Preliminary Approach to Calculate the Gamma Function without Numerical Integration

Dr. Ismail Abbas

Abstract

We propose a semi-statistical technique to calculate the value of the Gamma function $G(x)$ in the whole space of positive x, i.e. $0<x=<$ infinity.

The proposed method is rather simple and applies a second-degree polynomial fit to find accurate values for Gamma(x) in the interval $0<x<=2$.

The precision of the numerical results of the new method is striking as presented in Table I where the absolute error is limited to less than $\mathbf{0 . 0 1}$ for the interval considered (x element of $] 0.5$]).

We recommend the application of the proposed technique for practical purposes of calculating the gamma function in order to avoid the complication of its numerical integration.

I. INTRODUCTION

The Gamma function $G(x)$ is well defined for any positive value of x,
$\mathrm{G}(\mathrm{x})=$ Integral from $\mathrm{z}=0$ to infinity $\left[\operatorname{Exp}\left(\mathrm{e}^{\wedge}-\mathrm{z}^{\wedge} \mathrm{x}\right)\right] \mathrm{dz} . .$. . . (1)

Needless to say, the special function Gamma as expressed by Equation 1 has great mathematical and physical significance.

Unfortunately, it is only for integer multiples of $1 / 2$, that the integral (1) and therefore the values of Gamma have an exact analytic expression.

Many researches have been recently published to numerically evaluate the Gamma integral (1) using approximate numerical integration methods such as Simpson and trapezoidal rules...etc $[1,2,3$]

However, for practical purposes, it can also be calculated using a suitable closed-form polynomial expression to avoid going through complicated numerical integration.

This is the subject of this article.
Below we propose a special statistical technique to find a polynomial fit in quadrature (just of order 2) to avoid the complications of higher order polynomials of n up to 10 for example.

The numerical results of the proposed technique are surprisingly accurate. The absolute error Ea, defined here as the proposed value of $\mathrm{G}(\mathrm{x})$ (proposed formula) minus its reference value (presented in specialized tables) falls below 0.01 for all considered values of X . Therefore, the relative
error Er is easily calculated by dividing the absolute error by the reference value.

II. THEORY

Generalized factorial functions must be able to receive and return non-integer values for non-integer inputs that are not yet defined. Below we show that a suitable polynomial expression for $F(x)$ hence $G(x)$ in the interval x element of]0.2.] can be found. This means that the problem of finding a closed form of non-integrative expression for $G(x)$ is solved.

The required closed form polynomial-approximate expression should retain the mathematical and physical properties of $\mathrm{G}(\mathrm{x})$, namely the conditions i-iv defined below.

The process of finding a polynomial function that represent the numerical best fit is called the method of least squares and takes the form $f(x)=c 0+c 1 x+c 2 x^{\wedge} 2 \cdots$ $+\mathrm{cn} \cdot \mathrm{x}^{\wedge} \mathrm{n}$ where n is the degree of the polynomial and c, s is a set of coefficients.

The Gamma function is a generalization of the factorial function to non-integer numbers.

Therefore, this polynomial should represent the best fit to the numerical values of the Gamma function in the interval $0<\mathrm{X}<=2$. is subjected to the following conditions:

- minimum of Gamma occurs at $x=1.4616321$ and the corresponding value of $\operatorname{Gamma}(\mathrm{x})$ is 0.8856032 .
- $\operatorname{Gamma}(1)=.\operatorname{Gamma}(2)=$.1 .
- $\operatorname{Gamma}(\mathrm{x})=(\mathrm{x}-1$.$) !$
- The recurrence relation, Gamma $(x)=(x-1)$. Gamma ($x-1$)

We propose a simple preliminary approach other than the classical method of least-squares. The proposed preliminary approach that satisfy the following conditions [4,5].

For this objective we divide the interval $0<\mathrm{x}<$ infinity into three consecutive parts a, b and c .

A. x element of 10.1]

Here, the proposed second-order polynomial expression for the Gamma function is $G(x)=F(x-1)$ where $F(x)$ is the factorial function x !. F is approximated by,
$F(x)=(1 .-0.46163 * x+0.46163 * x * x)$
x element of $[0,1]$.
B. x element of $[1,2]$

The Gamma function is approximated via the expression,

$$
\begin{equation*}
\mathrm{G}(\mathrm{x})=\operatorname{Done}(\mathrm{x})+0.3333 / \mathrm{X}^{* *} 1.5 \tag{3}
\end{equation*}
$$

Where $1 / 3 * 1 / X . \operatorname{Sqrt}(x)$ is a correction factor.
Note that expressions (2) and (3) solve the difficulty of establishing an approximate polynomial expression for $\mathrm{F}(\mathrm{x})$ and therefore $\mathrm{G}(\mathrm{x})$ in the interval $0<\mathrm{X}=<2$.
C. x element of [2,infinity[

We can here use the expression (4) supplemented by the expression (2) for the remaining fraction,

$$
\mathrm{G}(\mathrm{x})=\mathrm{F}(\mathrm{x}-1) \ldots \ldots \ldots . . .
$$

Equations 2, 3 and 4 were implemented in a suitable algorithm which produced the required numerical results for $G(x)$ in the interval $0<x<$ infinity.

In order not to worry too much about the details of the theory let us go directly to numerical results.

III. NUMERICAL RESULTS

Numerical results are presented in Table I. It presents some examples of numerical results of the proposed technique (denoted by G1(x))compared to those of the numerical tables (denoted by G2(x)) that are obtained by numerical integration of Eq. 1.

The absolute error Ea is defined here as G1(x) minus $\mathrm{G} 2(\mathrm{x})$ where $\mathrm{G} 1(\mathrm{x})$ is the measured value calculated by the proposed technique and G2(x) is the reference value of Gamma function found in specialized tables.

The relative error $\mathrm{Er}=[(\mathrm{G} 1(\mathrm{x})-\mathrm{G} 2(\mathrm{x})] / \mathrm{G} 1(\mathrm{x})$ can be easily calculated.

X	$\mathrm{G} 1(\mathrm{X})$	$\mathrm{G} 2(\mathrm{X})$	Absolute
Proposed	Tables	Error technique	$[1,2,3] \mathrm{Ea}=\mathrm{G} 1-\mathrm{G} 2$

0	0.00	Infinite	Infinite	--	
1	0.05	30.8088	--	--	
2	0.10	11.52668	--		--
3	0.15	6.7124	--		--
4	0.20	4.6891		--	--
5	0.25	3.61613 .5798	0.0363		
6	0.30	2.9652		--	
7	0.35	2.5340		--	
8	0.40	2.2304	--		
9	0.45	2.0069 --	--		
10	0.50	1.83731 .7735	0.0638		
11	0.55	1.7057	--		
12	0.60	1.6024			
13	0.65	1.5209			
14	0.70	1.4571			
15	0.75	1.4081			
16	0.80	1.3719			
17	0.85	1.3471			
18	0.90	1.3328			
19	0.95	1.3283	--		
20	1.00	1.00001 .0000	0.0000		
21	1.05	0.97810 .9735	0.0046		
22	1.10	0.95850 .9514		0.0041	
23	1.15	0.9411	0.9330	0.0081	
24	1.20	0.9261	0.9182	0.0089	
25	1.25	0.9134	0.9085	0.0049	
26	1.30	0.90310 .8975	0.0056		
27	1.35	0.89500 .8912	0.0038		
28	1.40	0.8892	0.8873	0.0016	
29	1.45	0.8857	0.8857	0.0000	
30	1.50	0.8846	0.8862	-0.0016	
31	1.55	0.8857	0.8889	-0.0032	
32	1.60	0.8892	0.8935	-0.0043	
33	1.65	0.8950	0.9001	-0.0051	
34	1.70	0.9031	0.9086	-0.0035	
35	1.75	0.9134	0.9191	-0.0043	
36	1.80	0.9261	0.9314	-0.0047	

37	1.85	0.9411	0.9456	-0.0045
38	1.90	0.9585	0.9618	-0.0033
39	1.95	0.9781	0.9799	-0.0018
40	2.00	$1.0000 \quad 1.0000$	0.0000	
41	2.05	1.0242		
42	2.10	1.0508		
43	2.15	1.0796		
44	2.20	1.1108		
45	2.25	1.1443		
46	2.30	1.1800		
47	2.35	1.2181		
48	2.40	1.2585		
49	2.45	1.3012		
50	2.50	1.34621 .3293	0.0171	
	512.55	1.3935		
	522.60	1.4432		
	532.65	1.4951		
	542.70	1.5493		
	552.75	1.6059		
	562.8	1.6647		
	572.85	1.7259		
	582.90	1.7894		
	592.95	1.8552		
	603.00	$2.0000 \quad 2.0000$	0.0000	
	613.05	2.1053		
	623.10	2.2140		
	633.15	2.3270		
	643.20	2.4450		
	653.25	2.5691		
	663.3	2.7001		
	$67 \quad 3.35$	2.8393		
	683.40	2.9877		
	693.45	3.1466		
	$70 \quad 3.50$	3.31723 .3234	-0.0062	
	713.55	3.5009		
	723.60	3.6991		
	733.65	3.91330		
	743.70	4.1450		
	753.75	4.3960		
	763.8	4.6677		
	$77 \quad 3.85$	4.9622		
	783.90	5.2811		
	793.95	5.6264		
	804.00	$6.0000 \quad 6.0000$	0.0000	
	814.05	6.4212		
	824.10	6.8635		
	834.15	7.3300		
	844.20	7.8240		
	854.25	8.3495		
	864.30	8.9105		
	874.35	9.5117		
	884.40	10.1583		
	894.45	10.8558		
	904.50	11.6101		

Table 1: Some examples of numerical results of the proposed technique compared to those of the numerical tables of ref. 1,2,3 A portion of the numerical results of Table I is shown schematically in Figure 1 below.

Fig 1: Part of the Gamma function $\mathrm{G}(\mathrm{x})$ vs x .

IV. CONCLUSION

We propose a semi-statistical technique to calculate the value of the Gamma function $G(x)$ in the whole space of positive x , i.e. $0<\mathrm{x}=<$ infinity.

The proposed method is simple and applies a seconddegree polynomial fit to find accurate values for $\operatorname{Gamma}(\mathrm{x})$ in the interval $0<x<=2$.

The precision of the numerical results of the new method is striking as shown in Table I where the absolute error is limited to less than 0.01 for the interval considered (x element of $] 0.5]$).

We recommend the application of the proposed technique for practical cases of calculation of the gamma function in order to avoid the complication of its numerical integration.

NB. All calculations in this article were produced using the author's double-precision algorithm to ensure maximum accuracy, as follows by ref. 6 for example

REFERENCES

[1.] Wikipedia, Particular values of the gamma function.
[2.] Apoorva Bali - Feb 22, 2023 Beta and Gamma Functions: Definition, Relationship, Properties \& Applications.
[3.] Wiley Online Library-Appendix B: Gamma Function Tables.
[4.] I.M.Abbas, IJISRT Journal,Mars 2023.
[5.] I.M.Abbas, Researchgate,Mars 2023.
[6.] I.M.Abbas,IEEE.1996,Pseudo-discharge spark. Plasma Science Transactions24(3):1106-1119, DOI: 10.1109/27.533119.

