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Abstract:- Malaria is a deadly disease caused by 

parasites that are transmitted to people through the 

bites of infected female Anopheles mosquitoes. Of the 

five species of Plasmodium, P. falciparum is the 

deadliest, and findings have shown to have growing 

evidence of drug-resistance mechanisms in malaria 

treatments. Therefore, the identification of new drug 

targets is an urgent need for the clinical management of 

the disease. In this study, we employ an approach of 

identifying drug leads against fructose bisphosphate 

aldolase, a potent drug target in P. 

falciparum.Molecular docking was carried out using 

PyRx and CBDock to determine the binding affinities of 

protein-ligand complexes. Two drug leads were 

generated using machine learning. These drug leads 

were selected based on Lipinski’s drug-likeness criteria. 

The ligand 5-Chloro-1-(2-phenylethyl)-1H-indole-2,3-

dione exerted the highest binding effect on the aldolase 

as compared to 1-(7,8 Dihydronaphthalen-2-ylmethyl)-

5-(piperidine-1-carbonyl)indole-2,3-dione using 

molecular docking. The 5-Chloro-1-(2-phenyl ethyl)-1H-

indole-2,3-dione superior binding affinity with 

bisphosphate aldolase compared to 1-(7,8-

Dihydronaphthalen-2-ylmethyl)-5-(piperidine-1-

carbonyl)indole-2,3-dione imply that it can inhibit the 

bisphosphate aldolase activity in the plasmodium 

falciparum. 
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I. INTRODUCTION 
 

Malaria, transmitted by mosquitoes, primarily affects 

humans and female Anopheles mosquitoes. Typical 

symptoms encompass fever, tiredness, vomiting, and 

headaches. Left untreated, recurring episodes of the disease 

can arise months later. Caused by single-celled 

microorganisms from the genus Plasmodium, malaria is 

primarily transmitted by infected female Anopheles 

mosquitoes, notably prevalent in Africa. Five Plasmodium 

species can infect and spread via humans. P. falciparum 

causes most fatalities, while P. vivax, P. ovale, and P. 

malariae generally result in milder forms of malaria. P. 

knowlesi infrequently causes disease in humans. When an 

infected mosquito bites, parasites from the liver are 

introduced into the bloodstream, traveling to the liver to 

mature and reproduce(Benson & O'Reilly, 2009). 
 

The life cycle of malaria involves a cyclical infection 

of humans and female adult Anopheles mosquitoes. In 

humans, the parasites grow and multiply first in the 

hepatocytes and then in the erythrocytes of the blood. In the 

blood, successive broods of parasites grow inside the red 

cells and destroy them, releasing daughter parasites that 

continue the cycle by invading other red cells. The blood-

stage parasites are those that cause the symptoms of 

malaria. 
 

Rapid and effective malaria diagnosis not only 

combats the disease but also decreases the transmission of 

the disease. In the laboratory, malaria is diagnosed using 

different techniques, e.g. conventional microscopic 

diagnosis by staining thin and thick peripheral blood 

smears (Tangpukdee et al., 2009), other concentration 

techniques, e.g. quantitative buffy coat (QBC) method 

(Bhandari, Raghuveer, Rajeev, & Bhandari, 2008), rapid 

diagnostic tests, and molecular diagnostic methods, such as 

polymerase chain reaction (PCR) (Persing, 1991). Malaria 

is treated with antimalarial medications; the ones used 

depend on the type and severity of the disease. Currently, 

available antimalarial drugs are broadly categorized into 

three types.  
 

Generally speaking, In the realm of malaria control, 

antimalarial drug resistance has emerged as a significant 

challenge. This resistance often arises from spontaneous 

mutations that decrease the effectiveness of a particular 

drug or drug category. In certain cases, just one genetic 

mutation can render a drug ineffective against the malaria 

parasite, while with other drugs, several mutations seem 

necessary for resistance to manifest. Malaria isolates often 

consist of diverse parasite populations within a single 

sample, displaying a spectrum of drug response 

characteristics ranging from high resistance to complete 

sensitivity.(Thaithong, 1983).  
 

Fructose bisphosphate aldolase is an enzyme 

catalyzing a reversible reaction that splits the fructose 1,6 

bisphosphate generated by the activity of 

phosphofructokinase into the triose phosphates 

dihydroxyacetone phosphate(DHAP), and glyceraldehyde 

3- phosphate (G3P) in the glycolytic pathway which is the 

only source of energy for the Plasmodium falciparum. 

Besides its housekeeping role in glycolysis, fructose 

bisphosphate aldolase has also been involved in additional 

functions and is considered a potential drug target against 

Plasmodium falciparum. P. falciparum lacks a functional 
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citric acid cycle. Unlike most tissues of the mammalian 

host, it is totally dependent on glycolysis for energy 

generation. A compound that selectively inhibits the 

parasite’s ATP-generating machine is therefore a potential 

antimalarial drug target. 
 

Machine learning as a field of study provide a set of 

algorithms that can help to analyze, predict and make 

decision based on the analysis of the data given. Machine 

learning can be used in almost all fields which also cut 

across the field of drug design and discovery and can be 

applied in all stages of drug design and discovery. 

Examples include target validation, identification of 

prognostic biomarkers, ligand identification, and analysis 

of pathological data in clinical trials. The application of 

machine learning can promote valuable decision-making 

from the analysis of data available and has the potential to 

speed up the process and reduce failure rates in the case of 

drug discovery and development. 
 

II. METHODS 

 

A. Identification of Target with Data Availability On Pub 

Chem 

In the identification of the target, a Target2Scan tool 

was used. Target2scan is a programmatic tool that 

incorporates many features of the bioinformatics, 

computational biology, and AI-driven drug discovery 

revolutions into a single workflow assembly. It helps to 

determine the ligands of a new drug target, predict protein-

ligand interactions, discover drug effectiveness, ensure 

safety biomarkers, and optimize the bioactivity of the 

ligands. 
 

To identify drug ligands against the target, the target 

signature (accession number of the target P04075) was 

provided as an input to the tool. The tool then carried out a 

BLAST (basic local alignment search tool) protocol with 

the new target signature provided, and identified known 

protein drug targets that are similar to the new target 

submitted to the tool; with data availability, targets were 

identified on PubChem by the tool. 
 

B. Retrieval of Ligands for Target and Their Properties 

The first set of compounds was retrieved by this tool on 

PubChem, which were ligands for the target. The molecular 

descriptors of these compounds were retrieved. Molecular 

descriptors such as; ba-id, activity, aid (assay id), cid 

(compound ID), sid (substance ID), gene-id, pm-id, aid 

type, hasdrc,rnai, protacxn, ac-name, acqualified, acvalue 

(activity value) aidsrc name, aid name, compound  name, 

target name, target url, ecs(enzyme classification system), 

repacxn ,tax-id. 
 

C. Retrieval of Compounds with Similar Structures to 

Known Ligands for The Target 

Compounds that have similar structures as the known 

ligands for the target and their molecular target were 

retrieved by this tool. The retrieved molecular descriptors 

of these compounds were CID(compound ID), molecular 

weight, heavy atom, XlogP, complexity, hydrogen bond 

acceptor, monoisotope, rotable,  TPSA(topological polar 

surface area) were all retrieved. 

D. Generation of Drug Leads by Machine Learning 

AutoQSAR used machine- learning protocols (training 

dataset and test dataset) to build, validate and deploy 

QSAR (Quantitative Structure-Activity Relationships) 

models. It screened huge databases (PubChem) of 

compounds in order to determine the biological properties 

of chemical molecules based on their chemical structure. 
 

All retrieved compounds with similar structures as the 

known ligands had their features divided into the training 

set and test set. The training set was now implemented to 

build up the model, while the test set evaluates/validates the 

performance of the mode i.e. accuracy of the model. 
 

The AutoQSAR constructed both linear and non-

linear regression-based QSAR models by considering all 

possible combinations of molecular descriptors. Among 

these models, those exhibiting the highest R2 values or 

values closest to 1 were preferred, and the one with the 

closest R2 value to 1 was employed for predictions. These 

predictions were conducted using PubChem's extensive 

chemical library. To filter out undesired compounds, 

Lipinski’s drug-likeness criteria, which correlates 

molecular descriptors with known drug activity, were 

applied. Subsequently, the top 50 compounds meeting these 

criteria from the prediction were identified as potential drug 

leads against the target. 
 

E. Preparation of Ligands and Receptor (Target Model) 

For Docking 

AutoDock-Vina tool version 1.5.6 was used to carry out 

the preparation of the ligand and receptor. The receptor 

model was downloaded in the PDB format from the Protein 

Data Bank in Europe (PDBe); https://www.ebi.ac.uk/pdbe-

kb/proteins/P0405 which is a database for structural data of 

biological macromolecules. The receptor model was then 

taken to AutoDock-Vina for the conversion to the PDQBT 

format. To generate this format, water molecules were 

removed; polar hydrogen(s) and Kollman charges were 

added.  Autodock-Vina tool was also used to convert the 

ligands to PDBQT format also. 
 

F. Molecular Docking 

Autodock- Vina tool version 1.5.6 was also used in 

predicting the intermolecular framework formed between 

the receptor (target model) and the ligands also used in 

suggesting the binding modes responsible for the inhibition 

of the target. This docking method was used to fit in the 

ligands into the binding site of the target in order to predict 

how strong the binding the ligand and the target is it was 

also used to generate possible poses which are ranked by 

scoring functions. 
 

The scoring functions are mathematical functions used 

to approximately predict the binding affinity between the 

ligands and the target, the strength of intermolecular 

interactions between the ligand and the target 
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G. Visualization of Protein-Ligand Interaction Complex 

and Determination of Interactions Between Protein and 

Ligand 

PyMOL, an open source model visualization tool was 

used in visualizing the protein-ligand interaction complex. 

It produces high-quality 3D images of small molecules and 

biological macromolecules. 
 

Information on chemical group that participated in 

specific interactions (e.g. hydrogen bond donor) and 

interaction geometry (distance and angle threshold) 

contributed to the binding affinity of the ligand the ligand 

for which the target gave the highest binding affinity 

minimum binding energy) was selected for for 

visualization. 
 

The bonds that existed in the protein-ligand complex 

were determined manually using a distance tool in PyMOL. 

The criteria for identifying the bonds are; distance limit 

(hydrophobic bond distance = 4.0A, hydrogen bond 

distance= 4.1A, salt bridge distance= 5.5A), the angle and 

the atoms (carbon atoms for hydrophobic interactions) 

Involved in the interactions 
 

III. RESULTS 
 

A. Selection of Compound for Machine Learning 

Target 2 scan retrieved 49 compounds from PubChem 

as ligand that can compelled the target from 98791 

compounds as compounds that have similar structures as 

the known ligands for the target alongside the values of 

their molecular descriptors and their molecular descriptor 

was used as features in the downstream machine learning 

procedure. 
 

B. Generation of Drug Lead by Machine Learning 

5-Chloro-1-(2-phenyl ethyl)-1H-indole-2,3-dione and 1-

(7,8-Dihydronaphthalen-2-ylmethyl)-5-(piperidine-1-

carbonyl)indole-2,3-dione were the drug lead generated by 

machine learning algorithm. These drug leads were selected 

based on the Lipinski’s drug likeness criteria (relates 

molecular descriptors of the retrieved compounds/ ligands 

with known drug activity) and the top 50 compounds of the 

prediction that satisfied the criteria were printed out as drug 

leads against the target. The CID of these ligands are 

2930041 and 152934187. 

Table 1: ligands and their molecular descriptors

PARAMETERS LIGANG 1 LIGAND 2 

CID 2930041 1529334187 

IUPAC NAME 5-Chloro-1-(2-phenyl ethyl)-1H-indole-2,3-

dione 

1-(7,8-Dihydronaphthalen-2-ylmethyl)-5-

(piperidine-1-carbonyl)indole-2,3-dione 

Chemical Formula C16H12ClNO2 C25H24N2O3 

Molecular Weight(G/Ml) 285.32 400.5 

Heavy Atom Count 20 30 

Xlogp 3.5 3.5 

Complexity 3.29 3.29 

Hydrogen Bond Acceptor Counts 2 3 

Monoisotopic Mass (Da) 285.0556563 400.17869263 

Rotatable Bond Counts 3 3 

TA /SA  

(A2) 

37.4 57.7 

 

 
Fig. 1: Structures of Drug Leads (Ligands) 

 

C. Molecular Docking 

Molecular docking gave scoring functions which are 

used to predict the binding affinity between the ligand and 

target where X Centre= -9.498, Y Centre=- 1.025, Z 

Centre=- 26.027, size x,y and z= 40, energy,range=4, 

exhaustiveness=8. The ligand for which the target gave the 

highest binding affinity (minimum binding energy) was 

selected for visualization. 
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Table 2: ligands and their binding affinity 

S/N IUPAC NAME Binding Affinity 

1 5-Chloro-1-(2-phenylethyl)-1H-indole-2,3-dione -9.1 

2 1-(7,8-Dihydronaphthalen-2-ylmethyl)-5-(piperidine-1-carbonyl)indole-2,3-dione -7.8 

 

(A)   (B) 

 
Fig. 2: Grid Boxes of Ligands 

 

D. Fructose Bisphosphate Aldolase- 5-Chloro-1-(2-

Phenylethyl)-1h-Indole-2,3-Dione Interaction 

The 5-Chloro-1-(2-phenylethyl)-1H-indole-2,3-dione 

gave the highest binding affinity out of the two ligands and 

binds and was visualized using PyMOL. The bonds that 

existed in the protein-ligand complex were determined 

manually using a distance tool in PyMOL, the parameter 

are; 

Hydrogen bond interaction - 4.6     

Hydrophobic bond interaction - 4.8   

Salt bridge – 6.0 

 

Fig. 3: Surface representation of   protein-ligand interaction 
 

 
Fig. 4: Cartoon representation of protein-ligand interaction. 
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Fig. 5: Interaction between the ligand. 

 

IV. DISCUSSION 
 

Malaria remains a significant public health concern in 

regions with high transmission rates and even in areas 

where transmission has been largely controlled or 

eliminated. Its complexity varies across the globe in terms 

of epidemiology and clinical presentation.This variability is 

influenced by factors such as prevalent malaria parasite 

species, their resistance to antimalarial drugs, climate, 

environmental conditions, and the acquired immunity levels 

and behaviors of humans in those environments. 
 

The unique reliance of the Plasmodium parasite on 

glycolysis for its ATP (adenosine triphosphate) needs sheds 

light on its resistance to antimalarial drugs. Though 

targeting the active sites of malarial glycolytic enzymes is 

hindered by their similarity to human enzymes, exploiting 

the distinctive structural and functional properties of these 

enzymes holds promise for antimalarial drug development. 
 

Fructose bisphosphate aldolase, an enzyme crucial in 

the glycolytic pathway by converting fructose 1,6 

bisphosphate into triose phosphates DHAP and G3P, stands 

out as a potential target for antimalarial drug design. Given 

the complete reliance of the intra-erythrocytic merozoite 

life stage of P. falciparum on glycolysis for ATP 

production, inhibiting glycolytic enzymes in P. falciparum 

could effectively eliminate the parasite. 

 

 
Fig. 6: Structure of fructose- bisphosphate Aldolase 

 

5-Chloro-1-(2-phenylethyl)-1H-indole-2,3-dione 

which was one of the drug lead generated using machine 

learning algorithm has been found to have higher binding 

affinity compared to 1-(7,8-Dihydronaphthalen-2-

ylmethyl)-5-(piperidine-1-carbonyl)indole-2,3-dione as 

shown from the score function in molecular docking. These 

drug leads were selected based on the Lipinski’s drug 

likeness criteria (relates molecular descriptors of the 

retrieved compounds/ ligands with known drug activity). 
 

V. CONCLUSION 
 

Drug design and development represent critical 

research realms for pharmaceutical companies and 

chemical scientists. Yet, challenges like low efficacy, off-

target delivery, time-intensive processes, and high costs 

pose significant obstacles that affect the landscape of drug 

design and discovery. The integration of machine learning 

algorithms, a subset of artificial intelligence, has been 

widely adopted across various drug discovery phases. 

These algorithms have been applied in peptide synthesis, 

structure-based virtual screening, ligand-based virtual 

screening, toxicity prediction, drug monitoring, release 

mechanisms, pharmacophore modeling, ligand prediction, 

drug repositioning, and the assessment of physiochemical 

activity. This study emphasizes the pivotal role of machine 

learning in leveraging physiochemical activity as a crucial 

factor in drug discovery. 
 

5-Chloro-1-(2-phenylethyl)-1H-indole-2,3-dione 

superior binding affinity with bisphosphate aldolase 

compared to 1-(7,8-Dihydro naphthalen-2-ylmethyl)-5-

(piperidine-1-carbonyl)indole-2,3-dione imply that it can 

inhibit the bisphosphate aldolase activity in the plasmodium 

falciparum as predicted by machine learning algorithm 

from this study. 
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