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Abstract:- In this paper, a new lifetime distribution 

known as the Marshall-Olkin Chris-Jerry (MOCJ) 

distribution is proposed. The proposition is motivated by 

Marshall-Olkin family of distributions and the one-

parameter Chris-Jerry distribution. Some of its useful 

mathematical properties were derived and the derivation 

of the Pietra measure of inequality lends this distribution 

to wider application especially in income and population 

distributions. Two real data sets were used to illustrate 

the proposed model. From the results, the MOCJ 

distribution performed better than the other fitted 

distributions. 
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I. INTRODUCTION 

 

The major aim of the modification of any probability 

model is the need for flexibility in applications. No 

particular distribution fits all situations while retaining its 

parsimony. It is on the above basis that researchers have 

continued to introduce new distributions as well as modify 
existing distributions. In the end, evolving life events are 

modeled easily. 

 
Onyekwere and Obulezi (2022) proposed a one-

parameter life distribution named Chris-Jerry distribution 

following the tradition involved in the derivation of the 

Lindley distribution by Lindley (1958). Chris-Jerry 

distribution is apt due to having one-parameter and yet fits 

data from taxes, health and engineering. The wider 

applicability of the Chris-Jerry distribution has motivated its 

extension in this paper. Other distributions derived in this 

fashion are Pranav distribution by KK (2018). Kamlesh 

Kumar Shukla and Rama Shanker (2019) proposed the 

‘Shukla distribution’. Sujatha Distribution with an 
increasing hazard rate for modelling lifetime data was 

suggested by Rama Shanker (2016). Shanker and K. Shukla 

(2017) introduced the Ishita distribution. Shanker (2015a) 

studied a one-parameter lifetime distribution named Akash 

distribution. Shanker (2017a) studied a one-parameter 

lifetime distribution named Rani distribution. Shanker 

(2017b) studied a one-parameter lifetime distribution named 

Rama distribution. Sen, Maiti, and Chandra (2016) studied a 

one-parameter lifetime distribution named XGamma 

distribution. Shanker (2016) studied a one-parameter 

lifetime distribution named Aradhana distribution. Shanker 

(2015b) studied a one-parameter lifetime distribution named 

Shanker. Each of the cited distributions above following the 
pattern of Lindley distribution has a unique mixing 

proportion. 

 

Some useful distribution modifications in the literature 

are Modification of Shanker distribution using quadratic 

rank transmutation map by Onyekwere, Okoro, et al. (n.d.), 
Zubair-Exponential distribution by Anabike et al. (2023), 

Hassan et al. (2019) proposed the alpha power transformed 

power Lindley distribution, a generalization of the power 

Lindley distribution that provides a better fit. An extension 

of the Lindley distribution which offers a more flexible 

model for lifetime data was introduced by Nadarajah, 

Bakouch, and Tahmasbi (2011). Marshall and Olkin (1997) 

provides a unique way of enhancing a distribution model to 

yield wider applicability. Many authors have advanced this 

thought using various baseline distributions. Alsultan (2022) 

proposed the Marshall-Olkin Pranav distribution with a 
better fit to numerous data than the Pranav distribution. 

Ikechukwu and Eghwerido (2022) studied the Marshall-

Olkin Sujatha distribution with similar advantages like the 

Marshall-Olkin Pranav. Importantly, all such modifications 

with using Marshall-Olkin family of distributions and any 

one-parameter lifetime distribution obtained from the 

mixture of Exponential and Gamma distributions have 

proven to be better with wider applications than their 

baseline distributions. On the above premise, we propose the 

Marshall-Olkin Chris-Jerry distribution in this paper. 

 
The rest of this paper is organized as follows; in 

section 2, we derive the Marshall-Olkin Chris-Jerry 

distribution and present the pdf, cdf, survival and hazard rate 

functions and their associated plots. In section 3, we derive 

some useful mathematical properties. In section 4, we apply 

the proposed distribution to two real data sets and we 

conclude the paper in section 5. 
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 The Marshall-Olkin Chris-Jerry (MOCJ) Distribution 

Marshall and Olkin (1997) developed a method for improving the flexibility of family of distributions. 

 

Definition 1 Let X ∼ Q(x), a baseline c.d.f whose p.d.f is q(x), then the c.d.f and p.d.f of the Marshall-Olkin family of 

distributions are respectively 

 

                    (1) 

 

And 
 

              (2) 

 

 

Where   

 

 

Definition 2 Let   Chris-Jerry   due to Onyekwere and Obulezi (2022) with p.d.f and c.d.f given as 

 

                (3) 

 

And 

 

                 (4)  
  

The c.d.f and p.d.f of Marshall-Olkin Chris-Jerry (MOCJ) distribution are therefore given respectively as 

 

                (5) 

 

and 

 

            (6) 

 

where  is the tilt parameter. 

 

Definition 3 (Linear Representation). To obtain a tractable function for the p.d.f of the proposed MOCJ distribution, 

consider the following known binomial expansions 

 

                  (7) 

 

and 

 

               (8) 
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We can write 

 

 
 

Where 

 

         (9) 

 

Therefore, the p.d.f of MOCJ distribution in equation (6) can be linearly represented as 

 

   (10) 

 

The Reliability rate, hazard rate, reversed hazard rate, cumulative hazard rate and the odd functions are respectively 

 

         (11) 

 

      (12) 

 

      (13) 

 

          (14) 

 

and 

 

       (15) 

 

 

 
Fig 1 (a) PDF of MOCJ distribution                                      Fig 1 (b) PDF of MOCJ distribution 
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Fig 1 (c) CDF of MOCJ distribution                                   Fig 1 (d) CDF of MOCJ distribution 

 

 
Fig 2 (a) Reliability function of MOCJ distribution                  Fig 2 (b) Reliability function of MOCJ distribution 

 

 
Fig 2 (c) Hazard function of MOCJ distribution                            Fig 2 (d) Hazard function of MOCJ distribution 
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 Mathematical Properties of the MOCJ distribution 

In this section, we derive some useful mathematical properties of the proposed MOCJ distribution. 

 

Definition 1 (Moment) Let  MOCJ  ,then its rth crude incomplete moment is given as 

 

      (16) 

 

Where  is the lower incomplete gamma function and Pijk    is as defined in equation (9) 

 
Proof. Let us define the rth lower incomplete moment as 

 

                  (17) 

 

 

substituting accordingly into equation (17), we obtain 

    

      (18) 

 

Since    , then equation (16) is valid deduction from equation (18). This 
completes the prove.  

 

The holomorphic extension of the MOCJ incomplete moment in equation (16) is 

 

 (19) 

 

 This is obtained by recursive relation. 

 

Definition 2 (Mean of the MOCJ Distribution). Let MOCJ  the arithmetic mean µ is obtained from equation (19) 

by replacing r by 1 which yields 

 

       (20) 

 

Definition 3 Let MOCJ , the second, third and fourth moments µ2,µ3 and µ4 are obtained from equation (19) by 

replacing r by 2,3 and 4 respectively which yield 

 

 
    

         (21) 
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Definition 4 (Normalized Incomplete Moment). Butler and McDonald (1989) explained that normalized incomplete moment 

can be helpful in measuring inequalities in income distribution and hence the rth incomplete moment defined as   

 

          (22) 

 

Where   

 

 
 

      (23)    

 

Therefore, the normalized incomplete moment of the MOCJ distribution is 
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As noted by Butler and McDonald (1989) an interesting property of the normalized incomplete moment is that 0 ≤φ(x;r) ≤ 1 

and φ′(x;r) ≥ 0 

 

A useful measure of inequality mathematically tractable in MOCJ distribution is the Pietra index or measure P 

 

Definition 5 (Pietra measure of Inequality). Let  MOCJ  , the Pietra measure of inequality is given as  

 

          (25) 
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And 
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µ is as defined in equation (20). 

 

Definition 6 (Maximum Likelihood Estimation). Let  MOCJ , the likelihood function of a random  

samples  of size  drawn from MOCJ  
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      (28) 

 

Let 

 

    (29) 

 

Take the log of likelihood function in equation (29) 
 

       (30) 

 

Differentiate equation (30) partially with respect to and        

       

           (31) 

 

        (32) 

 

Equations (31) and (32) do not have closed-form solution hence not tractable. Its solutions will be obtained using iterative 

procedure in R. 
 

Definition 7 (Moment Generating Function). Let X ∼ MOCJ (θ,β), the moment generating function is obtained as follows 

 

 
 

(33) 

 

Definition 8 (Characteristic Function). Let X ∼ MOCJ (θ,β), the characteristic function is obtained as follows  

 

       (34) 

 

Definition 9 (Stochastic Ordering of MOCJ Distribution). The stochastic ordering is used in comparing the behaviour of 

system components. A random variable   is said to be smaller than another random variable  in the 

 

 Stochastic order  

 Hazard rate order  

 Mean residual life order  

 Likelihood ratio order decreases in x 

 

This implies that        

 

Here, we prove that MOCJ distribution is ordered with respect to the strongest "likelihood ratio" as shown in theorem below. 
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Theorem 1 Let  MOCJ  and  MOCJ . If  then   hence ,               

and   

        

Proof 

 

 
 

Taking natural log of the ratio will yield 

 

 
 

 
 

Differentiating the natural log of the ratio with respect to  will yield 

 

 
 

 
 

 
 

Definition 10 (Distribution of the Order Statistics). Suppose  is a random sample of 

 are the  order statistics obtained by arranging     in ascending order of magnitude 

and    then the 

probability density function of the order statistics of the MOCJ distribution is given by      

 

      (35) 

 

where  and  are the p.d.f and c.d.f of MOCJ distribution respectively. Hence, we have  
 

      (36)  

 

 
 

The p.d.f of the largest order statistics is obtained by setting        

 

          (37) 

  

 

         

The pdf of the smallest order statistics is obtained by setting   
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 (38) 

           

Definition 11 (Reny Entrop). Let  MOCJ , the Reny Entropy is given as      

 

 
 

       (39) 

 

 Numerical Analysis 

In this section, two real data sets are introduced to check the performance of the MOCJ distribution. 

 

The first data set is the survival times of guinea pigs injected with different amount of tubercle bacilli studied by Bjerkedal et 

al. (1960) shown in table 1. 

 

Table 1 Survival Times of Guinea Pigs Injected with different Amount of Tubercle Bacilli 

10 33 44 56 59 72 74 77 92 93 96 100 100 102 105 107 107 108 

108 108 109 112 113 115 116 120 121 122 122 124 130 134 136 139 144 146 

153 159 160 163 163 168 171 172 176 183 195 196 197 202 213 215 216 222 

230 231 240 245 251 253 254 255 278 293 327 342 347 361 402 432 458 555 

 

Next, we illustrate the proposed MOCJ distribution by comparing its model performance with those of the Marshall-Olkin 

Sujatha (MOS) distribution, Kumaraswamy-Weibull (KW) distribution, Exponentiated-Weibull (EW) distribution and 
Exponential Distribution (ED) using the survival times of Guinea pigs injected with different amounts of tubercle bacilli, as 

shown in Table 2. The analytical measures of fitness, which include log-likelihood (LL), the Akaike information criterion (AIC), 

the Bayesian information criterion (BIC), and Kolmogorov–Smirnov (K-S) statistics, are such that the model with the smaller 

values of these analytical measures is best among others. See Uzoma, Jeremiah, et al. (2016) for relevant modification on model 

performance criteria namely Bayesian Information Criterion (BIC). 

 

Table 2 The Analytical Measures of Fitness and MLE Estimates for the Fitted distribution using Guinea Pigs data 

Distribution Parameters Estimates Std. Error LL AIC BIC K-S 

 

MOCJ 

θ β 0.01603 

0.85541 

0.00353 

0.53806 
-425.61 855.22 859.7733 0.17502 

 

MOS 

θ β 0.01607 

0.85574 

0.00355 

0.54223 
-425.7702 855.5404 860.0937 0.50639 

KW a b c 0.36088 

0.05534 

0.62883 

0.01638 0.00654 

0.00194 

-474.6325 957.265 966.3717 0.38542 

EW 

l 0.51970 0.00248     

a k 2.65415 

1.16037 

1.53624 

0.30810 -425.6656 857.3311 864.1611 0.08912 

ED 

l 112.8844 46.29453     

θ 0.00568 0.00065 -444.6156 8912312 893.5079 0.29585 

 

From table 2, we see that the proposed Marshall-Olkin Chris-Jerry (MOCJ) distribution is better than the competing 

distributions fitted based on the criteria of model performance used. 
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Fig 3 The Estimated PDF, CDF, Kaplan-Meier and Box Plots of the MOCJ other Fitted distributions using the Guinea Pigs Data 

 

The plots in figure 3 also reveal that MOCJ is a better fit for the data than the other fitted distributions. 

 

The second application is on the emission times (in months) of 128 bladder cancer used by Okasha, Mohammed, and Lio 

(2021).We demonstrate the proposed MOCJ distribution by comparing its model performance with those of the Marshall-Olkin 

Sujatha (MOS) distribution, Exponential Distribution (ED), Lindley Distribution (LD) and Transmuted Power Lomax (TPL) 

distribution using the survival times of Guinea pigs injected with different amounts of tubercle bacilli, as shown in Table 3. The 

analytical measures of fitness, which include log-likelihood (LL), the Akaike information criterion (AIC), the Bayesian 
information criterion (BIC), and Kolmogorov–Smirnov (K-S) statistics, are such that the model with the smaller values of these 

analytical measures is best among others.  

 

Table 3 Analytical Measures of Fitness and MLE Estimates for the Fitted distributions using 128 Bladder Cancer Data 

Distr Parameter Estimates Std. Error LL AIC BIC K-S 

MOCJ β 0.093 0.0315 
-410.8146 825.6291 831.3332 0.955 

θ 0.0451 0.0341 

MOS θ 0.1172 0.0278 
-415.2429 834.4858 840.1898 1.9846 

β 0.0498 0.0315 

ED θ 0.1068 0.0094 -414.3419 830.6838 833.5358 0.08464 

LD θ 0.19610 0.0123 -419.5299 841.0598 843.9118 0.1164 

TPL θ 0.1068 0.0209 
-414.3419 832.6838 838.3879 3.4982 

α 0.00001 0.0186 

 

From table 3, we see that the proposed Marshall-Olkin Chris-Jerry (MOCJ) distribution is better than the competing 

distributions fitted based on the criteria of model performance used based on the data on emission times (in months) of 128 

bladder cancer patients. 
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Fig 4 The Estimated PDF, CDF, Kaplan-Meier and Box plots of the MOCJ and other Fitted distributions using Emission Times 

(in months) of 128 Bladder Cancer Patients 

 

Figure 4 is a weird visualization but a closer study 

reveals that MOCJ performed better than the other 

competing distributions. 

 

II. CONCLUSION 

 

In this paper, an extension of the Chris-Jerry 

distribution has been investigated with the Pietra Measure of 

inequality derived and the holomorphic extension of the 

MOCJ incomplete moment. The normalized incomplete 

moment was also derived which enabled the derivation of 
the Pietra Index. A meaningful application of the Pietra 

Measure of inequality and possibly the Gini index can be 

studied using income or population data. Practical 

applications of the proposed distribution were carried out 

using two data sets and the proposed MOCJ distribution 

performed better than the other fitted distributions in both 

scenarios. 
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