydrocarbon solvents with the use of a tertiary amine as a complexing agent [57]. In 

benzene, the general yield for these formation reactions exceeded 80%. Scheme 16 depicts the formation of the iodoethane 

Grignard reagent with a yield of 97%. 

 

 
Scheme 16 Formation of a Grignard reagent in benzene according to Ashby & Reed method 

 

In recent years, the [Mg(anthracene)(THF)3] complex has found application in the synthesis of Grignard reagents, 

particularly for compounds with non-activated phenyl rings or containing ether groups [58]. These reactions typically yield above 

90%. Scheme 17 illustrates a representative reaction of this kind. 

 

 
Scheme 17 Formation of a Grignard Benzylic Compound Following Gallagher Method 

 

 Stabilizing Grignard Reagents  

Grignard reagents are highly reactive and prone to 

react with both water and oxygen. Consequently, their 

preparation is carried out in an anhydrous nitrogen 

atmosphere. Due to their inherent instability, these reagents 

are typically utilized promptly after formation, and storage 

is not feasible [59]. Nonetheless, methods exist to stabilize 

Grignard reagents for future use. Generally, Grignard 

reagents exhibit reduced reactivity at lower temperatures 

toward various functional groups, allowing for in-situ 

maintenance with a lower risk of undesirable side reactions 

[56]. 

 

Boudin and colleagues showcased the stabilization of 

Grignard reagents in a powdered form by chelating a 

Grignard reagent in solution with a tertiary amine [60]. The 

stabilized Grignard reagent, as illustrated in Scheme 18, is 

formed with a yield of 72% when ethane bromide is initially 

reacted with magnesium and then with TDA-

1([N(CH2CH3OCH2CH2OCH3)3]). 

 

 
Scheme 18 Formation of a Solid Stabilized Grignard Reagant 

 

 Reaction of Grignard Reagents with Boron Compounds  

In this investigation, our aim was to generate sodium borate salts for the subsequent production of diverse electrolytes. 

Nishida demonstrated the formation of sodium tetrakis[3,5-bis(trifluoromethyl)-phenyl]borate by reacting the Grignard reagent 

3,5-bis(trifluoromethyl)phenyl-magnesium iodide with an ethereal solution of boron trifluoride [61]. 
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Scheme 19 Formation of Sodium Tetrakis[3,5-bis(trifluoromethyl)-phenyl]Borate. 

 

G. Medicinal Attributes of Metal Complexes 

 

 Anti-Cancer Characteristics 

 

 Cisplatin, the Pioneering Molecule 

Since its accidental discovery in 1965 by Rosenberg, 

Van Camp, and Krigas, Cisplatin has been widely utilized in 

cancer treatment due to its observed efficacy in inhibiting 

bacterial growth [62], as illustrated in Figure 1. 

Subsequently, numerous studies have investigated the 

efficacy of cisplatin against various cancers, its cytotoxicity, 

its distribution in the body, the mechanism through which it 

destroys cancer cells, and optimal dosage concentrations 

[62, 63]. 

 

 
Fig 1 Structure of Cisplatin 

 

Despite being a cornerstone in cancer treatment, 

cisplatin is associated with a range of side effects. Notably, 

it promotes the formation of lung adenomas, and resistance 

to the drug can develop in recurrent cell lines. Fortunately, 

the sustained efficacy of cisplatin is maintained when it is 

employed synergistically with other drugs, ensuring its 

ongoing utilization today [64]. The simultaneous 

administration of other drugs has helped alleviate some of 

the adverse effects associated with cisplatin [65]. 

Addressing the resistance of certain cancer cell lines 

involves exploring alternative platinum coordination 

compounds that share structural similarities with cisplatin 

[66,67], such as carboplatin. Nevertheless, even these next-

generation platinum drugs exhibit substantial side effects, 

underscoring the global priority to discover new cancer 

drugs. 

  

 Usage of Rhodium and Ruthenium Drugs in Cancer 

Therapy  

Exploration of alternative metals to platinum for cancer 

treatment has been undertaken. Giraldi et al. [68] 

highlighted early ruthenium and rhodium complexes that 

showed efficacy comparable to cisplatin. Particularly, the 

[(acetylanato)(cycloocta-1,5-diene)rhodium] complex 

demonstrated less histological damage than cisplatin. The 

complex acetylacetonate-1,5-cyclooctadiene rhodium (I), 

depicted in Figure 2, bears similarity to the ruthenocene 

compounds synthesized in this study. 

 
Fig 2 Acetylacetonate-1,5-Cyclooctadiene Rhodium (I) 

Chemical Structure. 

 

 

The examination involved subjecting the β-diketone 

featuring ferrocene, portrayed in Figure 3 as a counterpart to 

the depicted complex in Figure 2, to assessments against 

HeLa (a responsive human cervix epithelial carcinoma cell 

line), CoLo (an inherently multi-drug resistant human colon 

adenocarcinoma cell line), and COR (a responsive human 

lung large cell carcinoma cell line). In specific cases, these 

complexes exhibited a twofold increase in effectiveness in 

eradicating cancer cells compared to cisplatin. Furthermore, 

they demonstrated the capability to distinguish between 

cancer cells and healthy cells at a ratio of 8:1  [69.]  

 

 
Fig 3 Structure of the Ferrocene-Containing β-Diketone 

Complexes Analogous to that of Fig 2. (R= CF3, CH3, CCl3, 

C6H5). 

 

Subsequent investigations into the novel ruthenocene 

analogues synthesized in this study may reveal additional 

advantageous effects conferred by the ruthenocene center in 

the treatment of cancer with such complexes. While various 

rhodium- and ruthenium-containing complexes have been 

employed in the fight against cancer, recent advancements 

in organometallic compounds with ruthenium as the central 

metal have proven noteworthy. The development of new 

antineoplastic ruthenium compounds [70] has demonstrated 

their ability to mitigate cytotoxicity induced by other 

chemotherapeutic drugs [71,72]. 
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 Ruthenocene Compounds in Oncological Applications 

In the realm of cancer therapy, the radiopharmaceutical 

acetyl-(Ru)-ruthenocene [73] has been utilized to explore 

the binding affinity of acetylruthenocene for the adrenal 

glands in mice. Synthesized by heating acetyl ferrocene with 

103-ruthenium trichloride, this labeled compound was found 

to specifically target the areas of the adrenal gland 

associated with androgen and glucocorticoid syntheses [73]. 

Subsequent investigations delved into the modulation of 

acetylruthenocene localization through hormone control. 

Notably, it was revealed that by regulating hormones, the in 

vivo targeting of acetyl ruthenocene could be precisely 

manipulated [74]. 

 

 Ferrocene Compounds in Oncological Applications 

In tackling the challenges associated with poor 

solubility in chemotherapy, an innovative approach involves 

the conjugation of ferrocene derivatives with water-soluble 

polymers. Notably, it was observed that a water-soluble 

polymeric drug exhibited comparable effectiveness with 

fewer drug units compared to its monomeric counterpart 

[75], as illustrated in Figure 4. The study unveiled the 

pivotal roles of both the spacer length between the ferrocene 

drug and the polymer backbone, and the formal reduction 

potential of the ferrocenyl group in influencing drug 

activity. Enhanced anticancer activity was discerned with 

longer spacers and lower ferrocenyl formal reduction 

potentials [76-107]. 

 

 
Fig 4 % Survival of Murine EMT-6-Cells after 24 Hours of Incubation with Ferrocene Derivatives 1 (insert), 2 and 3. [77] 

 

III. CONCLUSION 

 

In conclusion, this short review provides a 

comprehensive snapshot of the current state of research on 

metallocene complexes, focusing on their synthesis and 

emerging roles in biomedical applications. The controlled 

synthesis of metallocene complexes, particularly those 

derived from the ferrocene family, has been highlighted as a 

critical aspect, emphasizing precision and innovation to 

unlock their full potential in healthcare. The diverse 

synthetic approaches discussed, ranging from Claisen 

condensation to the use of Grignard reagents, showcase the 

versatility in creating these compounds. The exploration of 

metallocene-containing β-diketones, metallocene carboxylic 

acids, esters, and other derivatives further enriches our 

understanding of the chemical landscape of these 

complexes. In the field of biomedical applications, 

metallocene complexes exhibit promising properties for 

therapeutic interventions. Their ability to interact with 

biological systems at the molecular level opens avenues for 

the development of novel drugs, imaging agents, and 

diagnostic tools. The review delves into specific areas such 

as cancer treatment, antimicrobial activity, and the use of 

metallocene complexes as contrast agents in medical 

imaging. 

 

The review underscores the significance of 

metallocene complexes as a burgeoning area of research 

with the potential to significantly impact healthcare. The 

discussed advancements in synthesis methodologies and 

biomedical applications lay the foundation for further 

exploration and innovation in the field. As researchers 

continue to unravel the potential of metallocene complexes, 

the door is opened for the development of next-generation 

therapeutic agents and diagnostic tools that could 

revolutionize the landscape of biomedicine. 
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