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Abstract:- Layer of protection analysis (LOPA) is an 

efficient tool used for evaluating the risk associated with 

different industries that face significant threats with 

severe consequences. LOPA offers a semi-quantitative 

outcome, leveraging information from process hazard 

analysis such as the frequency of initiating events, the 

severity of consequences, and the probability of failure 

upon demand. By disregarding less severe or infrequent 

consequences, LOPA becomes a practical and cost-

effective solution suitable for real-time 

applications.Bayesian-LOPA methodology, an enhanced 

version of LOPA based on Bayes' theorem, has been 

recently developed. Bayesian logic utilizes prior event 

knowledge to predict future events, aiming to reduce 

uncertainty in the failure data of independent protection 

layers (IPLs) or events within a plant. The posterior 

value obtained through Bayesian estimation incorporates 

both historical data from prior events and real-time data 

from the plant, resulting in more reliable failure data for 

assessing risk and ensuring the safety of the plant. 
 

In this particular study, Bayesian-LOPA was 

applied to assess the risk and mitigate accident scenarios 

in a Sodium hypochlorite plant by implementing 

Independent Protection Layers. The obtained risk value 

can be compared against risk criteria defined by the 

plant or government to determine if any accident 

scenario fails to meet the set criteria. If necessary, 

additional IPLs may be suggested to reduce the risk to 

an acceptable level. Comparatively, Bayesian-LOPA 

proves to be a more dependable risk assessment tool 

than the traditional LOPA approach. It aids in 

prioritizing various scenarios for maintenance and safety 

enhancement efforts, thereby improving the overall 

safety of the plant 
 

Keywords:- Risk assessment, Bayes’ theorem, Bayesian 

logic, LOPA, protection layers. 
 

I. INTRODUCTION 
 

The chlor-alkali industry faces significant dangers, 

primarily the risk of explosions and the release of harmful 

gases into the atmosphere, which can result in severe harm 

or even fatalities to both human life and property. 

Additionally, the presence of substances like Chromium in 

the process increases the workers' susceptibility to 

developing cancer. Considering these factors, the chlor-

alkali industry falls into the category of highly hazardous 
industries. (Al Shanini, 2014) To effectively manage and 

measure the associated risks, it becomes crucial to employ a 

risk assessment methodology such as Layer of Protection 

Analysis (LOPA). By utilizing this approach, the 

quantification of risks and the implementation of 

recommended measures can be facilitated, ultimately 

leading to improved safety within the plant. (Summers, 

2003) 
 

When applying the LOPA methodology to the chlor-

alkali industry, it is necessary to have access to failure data 

regarding equipment and facilities in order to quantify the 

associated risks. (Ravi K.S., 2016)However, due to the 

limited operational history of this industry, there is a 

scarcity of specific data on accidents and failures within 
chlor-alkali plants. Additionally, the collection of historical 

failure data has not been comprehensive thus far. Relying on 

this inadequate data for risk assessment may result in an 

inaccurate representation of the industry's actual condition. 

(Zheng, 2009) 
 

As a potential solution, generic failure data from other 

industries such as petrochemicals and nuclear industries 

could be utilized to calculate risks in the chlor-alkali 

industry. However, it should be noted that these data may 

not yield accurate risk assessments due to the differences in 

operational conditions and environments between chlor-

alkali plants and other industries. (A.S. George, 2022) The 

unique characteristics and processes within the chlor-alkali 

industry necessitate caution when extrapolating data from 

unrelated sectors 
 

Hence, the significance of Bayesian logic becomes 

apparent. It enables the determination of more dependable 

risk values by leveraging both limited plant-specific data 

and generic data from other industries. Bayesian logic aids 
in generating updated failure data by incorporating prior 

information from the generic failure data and the likelihood 

information obtained from the chlor-alkali plant data. 

(Abimola, 2015) This updated data combines statistical 

failure information from the comprehensive and long-term 

historical database of generic data with the specific data 

collected from the chlor-alkali industry. 
 

By utilizing Bayesian logic, it becomes possible to 

produce more reliable data as this approach is rooted in 

systematic logic and statistical analysis. It effectively 

combines the available information to derive a more 

accurate representation of risk, considering both the 

industry-specific data and broader contextual data from 

other relevant sectors. (Abimola, 2015) 
 

The aim of this study is to emphasize the improved 

outcomes achieved by incorporating Bayesian logic into the 

traditional LOPA approach when calculating risk for various 

identified scenarios. This integration leads to statistically 

reliable results and enhances the layer of protection within 
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the industry under consideration. The scope of this study is 

limited to a specific sodium hypochlorite plant within the 
chlor-alkali industry, for which plant-specific data has been 

collected. Generic data from sources such as OREDA and 

CCPS databases have been utilized. Sodium hypochlorite, 

with the chemical formula NaClO, consists of sodium 

cations and hypochlorite anions. It appears as a greenish-

yellow substance with a chlorine-like sweetish odor. The 

molar mass of sodium hypochlorite is 74.442g/mol, and it 

exhibits a solubility of 29.3g/100mL in water. The 

compound has a melting point of 18°C and a boiling point 

of 101°C. 
 

 

 

 

 

 

 

 

 

II. METHODOLOGY DESCRIPTION 
 

The Bayesian estimation method commences by 

establishing a prior distribution, which should originate 

from sources that are unrelated to the specific plant being 

investigated. Suitable sources can include generic data 

reported in literature or utilized in previous studies. (D. Zhu, 
2007) The extent of available evidence, such as plant data, 

plays a crucial role in determining the properties of the 

posterior distribution. In cases where there is insufficient 

data or limited prior knowledge regarding the prior 

distribution, or when significant uncertainty exists in the 

generic data sources, non-informative priors may be 

employed. These non-informative priors maintain the mean 

value of the failure rate estimate while encompassing a wide 

range of uncertainty to accommodate the plant-specific data. 
 

A schematic block diagram of the plant under the 

analysis is shown in Figure below: 

 
Fig. 1: Schematic block diagram of Sodium Hypochlorite plant. 

 

The plant's processes rely on secondary purified brine 

as the input material, which is stored in the mother liquor 

storage tank. The pure brine may contain impurities like 

Calcium, Magnesium, and Sulphates, but in quantities lower 

than 10 g/L. The mother liquor, along with the purified 

brine, is transferred to Diaphragm cells. These cells consist 
of 12 units on each side of the reactor, totaling 24 cells. 

During the transfer, a 5% acidic solution (HCl) is added to 

the mother liquor to create a highly acidic brine solution, 

achieving a pH range of 5.5-6.3 within the cells. 
 

The reactor's overflow products are directed to the 

Recycling tank. A portion of the contents in the Recycling 

tank is cooled and returned to the reactor to maintain the 

desired temperature. The remaining portion is transferred to 

the Digestion tank, where proper mixing takes place. From 

the Digestion tank, the mixture is further transferred to the 

Vacuum crystallizer. In this process, peroxide is added to 

the mixture to maintain the pH within the crystallizer and 

prevent any potential corrosion issues. A vacuum of 30mm 

of Hg is maintained in the vacuum crystallizer, leading to 

the formation of sodium hypochlorite crystals. These 

crystals are then pumped to a centrifuge using a progressive 

cavity pump. The centrifuge separates the sodium 

hypochlorite crystals, which are subsequently sent for 

packaging.The condensate from the vacuum crystallizer, 

known as the mother liquor, is returned to the mother liquor 

storage tank, and the entire process is repeated in a 

continuous cycle 
 

A. Development of Bayesian-LOPA methodology 

The Bayesian-LOPA methodology can be regarded as an 

advanced version of the LOPA method that incorporates 

Bayes' theorem or Bayesian logic. This term was introduced 
by Yun (2009) in his research. Compared to classical LOPA 

methods, this approach has the ability to generate 

statistically more reliable results. The failure data obtained 

from the specific facility under investigation is deemed 

statistically unreliable due to its limited operational history. 

Therefore, to enhance the reliability of the data within the 

facility, the Bayesian-LOPA methodology can be employed. 

(Qadeer, 2014) This methodology allows for the updating of 

plant-specific data from the chlor-alkali industry by 

incorporating generic data that encompasses long-term 

historical experience. 
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Fig. 2: Flow diagram of study. (Yun, 2009) 

 

Once the process information is obtained, a HAZOP 
study needs to be conducted by a team of HAZOP analysts. 

The identified cause-consequence pairs from the HAZOP 

study are then screened for selection in the application of the 

LOPA method using a categorization approach. In this 

process, the OSHA risk matrix is utilized. The OSHA risk 

matrix classifies each scenario into one of four categories: 

A, B, C, or D, based on the combination of its frequency and 

severity levels. These classifications are determined through 

expert opinions. 
 

Following the categorization, the scenarios falling 

under categories A and B are chosen for the application of 

the Bayesian-LOPA methodology. This selection is made 

because these categories encompass events or scenarios that 

have the potential to result in fatalities or significant 

property damage to the facility. (Abimola, 2015) 
 

The subsequent stage involves developing incident 

scenarios based on the HAZOP results from the previously 

selected scenarios. Once the incident scenarios are 

formulated, the next step is to identify the initiating events 

associated with each scenario. The causes identified during 
the HAZOP study can serve as the initiating events for the 

incident scenarios. 
 

Determining the frequency of the initiating events is 
the next task. The frequency of initiating events can be 

obtained primarily from three sources. (Yun, 2009) The first 

source is generic data, which comprises historical data from 

similar industries such as offshore or petrochemical 

industries. (Khan F., 2009) These industries possess 

extensive records and a substantial sample population, 

providing statistical stability. However, it is important to 

note that these industries may not precisely reflect the 

operating conditions of the equipment in the specific facility 

under consideration. 
 

The second source of initiating event frequency is 

plant-specific data, which can be acquired from the chlor-

alkali industry. However, due to the limited history of 

collecting failure data and the short operational duration, 

these values may lack statistical reliability. 
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Therefore, the most reliable option for assessing risk is 

to employ Bayesian estimation, which constitutes a third 
category of data sources for initiating events. Bayesian 

estimation leverages prior information obtained from 

generic data and plant-specific data from the chlor-alkali 

industry to generate updated posterior data. This posterior 

data encompasses both the long-term operational history 

from prior data and the specific conditions of the facility. 

Thus, Bayesian estimation is employed in this study to 

determine the frequency of initiating events. 
 

Once the frequency of the initiating events is 

determined, the next step involves identifying the 

Independent Protection Layers (IPLs). The list of safeguards 

outlined in the HAZOP study for each incident scenario 

serves as a resource to identify potential IPLs. However, 

these safeguards need to be evaluated against the 

fundamental criteria of IPLs, which include independence, 
effectiveness, and auditability. (CCPS, 2008) If a safeguard 

satisfies all three criteria, it can be classified as an IPL. This 

step parallels the process of estimating the frequency of 

initiating events 
 

The final stage entails making risk-related decisions by 

comparing the estimated frequency of the incident scenarios 

with the prescribed tolerable risk criteria, which may be 

determined by the company or government. The CCPS 

(2001) provides two sets of risk criteria. The first set applies 

when the focus is on the potential harm to humans as an 

outcome. In such cases, the maximum acceptable risk 

criteria are defined as being less than 1×10-5/year, and the 
criteria for action required is less than 1×10-3/year. The 

second set of risk criteria only considers harm to property 

resulting from incidents like fire, explosion, or releases. 

Here, the maximum tolerable risk criteria are less than 1×10-

5/year, and the criteria for action required is less than 1×10-

4/year. 
 

If the estimated frequency of the incident scenario 

exceeds the tolerance criteria, additional Independent 

Protection Layers (IPLs) or safeguards must be implemented 

to reduce the incident frequency or mitigate the severity of 

the consequences. 
 

III. RESULTS AND DISCUSSIONS 
 

A. Results of HAZOP study and scenario making 

In this study, the scenario selection process relied on a 

previously conducted HAZOP study of the plant. The 

HAZOP study encompassed a comprehensive examination 

of 24 nodes within the plant. From the findings of the 

HAZOP study, a total of 12 potential scenarios were 

identified for further analysis, guided by expert opinions. To 

refine the selection, OSHA's risk matrix was employed. The 

risk matrix categorized these 12 scenarios into four classes: 

A, B, C, and D, with each class indicating varying levels of 

severity. 

 

Table 1: HAZOP nodes for chlor-alkali plant 

Node Description Design Intention 

Pure Brine feed 

section 

Mother liquor from 10 M1 to 20 K1 and 20 

K2. 

To feed the right quantity and quality 

electrolyte to cells. 

Hydrogen treatment 

section 

Vent H2 gas from 40D1 to 40S2 through 

40T1 

To vent H2 gas with maximum 2.7% O2 and 

with less than 1ppm of Chlorine safely 

through water seal and flame arrestor. 

Recycling system 
Overflow from 20T1 to 20T2, Digestion, 

feed to 30W1 with required temp. 

Electrolyte from 20K1/K2, NaClO, HClO, 

NaOCl allowing required time. 
 

To prioritize the most critical scenarios, the focus was 

placed on classes A and B. These classes denote scenarios 

with the highest potential for adverse outcomes, such as 

fatalities or significant property damage. As a result, two 

scenarios were chosen for the subsequent analysis. Using the 

HAZOP results, each selected scenario was examined to 

establish a cause-consequence pair, forming the basis for the 

subsequent Layer of Protection Analysis (LOPA) incident 

scenario development. 

 

Table 2: Incident scenarios selected for LOPA study 

Scenario Cause Consequence Scenario Description 

1 

Uncontrolled purge 

N2 is coming to 20 

K1, K2 through HV- 

201 due to malfunctioning. 

Cell gas pressure increases 

and water seal will blow 

off 

Water seal blow 

off due to increase in cell 

gas pressure resulting from 

hand valve malfunction 

2 

More of O2 or Cl2 

generation due to 

improper HCl 

addition and higher current 

Explosive gas mixture 

formation which will lead 

to explosion 

Explosive mixture formation 

due to imbalance in HCl 

addition and current. 

 

B. Results of Scenario 1 

In the event of a malfunctioning hand valve that controls 

the purge of N2 gas, there is a risk of uncontrolled purging 

of N2 into the two Chlorate reactors. This uncontrolled 

purging can result in an elevation of the pressure within the 

cell. The increased pressure poses a potential danger of a 

water seal blow-off, which can lead to explosions and the 

dispersal of chemicals. Furthermore, due to the elevated 

working temperatures, workers in the plant may also be at 

risk of burns. 
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The occurrence rate of a malfunctioning hand valve as 

an initiating event can be approximated by utilizing data 
from OREDA and the Chlor-alkali plant. OREDA offers 

failure frequency information specifically for critical 

failures of control and safety valves. Meanwhile, the Chlor-

alkali plant data provides the count of failures and the 

corresponding time period for these occurrences. The 

estimated frequency data is graphically presented in Figure 

3.1, indicating that the posterior values lie between the prior 

information and the likelihood function. This observation 
suggests that the posterior values are updated by 

incorporating both the prior data and the likelihood 

information, effectively reflecting the combined influence of 

these two sources. Within the figure, the vertical line in the 

posterior column represents the 90% credible interval, 

ranging from 0.0292/year to 0.3897/year. 
 

 
Fig. 3: Frequency of hand valve malfunctioning corresponding to Bayesian estimation 

 

In this particular scenario, two Independent Protection 

Layers (IPLs) have been identified and taken into account. 

The first IPL is a Flow Indicator Transmitter, which is 
utilized to monitor and verify the flow rate. The second IPL 

consists of a pressure switch along with a hand valve for the 

purge line. It is important to note that these IPLs are 

assumed to be independent of each other, and it is assumed 

that all human interventions related to their operation are 

executed flawlessly. 
 

IPL 1 refers to a Flow Indicator Transmitter. To 

determine the probability of failure on demand of the flow 

indicator, data from the OREDA database and the chlor-

alkali plant are utilized. The OREDA database provides 

prior information on failure data for flow process sensors, 

which needs to be converted into Probability of Failure on 

Demand (PFD) data using the Frequency-PFD conversion 

method before incorporating it into Bayesian estimation. 

The converted PFD values are then employed to calculate 
the parameters α and β of the prior beta distribution. On the 

other hand, the chlor-alkali plant data supplies information 

regarding the number of failures and Mean Time Between 

Failures (MTBF) of the equipment. The test interval for the 

equipment can be obtained from CCPS (2001) as well. The 

estimated PFD for the Flow Indicator Transmitter is 

illustrated in Figure 3.2. The figure demonstrates that the 

posterior values of PFD fall within the range of the prior and 

likelihood values, indicating that they have been effectively 

updated. The vertical line in the posterior column represents 

the 90% Bayesian credible interval, which spans from 
1.746×10-3/year to 4.122×10-3/year. 

 

 
Fig. 4: PFD’s of flow indicator and transmitter corresponding to Bayesian estimation 
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IPL 2 refers to a Pressure switch (low) with a hand 

valve for the purge line. To estimate the Probability of 
Failure on Demand (PFD) of the Pressure switch, data from 

the OREDA database and chlor-alkali plant are employed. 

The OREDA database provides the failure frequency of 

pressure process sensors, which needs to be converted to 

PFD using the Frequency-PFD conversion method. The 

converted PFD values are then used to calculate the 

parameters α and β of the prior beta distribution. 

Additionally, the chlor-alkali plant data provides 

information on the number of failures and Mean Time 
Between Failures (MTBF) of the Pressure switch, which are 

used as likelihood information. Bayesian estimation is 

applied to calculate the posterior values of the equipment 

using this data. Figure 3.3 presents a comparison of PFD 

values for IPL 2. The vertical line in the posterior column 

represents the 90% Bayesian credible interval, which spans 

from 5.718×10-4/year to 2.903×10-3/year. 
 

 
Fig. 5: PFD’s of Pressure switch (low) corresponding to Bayesian estimation 

 

Figure 3.4 presents a comparison of risk values for 

scenario 1, considering the prior, likelihood, and posterior 

information. It is observed that the posterior value of failure 

frequency falls between the prior and likelihood values. 

However, it should be noted that this pattern may not be 

consistent for all risk values estimated through LOPA for 

various incidents. The positioning of the posterior values 

between the prior and likelihood values depends on the use 

of an informative prior in Bayesian estimation. If all 

initiating events and IPLs exhibit the same trend (either all 

ascending or all descending), the final risk values estimated 

by LOPA will follow the same trend since they are 

multiplied together. However, if some initiating events or 

IPLs display different trends, the posterior values may or 

may not fall between the prior and likelihood values. This 

phenomenon is further explained in the subsequent section. 
 

 
Fig. 6: Risk values of Scenario 1 by LOPA 
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In the case of scenario 1, the posterior risk value is 

determined to be 8.21×10-7/year. This estimated value is 
then compared to the risk tolerance criteria, which specifies 

that the risk should be less than 1×10-5/year. Based on this 

comparison, it can be concluded that scenario 1 is 

considered tolerable if the test interval and the assumptions 

made during the analysis are maintained. 
 

This risk decision indicates that the level of risk 

associated with scenario 1 falls within an acceptable range 

according to the specified criteria. However, it is crucial to 

emphasize that this determination relies on the assumptions 

and conditions considered during the analysis. Any changes 

to these factors could potentially alter the risk assessment 

and subsequent decision. Therefore, it is imperative to 

ensure that the test interval and the assumptions are upheld 

to maintain the tolerable risk level for scenario 1. 
 

 

 

 

 

 

 

 

 

 

C. Results of Scenario 2 

The purpose of adding HCl to the mother liquor is to 
maintain a highly acidic solution, which in turn helps 

achieve a pH level of approximately 5.5-6.3 in the cell. 

However, in cases where there is an imbalance in the 

process caused by human error, an excessive amount of 

Oxygen or Chlorine may be generated. This can 

subsequently lead to the formation of an explosive mixture 

within the reactor, posing a significant risk of explosion. 
 

The frequency of human errors resulting in the 

increased generation of O2 or Cl2 as an initiating event can 

be determined using Bayesian estimation in this particular 

scenario. Since the frequency of human errors is not 

available in generic data sources, Jeffreys non-informative 

prior can be employed to update the plant data. It is assumed 

that the prior distribution follows a gamma distribution with 

parameters α=0.5 and β=0. For the likelihood function, the 
chlor-alkali plant data provides the number of failures and 

the corresponding time period. The estimated frequency per 

year is presented in Figure 5.5. Upon updating, it can be 

observed from figure 3.5 that the posterior value surpasses 

the likelihood value. The vertical line in the posterior 

column represents the 90% Bayesian credible interval, 

ranging from 0.1041/year to 1.006/year. 
 

 
Fig. 7: Frequency of human errors corresponding to Bayesian estimation 

 

In this particular scenario, three Independent 

Protection Layers (IPLs) have been taken into account. The 

first IPL is an Automated Immunoassay Analyzer equipped 

with a flow indicator and control alarm. The second IPL is 

an oxygen analyzer that triggers the electrolyzer shutdown 

at an oxygen concentration of 2.7% and initiates acid feed. 

Lastly, the third IPL considered for this scenario is a 

pressure indicator and transmitter. It is assumed that all IPLs 

operate independently of each other, and any necessary 
human interventions are carried out flawlessly. 

 

IPL 1 refers to the Automated Immunoassay Analyzer 

(AIA-202,203) with HCl addition and pH measurement, as 
well as the inclusion of a Flow Indicating and Control 

Alarm (FICA-203). The Probability of Failure on Demand 

(PFD) for this specific IPL can be estimated by utilizing 

both the OREDA database and the chlor-alkali plant data. 

The OREDA database provides failure frequency data 

concerning flow process sensors, which serves as the prior 

information for the estimation. However, before using this 

data, it must be converted into PFD data through the 

frequency-PFD conversion method. On the other hand, the 

plant-specific data provides information regarding the 

number of failures and the Mean Time Between Failures 

(MTBF) of the instrument. The test interval for this 

equipment is determined using the CCPS database, 
establishing the likelihood data required for the Bayesian 

estimation. Figure 3.6 visually represents the results 

obtained from the Bayesian estimation, displaying the PFD 

values for the IPL. The vertical line within the posterior 

column indicates the 90% Bayesian credible interval, 

ranging from 2.927×10-3/year to 6.902×10-3/year. 
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Fig. 8: PFD’s of AIA corresponding to Bayesian estimation 

 

IPL 2 refers to the Oxygen analyzer (AIA-401) with 

the capability of tripping the electrolyzer at 2.7% Oxygen 

and acid feed. The Probability of Failure on Demand (PFD) 

for this instrument can be estimated by utilizing both the 
OREDA database and the plant-specific data. The OREDA 

database provides failure data specifically related to Level 

process sensors, which serves as historical information 

about the equipment and acts as prior data for the 

estimation. However, before incorporating this data into the 

Bayesian estimation, it needs to be converted into PFD 

values using the frequency-PFD conversion method. On the 

other hand, the plant-specific data contains information 

regarding the number of failures and Mean Time Between 

Failures (MTBF) of the instrument, along with the test 
interval derived from the CCPS. These data form the 

likelihood function for the Bayesian estimation. The 

estimated PFD values are depicted in figure 3.7, with the 

vertical line within the posterior column indicating the 90% 

Bayesian credible limit, ranging from 1.0304×10-3/year to 

2.60×10-3/year 
 

 
Fig. 9: PFD’s of oxygen analyzer corresponding to Bayesian estimation 

 

IPL 3 refers to the inclusion of a Pressure Indicator 

Transmitter (PIT-403). The Probability of Failure on 

Demand (PFD) for this IPL can be refined by incorporating 

data from the CCPS and the chlor-alkali plant data. The 

CCPS database contains relevant failure data specifically 

related to pneumatic pressure transmitters, which can be 
utilized as prior information. To utilize this data as prior 

information, it needs to be converted into PFD values 

through the frequency-PFD conversion method. 

Additionally, the chlor-alkali plant data provides the number 

of failures and Mean Time Between Failures (MTBF), while 

the CCPS provides the test interval for the equipment. These 

elements complete the likelihood function. The estimated 

PFD values for the IPL are depicted in Figure 3.8, with the 

vertical line in the posterior column denoting the 90% 
Bayesian credible interval, ranging from 5.631×10-4/year to 

1.512×10-3/year 
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Fig. 10: PFD’s of pressure indicator transmitter corresponding to Bayesian estimation. 

 

The comparison of risk values for scenario 2 is shown in Figure 3.9. 
 

 
Fig. 11: Risk values of scenario 2 by LOPA 

 

In the case of scenario 2, the calculated posterior risk 

value is determined to be 4.44×10-9/year. This value can be 
evaluated by comparing it to the predefined tolerable risk 

criteria, which states that the risk should be less than 1×10-

5/year. Based on this assessment, it can be concluded that 

scenario 2 falls within the acceptable risk range, given that 

the test intervals and assumptions of independence made 

during the analysis are upheld. 
 

This conclusion implies that, according to the available 

data and analysis, scenario 2 poses a level of risk that is 

considered tolerable within the established guidelines. It 

suggests that the existing safety measures and control 

mechanisms, along with the specified test intervals, are 

adequate in mitigating the potential risks associated with 

scenario 2. However, it is crucial to ensure that the 

recommended safety protocols, monitoring procedures, and 

assumptions are consistently adhered to in order to maintain 

this acceptable level of risk. 
 

IV. SUMMARY 
 

To summarize, the Bayesian-LOPA methodology has 

proven to be highly effective in conducting risk assessments 

for chlor-alkali plants with limited operational history. This 

approach can also be successfully applied to other industries 

that face similar challenges, such as nuclear power plants, 
refineries, and space industries, where the availability of 

failure data is scarce.The key advantage of the Bayesian-

LOPA methodology lies in its ability to overcome the 

limitations of traditional risk assessment methods when data 

is limited. By incorporating prior information, such as 

generic failure data from relevant databases, and combining 

it with plant-specific data, Bayesian estimation provides a 

robust framework for estimating failure frequencies and 

evaluating risk. 
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Furthermore, the Bayesian-LOPA methodology is 

versatile and can be complemented with other analysis 
techniques such as Fault Tree Analysis (FTA) and Event 

Tree Analysis (ETA). This integration allows for a 

comprehensive and multidimensional approach to risk 

assessment, enhancing the overall accuracy and reliability of 

the results.By utilizing the Bayesian-LOPA methodology, 

industries can make informed decisions regarding risk 

management strategies, prioritize safety measures, and 

allocate resources effectively. This methodology serves as a 

valuable tool in enhancing safety practices and mitigating 

potential risks in complex industrial settings with limited 

available data. 
 

V. CONCLUSION 
 

Based on the findings of this study, it can be inferred 

that the selected chlor-alkali plant demonstrates 

commendable safety measures in place to prevent hazardous 

incidents. However, certain areas within the plant were 

identified as having inadequate safeguards. Therefore, it is 

strongly recommended to implement additional safety 

measures in these specific areas to further enhance overall 
plant safety.It is important to acknowledge that the 

estimated results and recommendations presented in this 

study are solely based on publicly available information. 

Consequently, while the study provides valuable insights, it 

is crucial to recognize that the findings may not entirely 

encompass the complexities and unique characteristics of a 

real-world chlor-alkali plant. Therefore, caution must be 

exercised in applying these results to legal activities or 

decision-making processes without considering site-specific 

conditions and expert consultation. 
 

To ensure the highest level of safety and adherence to 

regulations, it is essential to conduct thorough and 

comprehensive evaluations tailored to the specific 

operational context of the chlor-alkali plant. This entails 

considering additional factors, such as proprietary 
information, internal plant assessments, and expert opinions, 

to validate and refine the results obtained from this study. 

By adopting a holistic approach and engaging relevant 

stakeholders, plant operators and safety professionals can 

effectively address any identified gaps and further improve 

the plant's safety performance. 
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