Volume 8, Issue 5, May — 2023

International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

Music Genre Detection using Machine
Learning Algorithms

Karan Rathi?
Department of computer
Science and Engineering, Sharda University, SET
Greater Noida, UP (India)

Abstract:- Music genre classification is one example of
content-based analysis of music signals. Historically,
human-engineered features were employed to automate
this process, and in the 10-genre classification, 61%
accuracy was attained. Even yet, it falls short of the 70%
accuracy that humans are capable of in the identical
activity. Here, we suggest a novel approach that
combines understanding of the neurophysiology of the
auditory system with research on human perception in
the classification of musical genres. The technique
involves training a straightforward convolutional neural
network (CNN) to categorise a brief portion of the music
input. The genre of the song is then identified by
breaking it up into manageable chunks and combining
CNN's predictions from each individual chunk. The
filters learned in the CNN match the Spectro temporal
receptual field (STRF) in humans, and after training,
this approach reaches human-level (70%6) accuracy.

I INTRODUCTION

Music plays a very important role in people’s lives.
Music brings like-minded people together and is the glue
that holds communities together. A music genre is a
category or classification of music that shares common
characteristics such as musical style, instrumentation,
rhythm, melody, and cultural and historical context.
Examples of music genres include rock, pop, hip-hop,
classical, jazz, blues, country, electronic, folk, and many
others. Each genre is defined by a set of conventions that
distinguish it from other genres and often has a dedicated
fan base and industry infrastructure. The boundaries
between genres can sometimes be blurred, and new genres
can emerge through a fusion of existing ones or by
incorporating elements of different styles. Music genre
detection is the process of automatically identifying the
genre of a piece of music using algorithms and machine
learning techniques. The goal of music genre detection is to
classify a piece of music into one or more predefined
categories based on its acoustic features, such as timbre,
rhythm, harmony, and melody. Music genre detection is
used in various applications such as music recommendation
systems, music streaming platforms, and content-based
music retrieval systems. The process typically involves
analyzing the audio signal using signal processing
techniques to extract relevant features, which are then fed
into machine learning models trained on labeled datasets.
The models learn to recognize patterns and associations
between the extracted features and the corresponding genre

NISRT23MAY473

Manas Bisht?
Department of Computer
Science and Engineering, Sharda University, SET
Greater Noida, UP (India)

labels, which allows them to classify new, unlabeled pieces
of music into the appropriate genre category. The genres of
music that different communities write or even just listen to
can be used to identify them. Different groups and
communities listen to various types of music. The music's
genre is a key characteristic that distinguishes it from other
types of music. A regular person cannot recognize the genre
of the music right away after listening to it. But because the
distinctions between many genres of music can be hazy,
classifying them is a particularly challenging job. For
instance, in a test using a 10-way forced choice problem,
college students were able to classify the music 70%
accurately after hearing it for just 3 seconds, and the
accuracy remained constant with longer music [1].
Additionally, the amount of tagged data is sometimes
significantly lower than the data's dimension. For instance,
even though the GTZAN dataset used in this work only has
1000 audio tracks, each audio track is 30 seconds long and
has a sample rate of 22,050 Hz.

1. LITRATURE REVIEW

Numerous research papers on the classification of
musical genres have extensively employed this kind of
methodology. Multiple spectrograms obtained from audio
recordings are used as inputs for CNN, and their patterns are
extracted into a 2D convolutional layer with the appropriate
filter and kernel sizes [9]. The spectrogram is mentioned in
CNN because the model is good at identifying picture
details [8]. Lau proposed applying the Convolutional Neural
Network (CNN) model using a preprocessed GTZAN
dataset. Each song's extracted Mel-Frequency Cepstrum
Coefficient (MFCC) spectrogram was included in the
dataset. Additionally, the feature descriptions for the audio
excerpts in 3 seconds and 30 seconds were included in a
separate.csv file [8]. Then, using Keras, he created a CNN
architecture with 5 convolutional blocks. Each block
contained a convolutional layer with a 3x3 filter and a 1x1
stride, a max pooling with a 2x2 windows size and a 2x2
stride, and a Rectifying Linear Unit (ReLU) function to
display the probabilities for 10 music genres; the genre with
the highest probability was picked as the input's
classification label [8]. Twenty MFCCs were trained on 30-
second and 3-second pieces of music, three CNN models
were built on spectrograms, and a classification test was run
on the test sets following training [8]. As Lau noted, there
was a problem with the training datasets because the 3-
second dataset did not match the number of genres in the
sample Nevertheless, some genres featured fewer or more

WWW.ijisrt.com 630

http://www.ijisrt.com/

Volume 8, Issue 5, May — 2023

samples than the standard (1000) [10]. The Short-term
Fourier Transform (STFT) spectrograms, which are
composed of different sequences of spectrogram vectors
across time, were used by Yu et al to establish the CNN
method [10]. In their paper, two datasets were mentioned:
Extended Ballroom and GTZAN. Yu et al. separated each
song from both datasets into 18 smaller parts in 3 seconds
with 50% overlaps, increasing the data size set for each
genre label by 18 times over the original [10]. The STFT
spectrograms were examined with an analysis size of
513x128 and the train-validate-test ratio was 8:1:1 [10]. In
order to capture discrete audio properties reflected in the
STFT spectrograms and lessen source loss, pooling kernels
and convolution filters were designed in small sizes in the
first few layers of the CNN model [10]. Athulya and Sindhu
came up with the idea of building a 2D Convolutional
Neural Network (CNN). They extracted the audio samples
from the GTZAN dataset into several types of spectrograms
using the Librosa tool. These spectrograms served as binary
inputs for the 2D CNN model developed with the Keras
framework. The layers were also created using the
TensorFlow framework [6]. Displayed was a 2D
convolutional layer using input measurements of
128x128x1. The inputs to the max-pooling layer, which
would operate a matrix half the size of the input layer, were
represented by a 2D NumPy array [6]. The overall number
of convolutional layers was 5, with a max-pooling layer, a
stride of 2, and a 2x2 kernel size. Next, the output from each
layer would be inserted into a fully linked layer that also had
inputs in the form of a flattened and shrinking matrix size
[6]. The SoftMax function, which was included at the end of
the output layer, produced the probability output. The
architecture achieved 94% accuracy. Similar to this, Nandy
and Agrawal suggested a 2D CNN with a 1D kernel based
on spectrograms generated from audio snippets in the Free
Music Archive (FMA) dataset. The model produced an
output of a 5000-length vector from an input dimension of
500x1500. Convolution layer blocks, a batch normalization
layer, an activation layer, and, if practical, a max-pooling
layer were all included in the construction of the CNN. The
2D CNN model was trained, validated, and tested 80:10:10
times, with a dropout parameter of 0.5 [1]. The model beat
previous models from comparable research articles,
performing with an accuracy rate of 76.2% and a logloss
rate of 0.7543. An F1-Score greater than 0.7 indicated that
the model was increasingly performing well at categorizing
musical genres.

1. METHODOLOGY

A. Pre-Processing

We used data sets from the FMA medium, which are
25000 songs from 8 different genres that have been
compressed to 30 seconds apiece. We have divided the
unsorted datasets into only four genres based on the meta
data, namely: Hip-Hop, rock, pop, and folk One audio clip
was fed into our programme, and its spectral centroid,
spectral bandwidth, spectral roll off, MFCC (Mel-frequency
Cepstral Coefficients), Zero crossing rate, and RMSE (Root
mean Square Energy) properties were extracted from it and
saved into a new CSV file. Thus, obtaining a set of tagged

NISRT23MAY473

International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165
data.

B. Machine Learning Tecniques
We used several models such as KNN, SVM, Naive
Bayes, Decision tree and NN.

» KNN (K-Nearest Neighbours):

This machine learning method and algorithm can be
applied to both classification and regression tasks. K-Nearest
Neighbours uses the labels of a predetermined number of
data points to create a prediction about the class that the
target data point belongs to. We utilised K-Nearest
Neighbours (KNN), a conceptually straightforward yet
incredibly effective technique, to train our model. Avoid
combining Sl and CGS units, such as magnetic field in
oersteds and current in amperes. Due to the fact that
equations do not balance dimensionally, this frequently
causes confusion. If mixed units must be used, be sure to
specify them for each quantity you include in an equation.

» SVM (Support Vector Machine):

This approach for supervised learning is utilised for
both regression and classification. Finding a hyperplane in an
N-dimensional space that clearly classifies data points is the
basic goal of SVM.

» Naive Bayes:

This model that makes predictions based on
probability, and is an algorithm based on the idea of the
Bayes theorem. It can also be used to solve classification
problems.

> Decision Tree:

The non-parametric supervised learning approach used
for classification and regression applications is the decision
tree. It is organised hierarchically, with a root node,
branches, internal nodes, and leaf nodes.

» NN (Neural Networks):

The foundation of deep learning algorithms is a subset
of machine learning known as artificial neural networks
(ANNSs), often known as ANNSs. Their design is influenced
by the structure of the human brain, replicating how synapses
are sent and received in the brain.

C. Data Set

We have used the data set called FMA medium which
consists of fma_medium.zip: 25,000 tracks of 30s, 16
unbalanced genres (22 GiB). FMA stands for free music
archive.

V. EXPERIMENTAL RESULT
> SVM:
Table 1 SVM
Kernel [Hhc Pre F1 score |Recal

rbf 0.729831 10.670305 |0.609726 |0.633856

poly 0.696998]0.655919 [0.607322]0.60915

WWW.ijisrt.com 631

http://www.ijisrt.com/
https://os.unil.cloud.switch.ch/fma/fma_medium.zip

Volume 8, Issue 5, May — 2023 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165

» SVM with Oversampling Techniques: » KNN with Undersampling Techniques:
Table 2 SVM with Oversampling Techniques Table 5 KNN with Undersampling Techniques
Kemel A Pre Flscore Recall Sampler NENDORNACC Pre F1_score |Recall
10 0.640857 0.635161 0.63382 0.6345
of DTSS0S 07487 O4K05 045175 SMOTE] 10 0.395712 0.418999 0.401761 0.403933
rif 0755878 0.753937 0.74%485 0.755273 RandomOverSampler() 9 0.685338 0.67878 0.659999 0.67032
rof 0751037 0.743707 0.744337 0.750384 BorderlineSMOTE()
f 0762002 076305 0758042 0.761512 SVMSMOTE) > TREE:
rf 0767956 0,767819 0768145 0.769199 KMeansSMOTE{cluster_balance_fhreshold=0.1) Table 6 TREE
[bf 074537 0746?52 0]”553 074-8715 ADASYN(samPIinﬂ_ﬂﬁteg‘,':IminUriwl) Criterion Sp[i“er Acc Pre Fl_score Recall
of 079547 0820791 0.787449 0.759138 SMOTEN() gini best 0.553471 0.497942 0.49952 0.50147
gini random 0.560976 0.515978 0.515528 0.515315

entropy best 0.54409 0.499232 0.500121 0.501359

» SVM with Undersampling Techniques:
entropy random 0.336585 0.500461 0.498927 0.497301

Table 2 SVM with Undersampling Techniques
Kernel Acc Pre F1_score Recall Sampler
rbf 0.655684 0.652964 0.621252 0.653418 RandomUnderSampler()
rbf 0.558366 0.569202 0.550723 0.581744 CondensedNearestNeighbour()

» TREE with Oversampling Techniques:

Table 7 TREE with Oversampling Techniques

rof 0.686985 0.679718 0.66926 0.682761 NearMiss() Criterion Splitter Acc ~ Pre Flscore Recall Sampler
b 0.710049 0.713361 0.698142 0.707787 NearMiss(version=2) entropy best 0.627939 0.62549 0.625452 0.626675 SMOTE{)
rbf 0.589744 0.569426 0550643 (0.582002 NearMiss(version=3) entropy random 0.630705 0627423 0.626938 0,629347 SMOTE()
rbf 0.79878 0.783764 0.711256 0.738342 AIIKNN() entropy best 0.731674 0.73034 0725539 0.730583 RandomOverSampler()
rbf 0.617792 0603224 0599583 0.618626 ClusterCentroids() entropy random 0713001 0710339 0.706784 0.711267 RandomOverSampler()
rbf 0.838596 0.843487 0.827031 0.825887 EditedNearestNeighbours() entropy bst 0.612725 0611067 0.61092 0.612001 BorderlineSMOTE()
rbf 0.8 0.769459 0.713965 0.74829 NeighbourhoodCleaningRule() entropy random 0618949 0.615937 0.616585 0.618105 BorderlineSMOTE)
rbf 0.719333 0707028 0.612442 0.6415 OneSidedSelection() ani best 0.615491 0613362 0.613819 0614844 SVMSMOTE()
rbf 0.863636 0.874934 0.840079 0.856448 InstanceHardnessThreshold() gini - random 0.636238 0.635464 0634589 0,635416 SVMSMOTE()
rbf 0.838596 0.843487 0.827031 0.825887 RepeatedEditedNearestNeighbours() gini best 0.639503 0.641571 0.640642 0.641131 KMeansSMOTE{cluster_balance_threshold=0.1)
rbf 0.734115 0.695274 0.623297 0651841 TomekLinks() g random 0.625691 0.625414 0.626336 0628582 KMeansSMOTE|cluster_balance threshold=0.)
entropy best 0.594907 0599183 0598668 0.600293 ADASYN(sampling_strategy='minority')
» KNN: entropy fandom 0576389 0587134 0.582343 0.581311 ADASYN(sampling strategy=minority)
entropy best 0.657676 0.656067 0.656327 0.657264 SMOTEN()
Table 3 KNN entropy fandom 0.655602 0.65542 0655029 0.654833 SMOTEN()
Neighbor: Acc Pre Fl_score Recall
1 0.637899 0.591337 0.591006 0.592258 >» TREE Wlth Undersampling Techniques:
2 0.63227 0.586035 0.58084 0.000204
3 0.663227 0.601234 0.600911 0.613214 Table 8 TREE with Undersampling Techniques
4 0.653846 0.590138 0.592964 0.602144 Criterion Splitter Acc Pre F1_score Recall Sampler
entropy best 0.518546 0.519458 0.520445 0.521913 RandomUnderSampler{)
5 0.662289 0.555443 0.59295 0.603027 entropy random | 0.479407 0478521 0.4793 0.480302 RandomUndersampler()
6 0.664165 0.587951 0.586162 0.599344 entropy best 0.392996 0.401074 0.396744 0.393597 CondensedNearestNeighbour()
entropy random @ 0.365759 0.371371 0.366525 0.363827 CondensedNearestNeighbour()
7 0.670732 0.587503 0.583751 0.598749 gini best 0553542 0.557621 0.552564 0.549281 NearMiss()
8 0.67167 0.590921 0.586282 0.59977 gini random 0.5486 0.550175 0.54933 0.548624 NearMiss()
9 0.665103 0.592297 0.58214 0.593952
10 0.672608 0.598224 0.584009 0.597841 entropy best 0.530478 0.536263 0.532219 0.529644 NearMiss(version=2)
entropy random = 0.482702 0.483314 0.481999 0.484062 NearMiss{version=2)
gini best 0.43956 0.437988 0.435287 0.433024 NearMiss{version=3)
> KNN W|th Oversampling Techniques: gini random | 0.437729 0435544 0433654 0.434265 NearMiss|version=3)
gini best 0.664634 0.640913 0.638381 0.636145 AIIKNN()
gini random 0.618293 0.592288 0.591141 0.590358 AlIKNN{)
Table 4 KNN with Oversamp”ng Techniques entropy best 0.4514 0447341 0.443331 0.453587 ClusterCentroids{)
entropy random 0.395387 0.39%46 0.39775 0.396775 ClusterCentroids|)
!ﬂeighbormur Pre F1 score Recall Sin‘lphl‘ entropy best 0.677193 0.685906 0.581607 0.678929 EditedNearestNelighbours()
entropy random | 0.624561 0.631493 0.626196 0.62233 EditedNearestNeighbours()
1 0.805123 0812681 0.802375 0.803113 SMOTE“ gini best 0.643787 0.619108 0.61944 0.622804 MeighbourhoodCleaningRule()
1 0.806362 0.805534 0.802554 0.80244 Randurnﬂ'ferSamplerﬂ gini random = 0.642604 0.611317 0.613046 0.618897 NeighbourhoodCleaningRule()
i entropy best 0572978 0.528531 0.530101 0.531971 OneSidedselection()
1 0810512 0.815597 0.804123 0.804392 BorderlineSMOTE() entropy random | 0.527613 0489196 0.488243 0.487685 OneSidedSelection()
entropy best 0.754502 0.747541 0.74659 0.746123 InstanceHardnessThreshold()
1 0733314 0.75173 0783868 0.76385 SUMSMOTE“ entropy random | 0.740196 0,730401 0.729952 0.729724 InstanceHardnessThreshold()
1 0,787837 0791687 0.785151 0.784242 KMeansSMOTE{(IUster_balange_threshold:o,” entropy best 0.684211 0.69034 0.687178 0.686358 RepeatedEditedNearestNeighbours()
. P entropy random 0.65614 0.659947 0.652301 0.645925 RepeatedEditedNearestNeighbours()
1 074537 077089 073543 0.728385 ADASYN(sampling strategy="minority’) gini best 0580645 0550352 0547544 0.546856 TomekLinks{)
9 079184 0798838 0.788835 0.792201 SMOTEN() gini random 0.55523 0.52485 0.522069 0.520656 TomekLinks()

NISRT23MAY473 WWW.ijisrt.com 632

http://www.ijisrt.com/

Volume 8, Issue 5, May — 2023

> NAIVE BAYES:

Table 9 NAIVE BAYES
NB Acc Pre F1_score Recall
GaussianN 0.624765 0.55081 0.5497 0.564986
Compleme 0.56379 0.441872 0.44776 0.510773
BernoulliN 0.333021 0.083255 0.124912 0.25

> NAIVE BAYES with Oversampling Techniques:

Table 10 NAIVE BAYES with Oversampling Techniques
NB Acc Pre F1 score Recall Sampler

GaussianN 0.545643 0.508588 0.514871 0.541935 SMOTE()

GaussianN 0.545643 (.508588 0.514871 0.541935 RandomOverSampler()
GaussianN 0.545643 0.508588 0.514871 0.541935 BorderlineSMOTE()
GaussianN 0.545643 0,508588 0.514871 0.541935 SVMSMOTE|)

GaussianN 0.545643 0.508388 0.514871 0.541935 ADASYN()

GaussianN 0545643 0508588 0.514871 0.541935 SMOTEN()

> NAIVE BAYES with Undersampling Techniques:

Table 11 NAIVE BAYES with Undersampling Techniques
NB Acc Pre F1 score Recall Sampler

GaussianN 0.565007 0.532474 0.535836 0.556526 RandomUnderSampler()
GaussianN 0.577982 0.410988 0.416725 0448746 CondensedNearestNeighbour()
GaussianN 0.531561 0.54066 0.523722 0.526333 NearMiss()

GaussianN 0.538206 0.54845 0.533789 0541295 NearMiss(version=2)
GaussianN 0.458333 0.411 0.368815 040311 NearMiss{version=3)
Compleme 0.654545 0.305423 0.311184 0.317647 AIKNN()

» Random Forest:

Table 12 Random Forest

Criterion Splitter Acc Pre F1_score Recall
gini 100 0.69/936 0.65056 0.601014 0620694
gini 200 0.703565 0.68069 0.617106 0.631219
gini 300 0.705441 0.689496 0.620962 0.633594
gini 400 0.709193 0.696107 0.623671 0.636403
gini 500 0.708255 0.687861 0.620429 0.634207
gini 600 0.706379 0.686563 0.618993 (0.632803
gini 700 0.709193 0.6887 0.621062 0.634907
gini 800 0.707317 0.683413 0.619912 0.634028
gini S00 0./707317 0.683581 0.615952 0.634028
entropy 100 0.696998 0.674651 0.60599 0.623394
entropy 200 0.69R99R 0.660053 0.602065 0.621465
entropy 300 0.696998 0.682201 0.6038% 0.621385
entropy 400 0.698874 0.686061 0.607411 0.624273
entropy 500 0.69EE/4) (L.66H4A%E (.605225% (0.62330/
entropy 600 0.696998 0.673087 0.601557 0.620415
entropy 700 0.69606 0.672353 0.601322 0.620757
entropy 80O 0.697936 0.677736 0.605042 0.623128
entropy 900 0.697936 0.672421 0.G04885 0.623128
IJISRT23MAY473

International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165
» Random Forest with Oversampling Techniques:

Table 13 Random Forest with Oversampling Techniques

Criterion Splitter Acc Pre F1_score Recall

gini 800 0.778008 0.776491 0.776455 0.777311
entropy 800 0.784232 0.782807 0.782665 0.78356
gini 900 0.826418 0.826478 0.825545 0.82604
entropy 800 0.824343 0.824812 0.82349 0.823906
gini 700 0.785615 0.784106 0.783409 0.784772
entropy 900 0.786307 0.785257 0.78409 0.785417
gini 800 0.782849 0.783151 0.780814 0.781759
entropy 900 0.784924 0.786638 0.783283 0.783922
gini 800 0.786602 0.795048 0.785495 0.784966
entropy 700 0.790055 0.758784 0.789301 0.788547
gini 400 0.766334 0.767424 0.766181 0.766333
entropy 900 0.767102 0.770926 0.768359 0.76747
gini 800 0.784232 0.801157 0.783942 0.782943
entropy 400 0.786307 0.803378 0.785555 0.784884

» Random Forest with Undersampling Techniques:

Table 14 Random Forest with Undersampling Techniques
Criterion Splitter Acc Pre Il score Recall Sampler

gini BOO 0.60461 058568 058849 0.60355 RandomUnderSampler()
entropy 900 0.61285 059676 0.5959 0.61173 RandomUnderSampler()

gini 500 0.51961 0.52605 052134 052228 CondensedNearestNeighbour()
entropy 100 052157 052679 05236 0.52491 CondensedNearestNelghbour()
gini 900 0.70181 069526 0.69083 0.70047 NearMiss()

entropy 900 0.70511 0.70236 0.6BBBZ 0.7039 NearMiss()

gini 500 0.68861 0.68767 0.68015 0.68329 NearMiss|version=2]

entropy 600 0.69358 069686 068283 0.69436 NearMlss|version=2)

gini 800 058514 055397 05533 0.56405 NearMiss|version=3)

entropy 900 055063 0.55031 054566 0.55769 NearMiss[version=3)

gini 500 0.78335 0.74691 070508 0.71847 AlKNNI)

Entrogy 800 078081 07558 070185 0.71669 AlKNN()

gini 900 053213 051348 051876 0.52072 ClusterCentroids()

enlropy 100 056013 053968 054443 055836 ClusterCentroids()

gini BO0 07993 0.79563 079399 080821 FoitedNearestNeighbours()
entropy 500 0.79578 079467 0.7898 080602 EelitedNearestielzhbours()
glni 600 0.75924 0.6935 067827 0.7061 NeighbourhoodCleaningRule()
enlropy 400 0.76281 0.72032 067597 0.70812 NeighbourhaodCleaningRule()
gini 00 070949 069316 063045 0.63547 OneSidedselection()

entrapy 600 0.7055] 0.69857 0.61866 0.6288% OneSidedSelection()

glnl 700 085714 085012 084558 0.86235 InstanceHardnessThreshald()
enropy 900 08474 085103 083331 0.85304 InstanceHardnesshreshold()
gini BOD 0.7993 0.79563 079399 0.80821 RepeatedfditedNoarestNeighbours()
enfropy 700 079754 073603 0.79247 0.80777 RepeatedCditedNearestNeighbours()
glnl 700 0.70207 068689 061393 0.63224 TomekLinks()

entropy 900 070107 0.71284 061057 063051 TomekLinksf)

» Oversampling and Undersampling Used:

e SYNTHETIC MINORITY OVERSAMPLING (SMOTE):
This statistical method is employed to evenly increase
the number of examples in your dataset. SMOTE
creates new instances from inputs of minority cases that
already exist.

WWW.ijisrt.com 633

http://www.ijisrt.com/

Volume 8, Issue 5, May — 2023

e SMOTE-NC: It is used to generate synthetic data to
oversample a minority target class in an imbalanced
dataset.

e ADASYN: The major benefits of this technique, which
creates synthetic data, are duplicating minority data and
producing extra data for "harder to learn” examples.

e BORDERLINE-SMOTE: This algorithm classifies any
minority observation as a noise point if all the
neighbours are of majority class, and such an
observation is ignored while creating synthetic data.

e K-MEANS SMOTE: is an oversampling method for
class-imbalanced data. It aids classification by
generating minority class samples in safe and crucial
areas of the input space.

e SVM SMOTE: is a Variant of SMOTE algorithm which
use an SVM algorithm to detect sample to use for
generating new synthetic samples.

e CLUSTER CENTROIDS: is a method that undersamples
the majority class by substituting the cluster centroid of
a KMEANS algorithm for a cluster of majority sample
locations.

e CONDENSED NEAREST NEIGHBOUR: Condensed
nearest neighbour which is also known as the Hart
algorithm is an algorithm designed to reduce the data
set for k-NN classification. It selects the set of
prototypes U from the training data, such that 1NN with
U can classify the examples almost as accurately as
1NN does with the whole dataset.

e EDITED NEASREST NEIGHBOUR (ENN): This
method works by finding the K-nearest neighbour of
each observation first, then check whether the majority
class from the observation's K-nearest neighbour is the
same as the observation's class or not.

e REPEATED EDITED NEASRESTNEIGHBOUR: This
method repeats the ENN algorithm several times; it
under samples based on the repeated edited nearest
neighbour.

e AIIKNN: It removes all examples from the dataset that
were classified incorrectly.

e INSTANCEHARDNESS THRESHOLD: This is an under
sampling method that was built to tackle imbalanced
classifications.

e NEARMISS: It refers to a group of undersampling
techniques that choose examples depending on how
close majority class and minority class examples are to
one another.

e ONESIDEDSELECTION: Condensed Nearest
Neighbour (CNN) Rule and Tomek Links are two
undersampling techniques that are combined to create
One-Sided Selection, or OSS. The CNN approach is
used to eliminate redundant examples from the interior
of the density of the majority class, whereas the Tomek
Links method is used to eliminate noisy examples on
the class boundary.

o RANDOMUNDERSAMPLER: It undersamples the
majority class(es) by randomly picking samples with or
without replacements.

e TOMEKLINKS:Tomek links are pairs of instances of
opposite classes who are their own nearest neighbours.

NISRT23MAY473

International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

e RANDOM OVERSAMPLER: Machine learning uses the
method of random oversampling to balance unbalanced
datasets. One class contains significantly fewer
examples than the other(s) in an unbalanced dataset.
This may result in a biassed model that does not
adequately represent the minority class. This is
addressed by random oversampling, which duplicates
examples from the minority class until the dataset is
balanced.

V. FUTURE WORK

> There are several future scopes that can be explored to
improve its performance. Here are some possible
approaches:

e Data Augmentation:

One way to improve the performance of a genre
detection model is to increase the size of the training dataset
by generating additional examples from the existing ones
through data augmentation techniques. For example, the
audio signals can be randomly time-stretched, pitch-shifted,
or filtered to create variations of the same piece of music
that can help the model learn more robust representations of
the genre features.

e Feature Engineering:

Another way to improve the performance of a genre
detection model is to extract more informative features from
the audio signals that capture the essential characteristics of
each genre. This can be achieved by using more
sophisticated signal processing techniques or by
incorporating domain-specific knowledge about music
theory and composition into the feature extraction process.

e Ensemble Methods:

Ensemble methods combine the outputs of multiple
models to make more accurate predictions than any single
model alone. By training multiple genre detection models
with different architectures, hyperparameters, or training
data, and then combining their outputs through voting,
averaging, or stacking, we can leverage the diversity of the
models' predictions to improve the overall accuracy of the
ensemble.

e Transfer Learning:

Transfer learning involves reusing pre-trained models
that were originally trained on large datasets for related
tasks to improve the performance of a new model with
limited training data. By fine-tuning a pre-trained model on
a smaller genre detection dataset, we can leverage the pre-
existing knowledge captured by the model to improve its
accuracy on the target task.

e Hybrid Approaches:

Hybrid approaches combine multiple techniques from
the above methods to create more sophisticated genre
detection models. For example, a hybrid model could use a
pre-trained deep learning model for feature extraction,
followed by a support vector machine (SVM) classifier
trained on augmented data, and then an ensemble method to

WWW.ijisrt.com 634

http://www.ijisrt.com/

Volume 8, Issue 5, May — 2023 International Journal of Innovative Science and Research Technology
ISSN No:-2456-2165

combine the predictions of multiple SVM models with
different hyperparameters.

VI. CONCLUSION

In this paper we propose the KNN algorithm with
EditedNearestNeighbor undersampling and only one
neighbour to be far more accurate than the remaining
algorithms along with their over and under sampling. Due to
our limited computational resources and time we were not
able to execute neural network on our dataset.

REFERENCES

[1]. Chatziagapi, A., Paraskevopoulos, G., Sgouropoulos,
D., Pantazopoulos, G., Nikandrou, M.,
Giannakopoulos, T., .. & Narayanan, S. (2019,
September). Data Augmentation Using GANs for
Speech Emotion Recognition. In Interspeech (pp.
171-175).

[2]. Biswas, R., & Ghattamaraju, N. (2019). An effective
analysis of deep learning based approaches for audio
based feature extraction and its visualization.
Multimedia Tools and Applications, 78, 23949-
23972,

[3]. Lu, Y.C., Wu, C. W., Lerch, A,, & Lu, C. T. (2016,
August). Automatic Outlier Detection in Music Genre
Datasets. In ISMIR (pp. 101-107).

[4]. Fell, M., & Sporleder, C. (2014, August). Lyrics-
based analysis and classification of music. In
Proceedings of COLING 2014, the 25th international
conference on computational linguistics: Technical
papers (pp. 620-631).

[5]. Van Mieghem, L. C. F. (2020). Music Genre
Detection: with Neural Networks.

IJISRT23MAY473 WWW.ijisrt.com 635

http://www.ijisrt.com/

	Karan Rathi1
	Manas Bisht2
	II. LITRATURE REVIEW
	III. METHODOLOGY
	A. Pre-Processing
	We used data sets from the FMA medium, which are 25000 songs from 8 different genres that have been compressed to 30 seconds apiece. We have divided the unsorted datasets into only four genres based on the meta data, namely: Hip-Hop, rock, pop, and fo...
	 SYNTHETIC MINORITY OVERSAMPLING (SMOTE): This statistical method is employed to evenly increase the number of examples in your dataset. SMOTE creates new instances from inputs of minority cases that already exist. ...
	 SMOTE-NC: It is used to generate synthetic data to oversample a minority target class in an imbalanced dataset.
	 ADASYN: The major benefits of this technique, which creates synthetic data, are duplicating minority data and producing extra data for "harder to learn" examples.
	 BORDERLINE-SMOTE: This algorithm classifies any minority observation as a noise point if all the neighbours are of majority class, and such an observation is ignored while creating synthetic data.
	 K-MEANS SMOTE: is an oversampling method for class-imbalanced data. It aids classification by generating minority class samples in safe and crucial areas of the input space.
	 SVM SMOTE: is a Variant of SMOTE algorithm which use an SVM algorithm to detect sample to use for generating new synthetic samples.
	 CONDENSED NEAREST NEIGHBOUR: Condensed nearest neighbour which is also known as the Hart algorithm is an algorithm designed to reduce the data set for k-NN classification. It selects the set of prototypes U from the training data, such that 1NN with...
	 EDITED NEASREST NEIGHBOUR (ENN): This method works by finding the K-nearest neighbour of each observation first, then check whether the majority class from the observation's K-nearest neighbour is the same as the observation's class or not.
	 REPEATED EDITED NEASRESTNEIGHBOUR: This method repeats the ENN algorithm several times; it under samples based on the repeated edited nearest neighbour.
	 AIIKNN: It removes all examples from the dataset that were classified incorrectly.
	 INSTANCEHARDNESS THRESHOLD: This is an under sampling method that was built to tackle imbalanced classifications.
	 NEARMISS: It refers to a group of undersampling techniques that choose examples depending on how close majority class and minority class examples are to one another.
	 ONESIDEDSELECTION: Condensed Nearest Neighbour (CNN) Rule and Tomek Links are two undersampling techniques that are combined to create One-Sided Selection, or OSS. The CNN approach is used to eliminate redundant examples from the interior of the den...
	 RANDOMUNDERSAMPLER: It undersamples the majority class(es) by randomly picking samples with or without replacements.
	 TOMEKLINKS:Tomek links are pairs of instances of opposite classes who are their own nearest neighbours.
	V. FUTURE WORK

