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Abstract:- The EGR-1 gene encodes the EGR-1 protein 

in humans, featuring three zinc finger domains crucial 

for DNA binding and transcriptional regulation. While 

comprehensive investigations into the EGR-1 gene have 

occurred, a research gap persists in the systematic 

analysis of single nucleotide polymorphisms (SNPs) 

associated with this gene. This study aimed to fill this 

void by identifying and compiling a systematic collection 

of damaging non-synonymous SNPs (nsSNPs) within the 

EGR-1 gene, seeking a better understanding of 

mutational changes. From 2,712 SNPs in the dbSNP 

database, 455 non-synonymous missense substitutions 

were selected for analysis. These substitutions were then 

used to identify dominant variants, assess potential 

consequences, and conduct mutation analyses based on 

subPSEC scores. Gibbs free energy changes affected by 

dominant substitutions were examined, distinguishing 

between neutral and effect variants, and evaluated 

functional and phenotypic effects.Further analysis 

involved modeling substitutions to assess their structural 

impact on the EGR-1 protein, elucidating disturbances 

in interaction with closely related genes and pinpointing 

changes in binding affinity and hydrogen bonds. Our 

analysis identified five nsSNPs as the most hazardous 

substitutions, with rs201213506 (H334N) recognized as 

the most detrimental mutation in the DNA binding 

region of the EGR-1 gene. This investigation effectively 

revealed the significant impact of the H334N mutation 

on the gene's regulatory capabilities. Further exploration 

and understanding of these genetic variations could lead 

to the identification of innovative therapeutic markers 

for various inherited human diseases. 
 

Keywords:- Early growth response(EGR)-1 gene; nsSNP; 
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I. INTRODUCTION 
 

The zinc finger transcription factor EGR-1 member of 
the EGR family, also known as zif268 NGFI-A, Krox24, 

and TIS8[1]. The human chromosomal region 5q23–31 

comprises the EGR-1 gene. Three zinc finger motifs can be 

seen in the Egr-1 DNA-binding domain [2]. One intron and 

two exons make up the straightforward structure of the 

EGR-1 gene. The first exon codes the first 99 amino acids of 

the deduced protein, while the second exon codes the 

remaining proteins, which are found in the three tandem 

zinc finger motifs. [3]. The presence of five serum response 

elements (SREs) in the human EGR-1 promoter is 

particularly significant. SRE-mediated activity requires two 
distinct classes of transcription factors, the ternary complex 

factor and the the serum response factor (SRF). Elk1, Sap1, 

or Sap2 are ternary complex factors that, in order to be 

biologically active, must contact DNA and attach to SRF 

[4].  
 

The EGR-1 gene is substantially conserved in mice, 

rats, chickens, zebrafish, chimps, dogs, cows, and humans, 

among other species[5]. Most notably, EGR-1 is recognized 

for its functions in the adult neurological system in humans, 

where it controls vital processes that underlie neuronal 

activity, including neurotransmission, synaptic plasticity, 

higher-order processes like learning and memory, in 

addition to the reward and stress responses[6]. EGR-1 

dysregulation has been linked to a variety of additional 

disease conditions, including cardiovascular illness, 
ischemia-reperfusion injury, acute lung injury, and atopic 

dermatitis, among others. [7][8][9][10]. 
 

A SNP is a genomic variability in the DNA that occurs 

at a single base location (i.e., occurrences that exceed 1% of 
the time in the general population)). Non-synonymous SNPs 

(nsSNPs), also known as missense variants present in the 

coding region of the gene, are significant in part because 

they add amino acid variations into their encoded proteins. 

Due to selection against the functional disruptions caused by 

amino acid variation, nsSNPs are proportionally less 
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common than synonymous SNPs that do not impact protein 

sequence [11]. The consequences of nsSNPs on protein 

function continue to be considered to account for a 

significant amount of the molecular functional variation in 

the human population.  
 

For instance, nsSNPs and their associated amino acid 

variations can alter the kinetic parameters of enzymes, the 

DNA-binding capabilities of transcription-controlling 

proteins, the signal transduction functions of transmembrane 

receptors, and the structural functions of structural proteins 

[12]. Splicing, transcription, translation, post-translational 

modification, and protein stability are the five key stages at 

which bioinformatics techniques forecast the functional 

implications of SNPs. The majority of the bioinformatics 
tools available today exclusively look at the effects of SNPs 

in relation to a single biological function. The others, 

however, offer a thorough analysis of SNP function based 

on various methodologies, resources, and data [13][14][15] 
 

To confirm their alleged functional impact, all the 

SNPs identified in the EGR-1 gene were examined using 

several composite and singleton techniques. Prioritizing the 

SNPs that were found to have functional effects including 

pathogenicity and phenotypic effects, amino acids 

substitutions that reduced protein stability, and 

polymorphisms that alter protein-protein interactions of the 

EGR-1.  In order to find causative variations, the current 

work entails sorting through a list of SNPs. Utilizing the in-

silico method to estimate the harmful SNPs in the EGR-1 

gene and their considerable pathogenic effects on the 
functions and structure. 

 

II. METHODS AND MATERIALS 
 

A. Data retrieval 
The National Centre for Biological Information (NCBI) 

(https://www.ncbi.nlm.nih.gov/) and UniProtKB 

(https://www.uniprot.org/) were utilized to compile data on 

the human EGR-1 gene and its protein sequence (FASTA 

format). The Short Genetic Variation database (dbSNP) 

(https://www.ncbi.nlm.nih.gov/snp/) was utilized to retrieve 

the gene's SNPs . dbSNP is conceivable as a catalog of any 

short variations in human nucleotide sequence [16]. Only 

the nsSNPs (missense SNPs) were filtered and considered 

for further exploration. 
 

B. Utilizing SIFT for Sequence Homology 

Sorts intolerant from tolerant (SIFT)(https://sift.bii.a-

star.edu.sg/) is a sequence homology-based tool that identify 

variation in protein function caused by the modification in 

amino acid sequence [17]. 74% of non-sysnonymous SNPs 
in protein sequence databases were close enough to 

homologs, according to the SNP Consortium, to allow for 

SIFT prediction.. The SNPs were classified based on SIFT 

score (cut off ≤ 0.05) tolerated nsSNPs and (cut off ≥ 0.05) 

deleterious nsSNPs. 
 

 

 

 

 

 

C. Polyphen2 for predicting  the alteration in the protein 

sequence 

Polymorphism Phenotyping v2.0 (PolyPhen-2) 

(http://genetics.bwh.harvard.edu/pph2/) based on sequence-

based characterisation, predicts the functional effects owing 

to amino acid variation on the structure and activities of 

proteins. [18]. Straightforward comparative and physical 

considerations were inclined to forsee the possible impact of 

the variations of an amino acid on the function and structure 

of a human protein. The score of PolyPhen-2 ranges from 
0.0 to 1.0 [18]. A value that is close to 0 implies that the 

change is not harmful(benign), whereas values that are 

closer to 1.0 suggests that the substitution is highly likely to 

be damaging. 
 

D. PANTHER tool for investigation of protein function and 

stability based on evolution  

The Protein ANalysis THrough Evolutionary 

Relationships (PANTHER)  tool 

(http://www.pantherdb.org/tools/csnpScore.do) involves in 

comparing the protein sequence with a evolutionally related 

protein sequence [19].  Position-specific evolutionary 

conservation (subPSEC) scores, which are produced from 

the alignment of several proteins with evolutionary 

relationships, are used to analyze substitution [20]. IThe 

nsSNP is viewed as harmful if the subPSEC score is  ≥0.5 

[19]. 
 

E. I MUTANT for protein stability prediction 

To assure the structural and stability integrity of a 

protein during engineering, it is crucial to evaluate any 
mutations' effects. Therefore, utilized I-Mutant 

3.0(http://gpcr2.biocomp.unibo.it/cgi/predictors/I-

Mutant3.0/I-Mutant3.0.cgi) for this purpose. The query 

protein sequence and the amino acid variant were presented 

as an entry to I-Mutant. For single point mutations, the 

change in Gibbs free energy change (G) and its sign were 

assessed using sequence information [21] . 
 

F. SNPs & GO to identify the impact of the change 

To assess the complications of variations in the EGR-1 

protein, the SNPs&GO, a internet server that employs a 

support vector machine was used. The algorithm computed 

functional information, such as biological processes, cellular 

components, and molecular functions, which were then 

categorized by the Gene Ontology (GO) database [22]. With 

an accuracy rate of 81%, SNPs&GO can forecast the 

connection between SNPs and diseases. A probability score 
of ≥0.5 reveals that the SNPs are linked to medical issues 

[23]. 
 

G. MUTATION ASSESSOR to detect the potential 
deleterious SNPs 

An online tool, Mutation Assessor 

(http://mutationassessor.org/r3/), evaluates the functional 

consequences of amino acid alterations by considering 

evolutionary conservation and validation through disease-

related Online Mendelian Inheritance in Man and the 

polymorphic database [24]. The resulting amino acid shows 

three different functional impacts such as low, medium, and 

high. 
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H. SNAP2 to assess the solvent accessibility of original and 

mutant proteins 

SNAP2 (Screening for Nonacceptable Polymorphisms)( 

https://rostlab.org/services/snap2web/) utilizes multiple 

sequence and variant features to distinguish between effect 

and neutral variants. The tool takes protein sequences in 

FASTA format as input and generates a score ranging from -

100 (indicating a strong neutral prediction) to +100 

(indicating a strong effect prediction). This score provides a 

reliable estimation of the probability that a particular 
mutation will modify the nature of the native protein [25] . 

 

I. SUSPECT to analysis the influence of nsSNPs 

Predicts phenotypic effects of nsSNPs using a support 

vector machine (SVM) method integrating sequence, 
structure and systems biology-based features[26][27]. 

SuSPect (http://www.sbg.bio.ic.ac.uk/suspect/) generates a 

score table ranging from 0 to 100, which is color-coded to 

indicate the predicted deleteriousness of a variant (blue for 

neutral and red for disease-causing. A score of 50 is 

suggested as the threshold between neutral and disease-

causing variants, with higher or lower scores indicating 

more confident predictions. 
 

J. Homology modelling 

The inquiry progresses by employing the 

Phyre2(http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?i

d=index) homology modelling tool to examine the structural 

impact of these harmful nsSNPs. The Phyre2 modelling tool 

was employed to ascertain the confidence score and 

sequence identity, which were utilized to pick the templates 
[28] . The Mod Refiner was implemented to refine the 

protein structures.and there similarity is checked based on 

TM-Align and RMSD score.  The Swiss Model 

(https://swissmodel.expasy.org/) server offers the 

Ramachandran plot's favoured region, QMEAN, and 

Molprobity score and saves v6.0 

(https://saves.mbi.ucla.edu/) server offers ERRAT and 

PROCHECK to assess the validation of predicted structures. 
 

K. Identifying the phenotypic effects 

The changes in 14 different biophysical properties were 

used by MutPred 2 (http://mutpred.mutdb.org/) to analyse 

the impact of disease-associated SNPs. The tool provided p-

values by assessing the potential addition or loss of certain 

features. P-values less than 0.05 and 0.01 were labelled as 

significant and highly significant results, respectively [17]. 
 

Have (y)Our Protein Explained (HOPE) 

(https://www3.cmbi.umcn.nl/hope/) server is employed to 

examine the structural and functional implications of point 

mutations [29]. HOPE being a next-generation web 
application, acts as an automated mutant analyser generates 

a comprehensive report on each mutation, outlining its 

impact on the protein's size, charge, bonding pattern, and 

interaction with other molecules. 
 

L. Protien-protien interaction 

The Search Tool for the Retrieval of Interacting Genes 

(STRING) (https://string-

db.org/cgi/input?sessionId=bMu4JixV5iRk) renders 

unprecedented coverage and ease of access to both 

experimental and predicted interaction information. 

STRING interactions are given a confidence score, and 

additional information such as protein domains and 3D 

structures are made accessible, all within a stable and 

consistent identifier space [30]. 
 

M. Molecular Docking 

Using Discovery Studio[31], we formed a suitable target 

protein from the Alpha fold structure of EGR-1. The 

docking approach exploits peptide sequences from mutated 

EGR-1 proteins containing nsSNPs as ligands. We 

performed molecular docking with the PyRx virtual 

screening tool to determine the influence of disruptive point 

mutations on EGR-1 binding affinity with the NAB2 protein 

[32]. NAB2 can bind to and enhance the performance of 

EGR-1, leading to increased proliferation of EGR-1 target 
genes [33] .  The UCSF chimera was employed to illustrate 

the docking result as well as the binding interaction between 

ligand and receptor proteins. 
 

III. RESULTS 
 

A. Data retrieval 

The EGR-1 gene possessed 2,712 SNPs in the dbSNP 

collection.  Among them, 455 SNPs were classified as non-

synonymous (missense). Recognizing that non-synonymous 
SNPs frequently change the encoded amino acid, the current 

research focused solely on these SNPs for further 

examination. P18146 is the UniProt ID for this protein. The 

protein contains 543 amino acids.  
 

B. Functional analysis 

The SIFT algorithm was employed to predict the 

deleterious SNPs. All 455 missense SNPs and their 

associated rsIDs were inputted into a text file for the 

procedure. After analyzing 455 missense SNPs, 18 SNPs 

were identified as deleterious (Not Tolerant), as their 

Tolerance Index was identified to be ≥0.05. These 18 

subsitutions were taken for further analysis.  
 

Ployphen-2 forecasts the negative consequences using 

position-specific independent count (PSIC)scores. As an 

input query, the location, the substitutes, the order,were 

provided. 13 SNPs (4 possibly damaging and 9 probably 

damaging) were identified as deleterious among 455 SNPs. 
 

SNAP2 identified nsSNPs that could change the 

protein's natural structure. The sequence was used as an 

input query, and 17 of the mutations were determined to be 

non-neutral. These 17 alterations were labeled as 'effect,' 

while others were labeled as neutral. 
 

A mutation assessor is also used to examine the impact 

of subsitutions.When the UniProt ID of the protein with the 

mutations is submitted, the resulting amino acid 

substitutions possessed three distinct functional impacts: 
low, medium, and high.Only SNPs with a medium to high 

effect on protein were chosen for the studies, and only 9 

SNPs fell into this category.   
 

C. Pathogenicity analysis 
The disease-causing genetic changes were identified 

using SNPs and GO. The FASTA sequence of the native 

EGR-1protein and its list of polymorphisms were used as 
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input, and the resulting output revealed 13 SNPs linked with 

the disease, each with a probability value greater than 0.5. 
 

The SUSPECT has a broad range of scores and is also 
color-coded according to deleteriousness ranging from blue 

at one end and red at the other end representing the neutral 

and deleterious effects respectively. Through input sequence 

nine of these mutations were found to be above the cut-off 

value of 50, suggesting disease-causing. 
 

PANTHER identifies potentially harmful SNPs that 

can substantially alter the structure or function of the EGR-1 

protein. The query input was the protein FASTA sequence 

and substitutions. Ten SNPs with SubPSEC scores ≥0.5 

were determined to be damaging. 
 

D. Protein Stability analysis 

The I Mutant tool was utilized to foresee variations in 

EGR-1 protein stability. The same protein sequence and 

polymorphisms were used as input, and the resultIs 

indicated that 16 out of 18 had decreased stability based on 

RI and free energy change values. (DDG). 
 

H334N residue was shown to be harmful after being 

examined using eight bioinformatics tools. Seven tools 

acknowledged Y32D, P129L, S529L, and T534N residues 

as potentially harmful, thus those also examined further. 

(Table 1 &Table 2) 
 

E. Homology Modelling 

The potential 3D model of the EGR-1 protein was found 

using the Pyre2 internet server and also the subsituted 

models that are highly deleterious variations detected using 

the eight tools were generated separately. On the c1g2dC 
template, the models were built.. Then the subsituted  

models were refined using a ModRefiner. TM- align and 

values for RMSD were also examined for the detection of 

structural similarity between the normal and variant models 

of EGR-1 protein (Table 3). The projected normal and 

variant models of the EGR-1 protein's structural validity and 

stereochemical properties were performed by the Swiss 

Model Server and Saves. Ramachandran favoured region, 

QMean, MolProbity, ERRAT, and the threshold value is 

applied to analyze PROCHECK scores. (Table 4). 
 

F. Phenotypic Effect analysis 

When the mutations were analyzed by the MutPred2 

server, 3 out of 5 ns SNPs scored more than 0.5 which 

proves that they had high pathogenic properties (Table 5). 

Y32D showed a loss of sulfation.  P129L was crucial and 
showed a loss in both ADP-ribosylation and O-linked 

glycosylation along with altered transmembrane protein and 

ordered interface. In addition, Y32D, P129L, and H334N 

variations caused an altered disordered interface. The 

nsSNPs were run through project HOPE which aims at 

providing knowledge of how a mutation affects structure 

including charge, hydrophobicity, amino acid change special 

structure, and functions (Table 6). There is a change in the 

charge of Y32D from neutral to negative. 3 of the five 

(Y32D, P129L, H334N) showed a MetaRNN score ≥ 0.5 

indicating pathogenicity. The residue H334N is present in 

the DNA binding region. The mutated residue is located on 
the surface of a domain with an unknown function. 

G. Protein-Protein Interaction 

From the STRING network, the 6 major interacting 

molecules with EGR-1 protein were revealed which include 

Transcription factor jun-D, Transcription factor jun-B, 

Proto-oncogene c-Fos, Fosb proto-oncogene, NGFI-A-

binding protein 1 and NGFI-A-binding protein 2 (Figure1). 

Since the polymorphisim  were predicted to interfere with 

the interaction of EGR-1 with other molecules, the function 

of these interacting molecules is affected by these amino 

acid alterations as indicated in Table 7. 
 

H. Molecular Docking 

The binding affinity of the altered EGR-1 with the 

NAB2 Protein was shown by molecular docking 

experiments. Three out of  five nsSNPs (Y32D, P129L, and 
H334N) significantly lowered the binding affinity of the 

NAB2 protein. The UCSF Chimera software was employed 

to examine the binding affinity (kcal/mol) shown in Table 8 

and bonding interaction patterns of H334N and P129L 

docked complexes (Figure 2 -Figure 3). The wild-type 

peptide sequence of Y32D forms 1 hydrogen bond with a 

binding energyof -5.7 kcal/mol whereas the mutant forms 4 

hydrogen bonds with a reduced binding energy of -5.4 

kcal/mol. The wild-type peptide sequence of P129L forms 

no hydrogen bond with a binding energy of -7.1 kcal/mol 

whereas the mutant forms 3 hydrogen links with a reduced 

binding energy of -5.0 kcal/mol. The wild-type peptide 
sequence of H334N forms two hydrogen links with a 

binding energy of -6.5 kcal/mol whereas the mutant forms 1 

hydrogen bond with a reduced binding energy of -6.3 

kcal/mol. 
 

IV. DISCUSSION 
 

Three zinc finger motifs can be found in the EGR-1 

DNA-binding domain [2], SNPs in the DNA binding region 
may lead to disturbing the straightforward structure of the 

EGR-1 gene. To produce a solid and accurate prediction 

with higher reliability, many different techniques were 

integrated for the first screening of the most harmful 

nsSNPs. Some tools, such as SIFT and Mutation Assessor, 

based their predictions on parameters such as sequence 

homology and amino acid physical properties. Others, such 

as SNAP2 and PolyPhen2, used machine learning to predict 

the structural and functional impact of changes. SNP&GO, 

SuSPect, and PANTHER were also used in the investigation 

to determine whether the polymorphisms were linked with 

pathogenicity. Protein stability is critical for a protein's 
structural and functional activity [34]. We identified the 

harmful nsSNPs that may influence the stability of the EGR-

1 protein using the I-Mutant program.  
 

In total, 5 nsSNPs were chosen as the most harmful 

since they were anticipated to be high-risk by the SNP 

prediction algorithms used in this work. This method found 

five nsSNPs as highly pathogenic: rs199627951, 

rs199793033, rs201213506, rs202136756, and rs371059427. 

This discovery eliminates the massive amount of laboratory 

work necessary to screen pathogenic nsSNPs. 
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The work continues with the Phyre2 homology 

modelling program to examine the structural consequences 

of these harmful nsSNPs. We constructed wild-type and 

mutant protein models for the EGR-1 protein using c1g2dC 

as a template. Furthermore, we used the Tm Align program 

to predict the RMSD and TM scores of these Phyre2- 

generated wildtype and mutant protein models. The TM-

align tool was used to compare the structural similarities 

between wild-type and mutant structures. A low TM score 

and a high RMSD value imply structural dissimilarity, 
however, we discovered a high TM score (0.99120) and a 

low RMSD value (0.33); this shows that both structures are 

on the same fold. [35]. The wild-type structure is a snippet 

of the entire structure, and only one mutation in that region 

may be responsible for the resemblance between normal and 

variant structures.  
 

Validation of experimental models is required in need 

to enhance targeted protein structure quality. SWISS-

MODEL (RAMACHANDRAN PLOT, QMEAN, 

Molprobity) and SAVES (PROCHECK, ERRAT) were 

employed to make sure of this.  The Ramachandran plot is 

the most prioritized verification matrix since it depicts the - 

torsion angles of the protein backbone of projected models. 

PROCHECK displays the stereochemical quality of a given 

protein structure by dividing the Ramachandran plot into 

distinct regions—core, allowed, generously allowed, and 
banned. In the important or most preferred region, more than 

90% of the residues can be selected as a favorable structure. 

[36]. A QMEAN-Z score of -4.0 or below shows a model of 

low quality, whereas a higher value points to the favourable 

states of the structure, and a Molprobity score closer to zero 

represents a structure of higher quality [37][38]. The 

ERRAT score of 95% or greater often indicates a high 

degree of structure resolution [36].  
 

These five highly harmful nsSNPs could have a 

negative impact on the protein's structure, according to 

predictions made by MutPred2 and the HOPE server. 

STRING is essential for filtering and assessing functional 

genomics data, as well as offering a simple platform for 

evaluating protein structural, functional, and evolutionary 

features [39]. This database was used in the current work to 
identify the connection of the EGR-1 protein with related 

proteins that could be a part of various pathways and 

disruption of these pathways may result in  illnesses. 

STRING results represent the disturbance in protein-protein 

interaction of the EGR-1 protein due to the substitutions. 
 

Docking research indicated that three of the five 

nsSNPs (D32, L129, and H334) have a lower binding 

affinity with NAB2 protein than the wild-type residues. The 

most notable alteration in binding affinity was identified in 

P129L, where there is a substantial loss of H-bond 

interactions in the binding pocket. Leu127 creates two H-

bonds with Asp235 in the docking complex, and Lie131 

forms an H-bond with Lue128.  In short, the docking study 

demonstrated that the aforementioned variations had a 

considerable impact on the EGR-1 protein's functional 
activity. 

 

 

 

V. CONCLUSION 
 

As a transcriptional factor, the EGR-1 gene products 

play vital roles in various cellular mechanisms and prevent 
uncontrolled cell growth and proliferation. Consequently, 

alteration of the EGR-1 gene has been related with 

upregulating different types of diseases including 

cardiovascular illness, ischemia-reperfusion injury, acute 

lung injury, atopic dermatitis, sepsis and cancers. nsSNP 

rs201213506 which corresponds to an H334N amino acid 

change, was predicted to be the most deleterious among 455 

non-synonymous SNPs in EGR-1, which was confirmed by 

eight computational tools. The amino acid changes Y32D, 

P129L, S529L, and T534N were predicted to be equally 

deleterious by seven SNP computational tools. The 
complete failure of protein-protein interaction and 

alterations in hydrogen bonds during docking demonstrated 

that H334N(rs201213506) in the EGR-1 DNA binding 

region is an  pertinent target for disrupting the EGR-1 gene. 

However, the predicted deleterious effect of 

rs201213506(H334N) warrants animal study to confirm the 

consequence of the mutation in the animals. As EGR-1 gene 

is highly conserved across laboratory mammals, a transgenic 

mice model with (EGR-1, H334N) mutation would answer 

the deleterious effect.  The current study's findings would 

undoubtedly be useful in future prospects involving huge 

population-based investigations as well as drug discovery, 
particularly in generating personalised medical care. 
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TABELS 
 

Table 1: Details of variations in the EGR-1 gene predicted as high-risk SNPs out of 455 nsSNPs 

 

Table 2: Details of variations in the EGR-1 gene predicted as high-risk SNPs out +of 455 nsSNPs 

SNP 

 ID 

Amino acid 

Variant 

I Mutant SNPs&GO    Mutation 

   Assessor 

SNAP2 Suspect 

DDG<0 Prediction Prediction Score Prediction 

rs199793033 Y32D -0.94 Decrease Disease low 85 Effect 50 

rs199627951 P129L -0.6 Decrease Disease low 63 Effect 59 

rs201213506 H334N -0.5 Decrease Disease Medium 53 Effect 51 

rs371059427 S529L -0.01 Decrease Disease Medium 71 Effect 43 

rs202136756 T534N -0.86 Decrease Disease low 75 Effect 63 
  

Table 3: Structural similarity scores 

 

Table 4: structural validation of wild and mutant proteins. 

MODEL SWISS-MODEL 

RAMACHANDRAN PLOT VALUE. 

PROCHECK QMEAN MOL-PROBITY ERRAT 

NATIVE 97.33% 95.0% -1.05 1.63 93.8272 

Y32D 97.67% 93.7% -1.80 1.96 92.5 

P129L 100% 94.9% -0.99 1.76 87.1795 

H334N 100% 95.0% -0.86 1.88 89.8734 

S529L 98.84% 93.7% -1.17 1.76 91.1392 

T534N 100.00% 94.9% -1.25 1.84 85.00 
 

Table 5: Impacts of non-synonymous SNPs on structural & functionational properties of EGR1 determined. 

Mutation Probability of deleterious mutation Structural & functional properties 

Y32D 0.733 Altered Disordered interface (P= 0.38) 

Gain of B-factor (P=0.27) 

Gain of Ubiquitylation at K34 (P=0.20) 

Gain of Methylation at K34 (P=0.10) 

Loss of Sulfation at Y32 (P=0.09) 

P129L 0.601 Altered Disordered interface (P=0.27) 

Altered Ordered interface (P=0.26) 

Altered Transmembrane protein (P=0.25) 

Loss of ADP-ribosylation at R127 (P=0.20) 

Loss of O-linked glycosylation at T126 (P=0.12) 

H334N 0.525 Altered Disordered interface (P=0.27) 

Gain of B-factor (P=0.26) 

Gain of Methylation at K330 (P=0.12) 

SNP ID 

 

Amino acid 

Variant 

Single Nucleotide 

Variation 

SIFT PolyPhen 2 Panther 

score Prediction 

rs199793033 Y32D T/G 0.028 Deleterious Probably 

damaging 

Probably 

damaging 

rs199627951 P129L C/T 0.006 Deleterious Probably 

damaging 

Probably 

damaging 

rs201213506 H334N C/T 0.015 Deleterious Probably 

damaging 

Probably 

damaging 

rs371059427 S529L C/T 0.01 Deleterious Probably 

damaging 

Probably 

damaging 

rs202136756 T534N C/A 0.01 Deleterious Possibly 

damaging 

Possibly 

damaging 

MUTATION TM- ALIGN RMSD VALUE 

Y32D 0.98798 0.38 

P129L 0.98006 0.90 

H334N 0.99120 0.33 

S529L 0.98897 0.42 

T534N 0.97884 0.99 
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Gain of Sulfation at Y338 (P=0.02) 

S529L 0.404 - 

T534N 0.451 - 
 

Table 6: The consequence of nsSNPs on the structural features of the protein such as size, charge, hydrophobic nature, and 

MetaRNN scores is determined by HOPE. 

RESIDUE STRUCTURE PROPERTIES 

Y32D 

 

 The mutant residue is shorter than the wild-type residue. The mutant 

residue charge is NEGATIVE compared to the NEUTRAL charge of the 

wild-type residue. 

 The natural residue is more hydrophobic than the mutant residue.  

 This area and its function may be disturbed by the variations in amino 
acid characteristics.  

 This variant's MetaRNN score is 0.7630575 

P129L 

 

 The natural residue is smaller than the mutant residue. 

 Since prolines are notorious for being incredibly rigid, they result in a 

special backbone conformation that might be required in this position. 

 This specific conformation may be disturbed by the mutation.  

 This variant's MetaRNN score is 0.660638 

 

H334N 

 

 The residue has DNA interactions or is located in a DNA binding region.  

 In comparison to the wild-type residue, the mutant residue is smaller.  

 The different characteristics of amino acids can alter this area and its 

functionality.  

 The variant residue is present on the surface of a domain with an 
unknown function. This will cause a possible loss of external 

interactions.  

 This variant's MetaRNN score is 0.567263 

 

S529L 

 

 The mutant residue is larger than the residue of the natural type.  

 Comparing the two residues, the mutant residue is more hydrophobic. 

 This variant's MetaRNN score is 0.37630606 

 

T534N 

 

 The mutant residue is bigger than the wild-type residue. 

 The wild-type residue is more hydrophobic than the mutant residue. 

 This variant's MetaRNN score is 0.34320903. 

 

Table 7: indicating the interaction between mutated EGR-1 and wild-type proteins 

Template JUND JUNB FOS FOSB NAB1 NAB2 

EGR-1       
EGR-1 

Y32D 
 

 
     

EGR-1 

P129L 
      

EGR-1 

H334N 
      

EGR-1 

S529L 
      

EGR-1 

T534N 
      

 

Table 8: Docking results of EGR-1 proteins with NAB2 protein. 

Residue Binding affinity (kcal/mol) Residue Binding affinity (kcal/mol) 

Y32 -5.7 D32 -5.4 

P129 -7.1 L129 - 5 

H334 -6.5 N334 -6.3 

S529 -4.7 L529 -5.8 

T534 -6.3 N534 -6.3 
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FIGURES 
 

 
Fig. 1: The protein interaction network of the EGR-1 protein, shows NAB2, NAB1, FOSB, FOS, JUND, and, JUNB are closely 

related proteins. 

 

 
Fig. 2(a): With H334 as ligand hydrogen links are formed between His334- Gly448 and Glu335-Pro332. 

 

 
Fig. 2(b): With N534 as ligand hydrogen links are formed between Phe535-Arg296, Asn534-Phe535, Thr532-Phe535, Thr532-

Asn534 and Met531- Asn534. 
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Fig. 3(a): With P129 as ligand no hydrogen bond are formed. 

 

 
Fig. 3(b): With L129 as ligand hydrogen links are formed between Met531- Leu528,Thr526-Glu311 and Thr526-Lys313. 
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