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Abstract:- It is clear that most results in ample
semigroups are but analogues of inverse semigroups.
Unlike bisimple inverse w-semigroups which F-classes
contains regular elements as studied in [28] and later
extended in [2] and [3] to a class of ample semigroups
called = - bisimple Ample w-semigroup and = - simple
Ample w-semigroup, there exists a class of * - bisimple
Ample w-semigroups in which certain J*-classes
contains no regular elements. Close look at the internal
structure of this class of Ample w-semigroups reveals
that some of the #H*-classes rather contains bisystems of
cancellative monoids. However, the presence of these
bisystems of cancellative monoids makes this class of
semigroups different from the once studied in [28], [2],
[3] and [22]. Thus, in this work, we study such a class of
* - bisimple Ample w-semigroups as an extension of the
binary array of bisystems of cancellative monoids. The
array of bisystems were closed and then certain rules are
imposed to ensure the closure of multiplication of
elements in the binary array of bisystems. Thus, we
construct and study few ofits properties and then
characterize them as a special extension of binary array
of bisystems of sequence of cancellative monoids.

Keywords:- Cancellative monoids, abundant semigroups,
adequate semigroups, ample semigroups, w-chain, *-
bisimple semigroups, binary array of bisystems of
cancellative monoids.

l. INTRODUCTION AND PRELIMINARY
RESULTS

[6] extensively studied monoids whose right S -
systems were projective. [17] later extended this work by
studying monoids in which their principal ideals were
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projective and termed them right principal projective
monoids (RPP monoids). [8] used certain internal
characterization of these RPP monoids to obtain a wider
class of semigroups. He termed certain RPP monoids whose
idempotents formed a semilattice “idempotent cancellable
monoids”. With this [8], [9], [10] then obtained a class of
semigroups whose structure parallels inverse semigroups
(see [15], [20],[23]). This class of semigroups since then
attracted many brilliant minds and stimulated deep
investigations mostly because of it striking relationship with
inverse semigroup. Thus, to study ample semigroups, it is
natural to put it side by side with inverse semigroups as
most of its results are found to be analogues of the later. In
any case, there exists a subclass of ample semigroups whose
structures does not duplicate those of inverse semigroups.
[2]characterized the structure of * - bisimpleAmple w-
semigroup in which each  H™*-class contains regular
elements as a generalized Bruck-Reilly extension BR*(T, 6)
of cancellative monoid T, 8 being a homomorphism on T.
His result were clearly analogues of bisimple inverse w-
semigroups studied in[28]. Unlike the situation in inverse
semigroup there is a class of = - bisimple type
A w —semigroup in which certain H* —classes contain no
regular elements. When the internal structure of this class
ample w — semigroup is analyzed, it is found that some of
the J£*-classes contains bi systems of cancellative monoids.
Thus, this result makes this class of Ample w-semigroups
surprisingly different from the one studied by [2] and also
there is no analogue of this result to those studied in [28]
under inverse semigroups.

This paper studies this subclass of ample semigroups.
Particularly, this class of semigroups would be constructed
in this paper, some of its properties would be presented.

Let a,b € S, then Green’s * —relations are defined as
follows:

L*={(a,b) ESXS:Vx,y €Stax =ay © bx = by}
R*={(a,b) ESXS:Vx,y €St xa=ya < xb = yb}
H* ={(a,b) € S xS:(a,b) € L*NR*}

D*={3c €8S:(a,c) € L*:(¢c,b) E R* or aL*cR*b} = L*VR*

A. Lemma 1.1 (6)
R*(L*)is a left(right) congruence.

Proof

Let (a,b) € R*, then xa = ya < xb = yb, letc € S, so that (xc)a = x(ca) and by associativity in S.

x(ca) = y(ca) & (xc)b = x(cb) = y(cb) and so (ca,cb) € R* and R* is a left congruence. Similar arguments hold for

L* which is a right congruence. ]
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B. Lemma 1.2

Proof

Let (a,b) € R, thens,t € Sl:as=b,bt =a

a = bt = as = bts, for x,y € S, then xas = xbts < xb = xas and if xa = ya, then

xb = yas = xb = yb. Conversely as = b = ast = bt = xbt = xast and if xb = yb, then

xa = yast = ybt = ya and (a, b) € R*, showing that R € R*.

Similar argument holds for £ < £* o
C. Corollary 1.3
If S isregular then £L = L* R = R* o

(a,b) €L oR* = aL*cR*band (a,b) € R* o L* = aR*cL*b. Butclearly
al*cR*b= L oR* =R*o L = aR*cL*b only when xa = ax, thatis L* e R* = R* o L* only when S commultes.
Hence generally L* o R* = R* o L*, i

A semigroup S is called left abundant if each R* — class of S contains an idempotent and right abundant if each £* —class

contains an idempotent. S is called abundant if it is both left and right abundant.

S is called left adequate if:

o itis left abundant

e idempotents commute

e each R* —class contains a unique idempotent.

Similarly, S is called right adequate if:

e jtisright abundant
e idempotents commute
e each L*-contains a unique idempotent.

S is adequate if it is left and right adequate.

Denote the unique idempotent of each R* — class containing a as a* for left adequate and that of each £* — class containing

aasa’.

D.

Lemma 1.4
Let a € S, e € Es. Then the following are holds.

(e

,a) € L,

ae =aandforall x,y € S, ax = ay = ex = ey.

Proof

Recall that =&, so suppose (e,a) € # then Ax,y € S':xe = a,ya = e. S0 xe = a. Now suppose that ex = ey, then
xex = xey = ax = ay and then (e,a) € &

¢ Since from (i) above, xe = a = xee = xe? = xe = ae andso ae = a

o Similarly

e Similarly,(a,e) € &

e ea=aandforallx,y € S, xa =ya= xe = ye. O
Lemma 1.5

Let S be an adequate semigroup with semilattice of idempotents E, thenv a,b € S,
(a,b) € R*ifand only ifat = b*; (a,b) € L*ifand only ifa* = b*.

(ab)* = (a*b)*and(ab)* = (ab™)*

aa* =a=a'a.

Proof

(a,e) € R*, (b, f) € R*. Where e(f) are the idempotents in the R* —class containing a(b). But (a,b) € R* = xa = ya =
xb = yb. But since(a, €) € R*, then xa = ya = xe = ye. Also (b, f) € R* since a, b are in the same R* — classSo (b, f) €
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R* = xb =yb= xf =yf.So(a,b) ER* = xa =ya = xb =yb = xe = ye = xf = yf. So (e, f) € R*. Butsince S
is adequate then the idempotent in each R* —classis uniquesoe = f. Ife = a* and f = b*, the result follows. Converse is
clear and straight forward.

e this follows immediately from (i) and the fact that £* is a right identity on S and R* isleft identity on S. So (ab)* = (afb)* =
(ab*b)t = (ab™)".

o follows immediately from (i) and (ii).

Let S be left adequate, then S is called left ample if V e € Eg,thenae = (ae)*a and right ample if ea = a(ea)*,Va € S.

In view of the definition above, let S be a semigroup with a semilattice of idempotents Eg. Then S is called an ample semigroup if
and only if:

e S is cancellable

e foreverye € Egand a € S, then ae = (ae)*a, ea = a(ea)* |

Let E; = {eg, €1,€5, ) €p_1,€p, - JWheree, >e; = e, =+ = e,_1 = e,.

Let ey, 4, ..., €—1, €5, --- DE idempotents in Sthen Es as defined is called w —chain.

Let S be an ample semigroup with E as defined above, then S is called ample w —semigroup.
Observe that Eg = {e,:n = 0},e,, 2 e, ©m<nandm,n €N.

Let S be an ample semigroup. An ideal I of S is said to be * —ideal if L}, R}, < I. The smallest

* —ideal containing a which is the union of D* —classes is denoted by J*.

Let S be ample w —semigroup then S is called = —bisimple if D* is an identity relation on S. That is S is called * —bisimple
if it has a single D*-class.

Let S be a semigroup, and let a, b € S, the relation D on S is defined by:

aDb < a*Db*,a*Db".

Observe that if a, b € S and a*,a*,b*,b*, € E then aDa = a*Da*,a*Da*.

Also, if bDa = b*Da*, btDatthenaDb = bDa.

If aDb, bDc, then this implies that a*Db*, a*Db*, b*Dc*, b*Dc* which implies that
a*Db*Dc*,a*Db*Dct = aDc and then D is an equivalence relation on S. o

What follows is an introduction of bisystems. Going forward, the terminologies used are as in [2] and [3].
. BISYSTEMS

Consider a monoid M and let S be a set. If there exists a mapping S x M — S such that the following holds:
e x.1=x,
e (xa)b =x(ab),Vx € M,a,b € S, then S is called aright S — system.

Dually, if
e l.x=x,
e a(bx) = (ab)x,Vx € M,a,b € S,then S is called a left S — system.

Now, suppose that M;, N; are monoids, then S is an M;, N; — bisystem if it is both right and left S —system and for a,b €
Ny, x € S,(ax)b = a(xb).

Let S;be (M, N,) bisystem while S, an (M,, N,) bisystem, then a mapping f:S; — S, isa morphismf from S;to S,if there
exists 8: M; — M, and ¢: N; — N, such that for all a € M, and b € N;, we have:

(axb)f = ab.xf.be. However, if S; and S, are both (M, N) bisystem and 6 = ¢ = i, the identity, then
f:S; = S, isamorphismifforalla € M,b e Nandx € S, (axb)f = a.xf.b
1. BINARY ARRAY OF BISYSTEMS

Consider the sequence of cancellative monoids M;,0 <i <d — 1 with the linking homomorphism «a; ;: M; > M;, i <j
between them. By considering (M;,M;) bisystems B;;,0<i,j<d—1 such that for 0<i<k<d-1,0<<1<d-1,
there is a bisystem morphism from B; ; to B, ;. That is:

J

Y Bij — By, defined by xy,, = e,xe, which then gives a sequence of bisystem mappings:
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Bi,j—>Bi+1,j+1_>Bi+2,j+2_)'“Bk,l Where k=d—1,l=]—l+d—1 |f l>] and k=l—]+d—1 |f l<]
Considering the mapping &: B;; — By, where x§ = ey.x.eis a morphism. This is so because the linking homomorphism
a;x:M; > My and @; ;: M; > M, are defined respectively by

aa;, = ex.a,ba;; = be fora € M;,b € M;. Now we observe the following:

Forany x € B;;, then;

J
(axb) § = e, (axb)e,
= ei.axb.e;

= ey.a.xbe
= aqy.x.ba;;
= (aai,k). exxe;. (bajll)
= (aaix).-x8. (bay,)
Now let B =U {Bi_]-: i,j=012,..,d— 1} be a collection of bisystems where we have M; = B;;,
0<i<d-1}
Now if 8 and ¢ are morphisms on B such that

0:Bpn = Bp_noand@: By, = Bonem [2.01]

N
Whereweput m—n=m—nifm >n,orm—n+difm < n, then we have:

A. Lemma 2.1
* Bun0¢ S Bom=m-
* Bpn 90 S By
o Mm6= Bm'mgg BO,0= MO

Proof

® Bp,bp = (Bm,n B)QD = Bim=r0® = Boo-gi=m) = Bo,=my € Bo,=m)-
e Bph,p8= (Bm,n ‘P)g = Bym=mf S Bm=mo-

o offcourse M, 6 = By, 6 € Byy= My= M.

Following lemma 2.1 above, we assume the following conditions:
o x0 =xp8ifm >n

o x0=xpifm=n

o x0p = xpifm <n

Following the construction above, we shall refer to the collection of bisystemsB = U B, ; as a binary array of bisystems if
there is a multiplication “ ¥ on B such that if x,y € B, then x xy € B.

Thus, we use an operation “+” on the collection B = U B; ;, where for x € B,,,, andy € B, ,, so that

X *y € Bunseg=pre t = max(n, p) [2.02]

Now we observe that if:

o t=nthenx*y € By g pin
o t=pthenx *y € By=nsp,4
e t=n=pthenx*y € B, ,.

Suppose thatt =n,and g —p+n >d,thenweputgq—p+n=d+k,0 <k < d so that;
Big=p+n = Bmy. Thus, we have that for every x € B,,,,,,y € B, x *y = B, 5=p+x implies that;

x*y€ Bp,forq—p+n >d Butifq—p+n >d,thenn>d+p—qandthen By,,_40,= Bp=g,0-
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More so, we observe that:

y8 = 0:B,,0 > B and so:

P—q,01
x*yl € Bm_m = Bk But t = max(n,q — p).
Butift =nandso x xy0 € Bpg—prn = Bmk

Following these observations, we assume the following conditions:

* Xx*xY € Bpmrrgpre= x*y0ifqg—p+n>d. [2.03ai]
° (x * 3’)9 € B(m—n+t)—(q—p+t),0 = Bm—n—p—q,o and x6 * ye = Bm—n—p—q,o for
e 0<g—p<d—n

o Butif0<qg—p<d-—n,then(x*y)f = x*y6 [2.03aii]

e Lastly if g < p, we then impose the condition (x * y)8 = x0 = y6 [2.03aiii]

One can see that the morphism ¢ is the dual of & and we have the following conditions which corresponds to [2.03 ai],
[2.03aii] and [2.03aiii]. thus, we have:

x*xy=xpxy, ifm—n+p=d [2.03bi]
xxy)p=xp=*y,if0<m-n<d-—p [2.03bii]
(x *y)p = x@ =y if m <n [2.03biii]

Letx € B,y €B

p.q’ ze BT.S

Considering the binary array of bisystemB, we observe the following:
(x * Y) *Z € Bm,m * Br,s and x x (y * Z) = Bm,n * Bp—q+u,s—r+ur [204]

where t = max(n,p) and u = max(q,r). Now see that if u = r, then withp —q+r =>d andr > g —p + t, we find that
both (x xy) x z € Binip-qins and x6  (y xz) € Bi—nip-qins-

Thus, we assume that:

(xxy)*sz=x0x(y=*z),if p—qg+r=d. [2.05i]
Dually, let(x * y) *zp = x* (yxz) fort =nandp—q+n=>d [2.05ii]
And(x*y)*z= x*x(y*xz)ifp—q+n<d [2.05:iii]

Following the observations [2.05i] through [2.05iii], we remark that the binary array of bisystems(B, d, 6, ¢) is a collection
of bisystems B = U {B;;:i,j € d} such that;
e Ifi=j, then B;; = M;,0 <i,j<d—1is a sequence of cancellative monoids with the linking homomorphism «; ;: M; —
M;,0 <i,j < d — 1 between them.
e Each B; ; for i # jisa (M;, M;) bisystems where 0 <i,j <d —1and
e 0,p:B=U {Bi,j: 0<i,j <d- 1} — B are mappings as earlier defined in 2.1 satisfying the binary multiplication defined in
2.02 under which the conditions [2.03ai] - [2.03aiii] and [2.05bi] - [2.05biii] are true.

Now suppose that B,,, ,, B, ., are bisystems in (B, d, 6, ¢) then the product in 2.02 implies that:
B *Bum = Bm_nsnm-nin S Bmm: L&t By * By =1y © B [2.06]

where I,,, is a subset of M,,, not containing a unit of M,,,.

Let x € By, ¥y € B,nand e, e, respectively the identities in M,,, M,,.

Clearly,M = U M;,Now we observe that By, ., * Bpm S B, @nd solete,, S B,
y*en=Bpm*Bnm S Byyy=yandx*e, =B, *B,, €SB, =x

Alsoseethat x *y*x = (Bm,n * Bn_m) * Byn © B * Bpyn = Bpn = X.
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Thusif x € M,,,y € M,,thenx *y € M,,t = max(m,n), M@ = B,, = Mg andthen 6| M = ¢| M.
Thus, we have proved:

B. Lemma 2.2
Let x € B,y € B,nand ey, e, the respective identities in M,,,, M,, and let M = U M;, then:
e Y*eym =Y, X*¥ep, =X
& X*xYxX =X,
o ifx e M,y € M,,thenx*y € M,,t =max(m,n),and M6 = M.

C. Lemma 2.3

Letx € B, ,,mn €d.Thenfora,f €N:
o x0%°F = x@*F ifm>nandx%Ff = x@*F1ifm<n.
o x0%°F = x@**F ifm <nandxf%Ff = xp**F1ifm>n.

Proof

If m = n then clearly, x € M,, and with ¢ = 6 and the lemma holds evidently. However, if we suppose that m # n, then
forx € B, ,,evidentlyxgp € By, _,,n—m * 0, with xf = x@0 if m > n and x¢ = xB¢ if m < n, this quickly follows that:

(x0)p = (x09)¢ = (xp)p = x¢?
Thus, by induction principle, we have:

x0¢0* = (x8p)p* 1t = (x@)p* ! = x¢*, if m <n and x8¢* = (xphP)P*' = (xp?)*~! = xp**! | if m =n, for
all-natural numbers. Moreover, we observe that:

x02%¢* = (x0)x0¢* = x@*, m <n.
Therefore, by inductive assumption that the result holds for h — 1, it follows that:

xah(pk — (xgh—l)(g(pk+1) — x(ph—l(pk+1 — ---x(ph+k,m > n and (Pk — (xeh)(e(pk) — (xe)eh—l(pk — x(p’”h_l,m <n
proving (i). thus (ii) follows dually.

V. CONSTRUCTION
In this section, we construct a generalized = — bisimple type ample w — semigroup.

Considering a given array of bisystems(B, d, 8, ¢) satisfying the conditions already stated above. We denote the set of
triples by:

S(B,d,0,¢9) = {(m, x,n):mmn € N,x € Bm,ﬁ}, for simplicity, let S(B,d,0,¢9) =S
Suppose that (m, x,n), (p,y,q) € S(B,d, 8, ), define the multiplication on S(B, d, 8, ) by:
(m,x,n)(p,y,q) = (m —n+t,x0" "yp"Pd,q —p +t), [3.01]
where t = max(n,p),t’ = max(ng,pg).

It should be noted that §'~™d ! ~Pd is an appropriate endomorphisms while 8°¢° is an appropriate identity endomorphism
on the array of bisystems in B.

Now observe that under the multiplication as in 3.01, if t = n,t" = n,, then 3.01 becomes:

(m,x,n)(p,y,q) = (m,x0%yp"a~Pd, g —p + n) = (m,x x yp"d~Pd,q —p +n), where it is clear that x x yp"d=Pd €
B g=p+n and then (m, x * yp™@™Pd, g —p+n) €S

Ift =p,t' = p,, then;

(m,x,n)(p,y,q) = (m,x6Pa "dyp’,q —p+n) = (m—n+p,x0Pa " xy,q), and so xOP4"d xy € By=p55 4, and
then again (m — n + p, xfPa""d xy, q) € S.

Lastly, if n = p, then x6""dyp"~Pd =x xy € B, €S.ThusS is closed under the multiplication.
Now suppose that a,b,c € S, wherea = (m,x,n),b = (p,y,q),c = (r,z,s) then:
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(ab)c =[m—-n+p—-q+u (x@t"”dyq)f"Pd)9“"“dz<pu"rd, s—r+ul, [3.02]
a=q—p+tt=max(np),u=max(q—p+tr) =max(a,r), and so let:
M;=m-n+p—q+u [3.03]
X = (x0t'nayqpt'~ra)gu'~tazpu'~ra [3,04]
N, = s—r+u[3.05]
Similarly:
albc) = (m,x,n)[(p,y,q)(r,z,5)] = (m,x, n)(p —-q+ v,ye""qdmp”"rd,s —-r+ v), v =max(q,7),v" = max(q, 1)
a(bc) = (m—n+w, xBW""d(yQ”"‘Idﬂp""rd)(pW"bd,s —r+q—p+w)[3.06]
Let b =p —q +v,w=max(n,b),w = max(ny, b,), and so let:
M, = m—n+w [3.07]
Y = xHW""d(yH”"qdﬂp”"rd)(pW"bd[3.08]
Ny,=s—r+q—p+w[3.09]
But the outer coordinates are bicyclic and so from [3.03], [3.05], [3.07] and [3.09] we have:
m—-n+p—q+u= M =M,=m—n+wandso
w=p—q+ul[3.10]
and so, it follows that:
u =max(q — p + t,v) = max(q — p + max(n,p),r) so that:
w = max(n, b;) = max{n,p — q + v} = max{n,p — q + max(q,r)} [3.11]

We now establish the equality for the middle coordinates. However, in view of lemma 2.3, we do so via the following
observations:

Now observe the following:
If m, n, p are natural numbers such that m < p, let r = n —m + p, then obviously,
r=71.d+7=Mm-m+plgd+n—m+p= (ng—my+py).d+a—m+p.
Thus, we compare and take that out that;

Pa — My ifn—-m+p<d

Ty—Mg=3Pg—Mgtlifn—m+p>d

pa—myg—1ifn—m+p<o0

We now attempt to establish an equality on the middle co-ordinate by considering the following cases;
A. CASE 1
w =max{n,p — q+max(q,7)} =n

Then [3.08] becomesn =p —q+uoru =q —p +nandthen w' = n,.
Also, w = n = max{n,p — q + max(q,r)} = n > p — q + max(q,r) > p implying that
t = max(n,p) = n.

However, with u = max(q —p +t,r) = max(q —p + n,r) = ¢ —p + n implies that
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q—-p+n>r.

Now witha=q—p+t=q —p+max(n,p) = q—p +n=u, then clearly a = u' = u,. More so using the value u =
q—p+nwehavethatu' = (q—p+n)y = q4 —pg +ng + ¥ = uy, and we impose that:

0if0<g-p+a<d
y=1{1if G-p+a=d[3.12]
—1if g-p+a<o0
Now if t’ = max(ng,p,;) = ny then [3.04] becomes;
X = (x0°ypraPa)°zg" e = (x.y@naP)zqta e,
Bylettinga =ng; —pg, B =74—4q4 ¥ =0,1,—1. In view of [3.12] and then we observe that:
Ug—Tg = qa—PatNa+t V—T4=ng—Pa—Ta+qa+y = Mg —pa) — (g —qa) +y,andso:
Ug—rg=a—pB+y

Then X = (x.yp®)zp* P+ [3.13]
Also recall from [3.08] that Y = x6%'~a(yg?'~9az¢v' ~7a)pw'~ba
But w' = ng4, and so
Y = xg"a " (ygv ~dazp¥ Ta)praba = x.(yg?'~dazp¥'-Ta)gra=ba [314]
Now, to obtain a more precise expression forY, two cases are considered.
Subcase 1a:

max(q,7) = q
Now for v = max(q,r) = q, thenv’ = q' = g,and so [3.14] becomes:
Y = x.(y. z@% Ta)pmaPa [3,15]
Buthb=p—q+v=p—q+max(q,r) =pandsob,; = p,, so that [3.15] becomes:
Y =x.(y.z@947"d)p"a"Pd[3,16]

Y = x. (y@ndPd, zpld~Tatna=pa) = y, (y(pa_z(p(nd—pd)—(rd—qd))
Thus, Y = x. (yp®.z¢* F) [3.17]
Thus, if0<g—p+7a<d thenX = (x.yp®)zp*F = x.(yp*.zp*F) =Y.
However,ifG—p+n>d,thena=q—p+t=q—p+max(n,p) = q—p+n,sothat
ag=(@—-p+n)g=qqa—pPat+tng+v,
Thusa; —14 = qg—pg+ng+y—1r4=my —pg) — (ry —qq4) +vy = a— B+ 1, and therefore:
X = (x.yQraTPa)zpU T = (x.yp¥)ze* Pt = x.(ypnaTPd, zla Tatnara)
=x.(yp®.z9* 1) =Y
Butiff —p+n<0=p—q <d—r andby [3.03hii], it follows that X =Y.
» Subcase 1b

Max(q,7) =T

Now if Max(q,r) =, then v’ = max(qq,74) = 74,

b=p—q+v=p—q+max(q,r) =p—q+r,andso: by = py — qq + 14 + v,thus, [3.13] becomes:
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Y= x (y@”"qdzgo”"rd)gond‘bd = x.(yfTa"ddz)pmaba = x, (y@ra~9az)gpna-Pa-da+ra+y)
Y = x. (y@7a"9az)pna~Patda=raty = x (y@Td~9dz)epMa—Pa)=(ra-da)+y
Y = x.(y85.2)p*F+. [3.18]
But y8f *=F+Y = ye**¥ by lemma [2.3] and so [3.18] becomes:
Y = x.(yo®7.zp*F*r) [3.19]

» Remarks
We remark the following which led to the conclusion of [3.19].

We observed that since
n—b=n—-(pP-q+r)=n—-p+q—-r =(@—p+n)—r=a—rsothat
Ng—bg=ng—@g—qa+ra+tyv)=Mag—pa) —(g—qa)—v=a—-B—-vy
Similarly:
Qg —7T3= qq—Pa+ng+y—13=Mg—pa) —(y—qa)+y=a—-F+y
Where we have by [3.12], that is:
0if0<p—g+7<dor0<g—p+n<d
y=]1if p—-g+7>dorg—p+n>d
—1if p—g+7<0org—p+n<0

Now we observe the correspondence between a; — r; and ny; — by. This can be viewed from the fact that if § > p then
clearlyg—p+n>00r0 <g—p+n<d. However, if p > g,then 0 <p—g+7<dorp—q+7+>d. Thus, we can see
that the value § — p + 11 < 0 corresponds to

O<p—g+r<dorp—qg+7>d. Inasimilar way if g > p, then clearly § —p + nn < d corresponds to the values p —
g+7r<0or0<p—g+7 <d. Thus, we summarize the following conditions

(C1)

i ag—1ry=a—-B,0<g—p+n<d ng—b;=a—-0<p—qg+r<d

ii a—1rg=a—-p0<g—-p+n<d ng—by=a-p-1,p—q+r<d

iii a;—1y=a—-p0<qg—p+n<d ng—by=a—-f+1,p—q+7<d

\Y% ag—T1a=a—[F+1, ng—by=a—-L0<p—g+r<d
g-p+a>d

v ag—1a=a—[F+1, ng—byg=a—-L+1L,p—gq+7<0
g-p+a>d

Vi ag—13=a—p—1, ng—by=a-B0<p—q+r<d
g—-p+a<o0

vii ag—1r;=a—F -1, ng—by=a—-F-1p—q+7r<d
Gg—p+a<o0

Thus, in respect of conditions (C1) of table 1 above, witha; —1; = a — 8 and

ng — by = a—B,if p > g then equations [3.13] and [3.18], that is:
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X= (x.yp9)zp*F and Y = x.(y6F.2) 0% F = x. (yp*.20* F) = X.

Also, if g > p, then [3.18] becomes:

Y =x.(y08.2)p*F = x.(yp*l.20%F) = x.(ypf1.2)p*F =X.

To verify (Cl) ii
a;—1rs=a—-B,0<g—-p+n<dandng—b;=a—-B—-1,p—q+7 <d,sothat

Y = x.(y0F.z)p%F~1. Butrecall that y6 € M,,_,,, y02 € M,_,, andy6f € M so that

r—q,0!
y0F.z€ My_gra5-riard =max(0,r) =7 = y0F.z€ M,_,, o, 0 — g+ T > d, but by lemma [2.3], we have:
y0P.z= y0F¢p.z = yoF+lpandsoY = x.(y8F.2)p% F~1 = Y = x.(y8F+1.2)p* A1,

But

X = (x.yp®zp*F = x.(ypf.2)p*F = x.(ypPp.z0)p* P = x.(y§F+1.2)p*F~1 =Y. (in view of condition
[3.03bii].

Now for (C1) iii
X = (x.yp®zp*F = x.(yp*.zp*F) but for p > g, then
Y = x.(y0°.2)p% B+ = x.(ypP. 29 F+1) = X

For (C1) iv
X = (x.yp*)zp* B+ thuswithg > p,0 < p— g +7 < d, then

Y =x. (y88.2)p% F = x.(yp* 1. 2)p*F = X.
For (C1)v
X = (x.y9*)zp* A+ and with g > p, then:

Y = x.(y08.2)p% F = x.(yp®.zp*F*1) = X
For (C1) vi
X = (x.y9*)zp* A1 butp >g,andso r <p—q+r <d. Thus

Y =x. (y08.2)p% F = x.(yp®.z9%F) = X

For (C1) vii
X = (x.yp*)zp*F~1 butp >g,andso p — g +7 > d. Thus
Y = x.(y08.2)p% = x. (yp*.2p*F~1) = X.

> Casell
Ifw=p—q+maxq,

7all that w = max(n, b) = max{n,p — q + max(q,r)} = p — q + max(q,r) then it implies that;
p—q+max(q,r) >n Buta=q—p+t=q—p+max(np).

Also recall by [3.10] thatw =p — g+ usothatw = p —q + u = p — q + max(q,r) and so

u = max(q,r) = v, thusu’ = uz; = max(qy,7;) = v'. Thus equation [3.08] becomes:

Y = x6W ~na (yQ”"qdzgo""rd)gow"bd = Y = x@Pa"d(yQud—ddzgpUa=Ta) [3.20]

In order to establish the equality between [3.04] and [3.20], we consider the following subcases:
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e Subcase Il (a)
If v=u=max(q,r)=q,butu=q=q—p+max(n,p) = p = max(n,p) =t so that

t’ = Pa-

Thus X = (x6Pd~"d, y)zp9d~Td
Now letp;, —ng=a ,q; — 15 = [ and so
X = (x0%y)zpf = x0%.(y.zgP).
Also observe that b; = p, and so [3.20] becomes:
Y = x0Pa"a(yzelaTd) = x0%. (yzef) = X
e Subcase Il (b)
v=max(q,r)=r
Now observe that if v = max(q,r) =r,thenw =w = p — q + max(q,r) = p — q + r so that
p—q+r>n Butby[3.10], w =p — q+u and then u = r so that u; = r,. Also see that

b=p—q+v=p—q+max(q,r)=p—q+r, so that by=@p—q+71)g= bg —qq + 14 +ywith the imposed
conditions:

0if0<p—g+7<d
y={ 1lifp—g+7>d
-1 ifp—g+7<0
andsoleta = (pg —ng),f = (rg —qq), thusby —ng = (pa —ng) + gy —qa) +vba—ng = a+f +y.
Thus [3.20] becomes:
Y = x@ba~ma(ygra"94, z) = x@*+F+v (yoF.z) [3.21]
To obtain a more precise expression of the values of X we remodel [3.04] as in the following subcases.
v' Subcase Il b(i) t = max(n,p) =p
Ifsothent’'= psa = q—p+max(n,p) =q—p+p=qandsoa,; = q, and then [3.04] becomes:
X = (x@PaMay)gra~daz = (x@PaMa*Ta~day@Ta~da).z = (x0**Fy0F).z [3.22]
Clearly observe that if y = 0,1 then X =Y. However, if y = —1 which is of course true when
p—qg+7<0sothat 0 < gq—p <d—n. Now observe:
Recall that for x € B, ,, then x6 € By, = Bp=so, for m—n =m—nifm >nand
m—n+dif m <n,thus (x6)0 = x6? S By—p, and so x0% S Bp— o. Also observe that
X6 € By=mo = X0% € By, S0 thatif letx; = x0% € By, and so that x,6F = x6%*F
Thus X = (x0%+Fy0F).z = (x,0Fy0F).z = (x,0F1y8F).z=Y
v Subcase Il b(ii) t = max(n,p) =n
Should this be the case, then a = g — p + max(n,p) = g —p +n, so that t' = max(ny,p;) =ny and a; = (q—p +
n)g = qq — Pg + Ny + v S0 that [3.04] becomes:

X = (th""dyqot"”d)9“"“dz<pu"rd = (x.ypn"a~Pa)gra~@a=patna+y) z

X = (x.ypraPa)gUa=ad+@a—na)-V) 7z = (x,ypta—Pa)ga—aad)-(ma-pa)+y z
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X = (x.yp®)0F~2*Y .z for f—a+y =0, y=0,1,—1. Thus, generally if 5 —a +y =0, then the values of b; — n,
and the corresponding values of r; — a, expressed in terms of «, § and y are summerised in the table below.

(C2)
i rpa—a;=B—aq, b;—ngz=p—a, 0<p—g+7<d
0<g—p+n<d
i rpu—a;=B—aq, byj—nz=pB—-a+1, p—q+7>d
0<g-—p+na<d
iii ry—as= f—aq, byj—ng=p—-a-1, p—q+7<0
0<g—p+na<d
\Y ry—az=f—a-—1, byj—ng=pf—-a0<p-—-g+7<d
g-p+a>d
v ry—a;=pf—a—1, bj—nz=f—-—a-—1, p—q+7<0
g-p+a>d
Vi ry—ag=pFf—a+1, by—ngs=f—«q, 0<p—g+7<d
g—-p+a>0
vii ry—as=f—a+1l, bi—ng=p—a+1, p—gq+r<d
g-p+n<o0

Therefore, table 2 above shows the values of X with the corresponding values of Y as in [3.20], for y = 0,1, —1. Evidently,
the direct application of lemma [2.3] then shows that

X = (x.yp®)0B-+Y z = Y = (xgﬁ—aﬂ’.ygﬁﬂf)lz_
Thus, above verified that (ab)c = a(bc), and we have proved:

» Theorem 3.1
S =S(B,d,0, ) is a semigroup. m]

Let e = (m, x,n), now suppose that e = e?so that (m, x, n) (m, x, n) = (m, x,n). So that
(m,x,n)(m,x,n) = (m —n+tx0t ~Maxft "man —m+ t) = (m, x,n) [3.23]

t' = max(mg,ng).

Now observethatm —n+t=m = n=t [3.24]

Similarly,

n—-m+t=n =t=m [3.25]

By [3.24] and [3.25], we have thatt = m =nandsot’' = ny

(m,x,n)(m,x,n) = (m,x%,n) = (m, x,n).

Butx? = x = x € M,,, thatis x is an idempotent.

Conversely, if m = n and x = e,,, then observe that (m, e,,,, m)(im, e,,, m) = (m,e,,2,m) = (m, e, m) since e,,, € M,,.
And certainly (m, e,,, m) is an idempotent and we have shown
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» Lemma 3.2
The idempotent of S is of the form (m, e,,,, m).

Suppose that f,,, = (m, e,,,m) and f,, = (n,e,,n),m,n € N. Observe that

fnfn = (M, e, m)(n, e,1) = (¢, ,0° e, 0t 74, 1)[3.26]

Where t = max(m,n),t’ = max(m,,n,). See that if t = m, t'" = m, then [3.26] becomes;
fnfn = (M, e0€,9™¢ 74, m) = (M, egen, M)

Similarly,

if t =n,thent’ = ny, then [3.26] becomes:

fofn = (n,e,,0"4 Mdey,n) = (m,e,,e,,m), and if t = m = n, then

fofm = (Mg, m) = fo.

Thus:

(m,epeo,m) = (M e,,m),t=m>n

(n,ege,,n) = (M e,,m),t=m=n [3.27]

fufa =
Thus, we can now define a partial order as follows:
fn S fo = fufo = fafm = fmifmzn
Thus, we observe the following:
* fm </fm
* fm =/t
*fmn Shofo Sh = fufa= fmandfy <fi = fufi = fo TS f (5 ) = Fnfo) fi fnfi = -
Thus, the relation < is an equivalence relation.
If f; is an idempotent in S we have:
fo=00,e0=fi=0,e,1)=f,=02,¢,2)..=2f;, =(d—1,e,d — 1) and in general,
fa=Wed) = fayy=Wd+1ed+1)= .2fy1=02d—-1e2d—-1) =
Evidently, f, € S isan identity.
Let (m, x,n), (n,y,m) € S. Observe that
(m,x,n)(n,y,m) = (m —n +n,x0"a "dyep"d~"d, m —n + n) = (m, xy, m)so that
(m, x,n)(n,y,m)(m, x,n) = [(m,x,n)(n,y,m)|(m,x,n) = (m,xy,m)(m,x,n)

= (m, xy@™d~™d xo™d~™d, n —m + m) = (m, (xy)x,n). But recall that for m = n then x € M,,, and so (xy)x =
eqnX = x, Since xy = e,,. Thus, we have proved:

» Lemma3.3
Leta = (m,x,n) € S,and letx € M,,, where x is a unit, then the inverse of q, is of the form

a™! = (n,y,m), where y = x~! and m = n(modd).
Leta = (m,x,n), f,, = (n,ezn), f,, = (m,ez,m) €S.Thenforallu = (h,y, k), v=(f,zg) € S, observe that;
au = (m,x,n)(h,y, k) = (m —-n+t, th""dyqot"hd, k—h+ t) [3.28] t = max(n, h),t" = max(ng, hy)

Similarly,
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av=m,x,n)(f,z,g) = (m -n+ W,xQW""dzq)W"fd, g—f+ W) [3.29]

w = max(n, f),w’ = max(ng, f;)

Suppose that au = av, then:

(m—n+t,x0" Maypt'~ha,k —h+t) = (m—n+w,x0¥ aze¥'~fa, g— f +w)[3.30]

Thus;
em—n+t=m-—n+w]l3.31]
e k—h+t=g—f+w [3.32]
o X0t Taypt ~ha = xW mazpW ~fa [3.33]

From [3.31] t = max(n, h) = w = max(n, f) and sot’ = w' = max(ny, hy) = max(ng, f;) and so, we have

hg = fy;. Thus [3.33] becomes:

! ! ! ! .
x0t Maypt ~ha = x@t ~"aze! ~fa and for a particular case where x = e,,, then
yo () n

e,0t naygt ~ha = ¢ gt'mazpt'~fa [3.34]
If t' = ny, then [3.34] becomes:
ey.ypaTha = e, zpma~fa [3.35]

Butif t' > ny, thent’ = h; = f; and we have:

!
e,0Ma "y = e Qha~maz = ejy = eyz for e, 8t M = e,.

Thus, y = z, and then (n,e,,n)(h, v, k) = (n, e, n)(f,z g).

Thus, we have proved.

» Theorem3.4

Leta = (m,x,n),f,, = (n,eg,n), f;, = (mez,m) €S.Thenforallu = (h,y,k),v=_(f,z,9) € S, then:

e a¥f, and
o aRX'fp

V. CONCLUSION

In this study, we have seen that with the binary array
of bisystems closed and certain rules imposed as in
conditions [2.01ai] through [2.0laiiiJand the dual [2.01bi]
through [2.01biii] along lemmas [2.1], [2.2] and [2.3], the
closure of multiplication of elements in the binary array of
bisystems was ensured and then the construction as in
[3.01]onthe setS(B, d, 6, ¢) = Swas seen to be associative,
hence a semigroup, as seen in theorem 3.1. However, such
a class of = - bisimple Ample w-semigroup are
characterized as an extension of the binary array of
bisystems of cancellative monoids. Thus, we obtained few
of its properties, namely: the nature of its idempotents
(lemma 3.2), it inverses (lemma 3.3) and the L*(R*)-
relations with respect to it idempotents (lemma 3.4).
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