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Abstract:-  In this paper, the author define the 

generalized q-derivative oprator and obtain its relation 

with shift operator.Also, we present the discrete version 
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derivative operator.By defining its inverse,and using 

Stirling numbers of first kind, we establish formula for 
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I. INTRODUCTION 

 

The theory of q- derivative equation is based on the 

definition of the q- derivative operator is definied as  

 

∇𝑞𝑦𝑘 = 𝑦𝑘𝑞 − 𝑦𝑘 

 

where 𝑦𝑘 is a sequence of positive integers. The 

definition of ∇𝑞𝑦𝑘 is simply the derivative between two 

successive operator on two variable and turns to be suitable 

for dealing with the Cauchy polynomials. Also,derivative a 

binomial identity which unifies the two identities of Rota and 

Godman, as well as the q-Vandermond identity. 

 

With this background, in this paper, we develop the 

basic theory for the generalized q-derivative operator ∇𝑞(𝛼)𝑦𝑘 

and obtain relation connecting ∇𝑞𝑢(𝑘), and ∇𝑞(𝛼)𝑢(𝑘) 

and,∇𝑞(𝛼)𝑢(𝑘) and 𝐸𝑞 and the basic properties of ∇𝑞(𝛼)𝑢(𝑘) 

and also obtain a formula for finding the sum of the higher 

powers of geometric progressions using generalized inverse 

q-derivative operator.  

 

II. PRELIMINARY 

 

In this section, the author defined the generalized q-derivative operator and obtaining the relation between the shift operator 

and generalized q-derivative operator and polynomials. 
 

2.1. Definition Let u(k) be a real valued  fuction defined on [0,∞), Then the generalized q-derivative oprator is defined as  

∇𝑞(𝛼)𝑢(𝑘) = 𝑢(𝑞𝑘) − 𝛼𝑢(𝑘) (1) 

 

2.2. Lemma  The Relation between generalized q-derivative operator and q-shift oprator is 

∇𝑞(𝛼)= (𝐸𝑞 − 𝛼) (2) 

 

∇𝑞1,𝑞2(𝛼)= ∏2
𝑡=1 (𝐸𝑞𝑡 − 𝛼) (3) 

 

∇𝑞1,𝑞2,𝑞3(𝛼)= ∏

3

𝑡=1

(𝐸𝑞𝑡 − 𝛼) 

 (4)  

2.3. Lemma  If 𝑐1 and 𝑐2 are non-zero sclars and 𝑢(𝑘) and 𝑣(𝑘) are real valued fuction on [0,∞), then  

∇𝑞(𝛼)[𝑐1𝑢(𝑘) + 𝑐2𝑣(𝑘)] = 𝑐1∇𝑞(𝛼)𝑢(𝑘) + 𝑐2∇𝑞(𝛼)𝑣(𝑘) 

 

∇𝑞1,𝑞2(𝛼)[𝑐1𝑢(𝑘) + 𝑐2𝑣(𝑘)] = 𝑐1∇𝑞1,𝑞2(𝛼)𝑢(𝑘) + 𝑐2∇𝑞1,𝑞2(𝛼)𝑣(𝑘) 

 

∇𝑞1,𝑞2,𝑞3(𝛼)[𝑐1𝑢(𝑘) + 𝑐2𝑣(𝑘)] = 𝑐1∇𝑞1,𝑞2,𝑞3(𝛼)𝑢(𝑘) + 𝑐2∇𝑞1,𝑞2,𝑞3(𝛼)𝑣(𝑘) 

 

2.4.Theorem  [9]If 𝑘 is a positive integer,then 

∏𝑛
𝑖=1 ∇𝑞𝑖(𝛼𝑖)

−1 𝑘𝑛 =
𝑘𝑛

∏𝑛
𝑖=1 (𝑞𝑖−𝛼𝑖)

, 𝑞𝑖 ≠ 𝛼𝑖 (5) 

 

Proof: From (1) and Definition 4.1, and proof shoud end with a square  ◻  
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III. FINITE Q-DERIVATIVE SERIERS. 
 

3.1. Theorem   Let 𝑘 ∈ (−∞,∞), then  

 

∇𝑞(𝛼)
−1 𝑢(𝑘) −

1

𝛼𝑡
∇𝑞(𝛼)

−1 𝑢(𝑘𝑞𝑡) = ∑

𝑡

𝑟=1

−1

𝛼𝑟
𝑢(𝑘𝑞𝑟−1), 𝑘 > 0, 𝑞 ≠ 0, 𝛼 > 0 

 (6)  

Proof: From (1) and Definition 4.1, we have 

 

𝑣(𝑘) = −
1

𝛼
𝑢(𝑘) +

1

𝛼
𝑣(𝑘𝑞) (7) 

 Replacing 𝑘 by 𝑘𝑞 in (16) and substituting in (16), we obtained 

 

𝑣(𝑘) = −
1

𝛼
𝑢(𝑘) −

1

𝛼2
𝑢(𝑘𝑞) +

1

𝛼2
𝑣(𝑘𝑞2) 

 

Proceeding like this we get𝑣(𝑘) = −
1

𝛼
𝑢(𝑘) −

1

𝛼2 𝑢(𝑘𝑞) −
1

𝛼3 𝑢(𝑘𝑞2) − ⋯ −
1

𝛼𝑡 𝑢(𝑘𝑞𝑡−1) +
1

𝛼𝑡 𝑣(𝑘𝑞𝑡) 

 

which gives (6)  

 

3.2. Theorem  Let 𝑘 ∈ (−∞,∞), then  
 

 [
1

𝛼𝑡 ∇𝑞(𝛼)
−1 𝑢(𝑘𝑞𝑡)]𝑡=𝑛

𝑚 = ∑𝑛
𝑟=𝑚+1

−1

𝛼𝑟 𝑢(𝑘𝑞𝑟−1), 𝑘 > 0, 𝑞 ≠ 0, 𝛼 > 0 (8) 

 Proof: From (1) and Definition 4.1, we have 

 

𝑣(𝑘) = −
1

𝛼
𝑢(𝑘) +

1

𝛼
𝑣(𝑘𝑞) 

 (9) 

 Replacing 𝑘 by 𝑘𝑞 in (1) and substituting in (9), we obtained 

𝑣(𝑘) = −
1

𝛼
𝑢(𝑘) −

1

𝛼2
𝑢(𝑘𝑞) +

1

𝛼2
𝑣(𝑘𝑞2) 

 

Replacing 𝑘 by 𝑘𝑞 repeately we find 

 

𝑣(𝑘) −
1

𝛼𝑚
𝑣(𝑘𝑞𝑚) = ∑

𝑚

𝑟=1

−
1

𝛼𝑟
𝑢(𝑘𝑞𝑟−1) 

 (10) 

 Repacing 𝑚 by 𝑛 in (19),we get 

 

𝑣(𝑘) −
1

𝛼𝑛
𝑣(𝑘𝑞𝑛) = ∑

𝑛

𝑟=1

−
1

𝛼𝑟
𝑢(𝑘𝑞𝑟−1) 

 (11) 

 Assume that 𝑚 < 𝑛. Now (8) − (11),gives, 

1

𝛼𝑚
𝑣(𝑘𝑞𝑚) −

1

𝛼𝑛
𝑣(𝑘𝑞𝑛) = ∑

𝑛

𝑟=𝑚+1

−
1

𝛼𝑟
𝑢(𝑘𝑞𝑟) 

 (12) 

The following examples illustrate (8)  

 

3.3. Example  By taking 𝑝 = 5, in Theorem3.6 and 
 

 𝑘 = 12, 𝑞 = 6, 𝛼 = 5, 𝑚 = 1 and 𝑛 = 2 in (17), we get, 
1244160

60427296
−

6220800

469882653700
= ∑2

𝑟=2 5𝑟−1(
12

36
)5 = 0.020576131  

 

3.4. Corollary  If 𝛼 < 𝑞, 𝑢(𝑘) is bounded and 

 

 𝑙𝑖𝑚
𝑛→∞

𝛼𝑛𝑣(
𝑘

𝑞𝑛) = 0,then  
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𝛼𝑚∇𝑞(𝛼)
−1 𝑢(

𝑘

𝑞𝑚) = ∑∞
𝑟=𝑚+1 𝛼𝑟−1𝑢(

𝑘

𝑞𝑟 (13) 

In particular, 

 

∇𝑞(𝛼)
−1 𝑢(𝑘) = ∑∞

𝑟=1 𝛼𝑟−1𝑢(
𝑘

𝑞𝑟) (14) 

 

 Proof: Proof follows by taking 𝑛 → ∞ in (8) and (14) follows by putting 𝑚 = 0 in     (13)  

 

3.5. Theorem  Let 𝑘 ∈ (−∞,∞), then  

∇𝑞(𝛼)
−1 𝑢(𝑘) − 𝛼𝑡∇𝑞(𝛼)

−1 𝑢 (
𝑘

𝑞𝑡
) = ∑

𝑡

𝑟=1

𝛼𝑟−1𝑢 (
𝑘

𝑞𝑟
) , 𝑘 > 0, 𝑞 ≠ 0, 𝛼 > 0 

 (15) 

 Proof:From (1) and Definition 4.1, we have 

 

      𝑣(𝑘) = 𝑢(
𝑘

𝑞
) + 𝛼𝑣(

𝑘

𝑞
) 

 (16) 

 Replacing 𝑘 by 𝑘𝑞 in (16) and substituting in (16), we obtained 

𝑣(𝑘) = 𝑢(
𝑘

𝑞
) + 𝛼𝑢(

𝑘

𝑞2
) + 𝛼2𝑣(

𝑘

𝑞2
) 

Procuding like this we get 

 

𝑣(𝑘) = 𝑢(
𝑘

𝑞
) + 𝛼𝑢(

𝑘

𝑞2
) + 𝛼2𝑣(

𝑘

𝑞2
) 

which gives (15) 

 

3.6. Theorem  Let 𝑘 ∈ (−∞,∞), then  

 

 [𝛼𝑡∇𝑞(𝛼)
−1 𝑢(𝑘𝑞𝑡)]𝑡=𝑛

𝑚 = ∑𝑛
𝑟=𝑚+1

−1

𝛼𝑟 𝑢(
𝑘

𝑞𝑟), 𝑘 > 0, 𝑞 ≠ 0, 𝛼 > 0 (17) 

 Proof: From (1) and Definition 4.1, we have 

 

𝑣(𝑘) = 𝑢(
𝑘

𝑞
) + 𝛼𝑣(

𝑘

𝑞
) (18) 

 Replacing 𝑘 by 𝑘𝑞 in (17) and substituting in (32), we obtained 
 

𝑣(𝑘) = 𝑢(
𝑘

𝑞
) + 𝛼𝑢(

𝑘

𝑞2
) + 𝛼2𝑣(

𝑘

𝑞2
) 

 

Replacing 𝑘 by 𝑘𝑞 repeately we find 

 

𝑣(𝑘) − 𝛼𝑚𝑣(
𝑘

𝑞𝑚) = ∑𝑚
𝑟=1 𝛼𝑚−1𝑢(

𝑘

𝑞𝑚) (19) 

 Repacing 𝑚 by 𝑛 in (19),we get 

 

𝑣(𝑘) − 𝛼𝑛𝑣(
𝑘

𝑞𝑛) = ∑𝑛
𝑟=1 𝛼𝑛−1𝑢(

𝑘

𝑞𝑛) (20) 

 Assume that 𝑚 < 𝑛. Now (20) − (19),gives, 

 

𝛼𝑚𝑣(
𝑘

𝑞𝑚
) − 𝛼𝑛𝑣(

𝑘

𝑞𝑛
) = ∑

𝑛

𝑟=𝑚+1

𝛼𝑟−1𝑢(
𝑘

𝑞𝑟
) 

 (21) 

The following examples illustrate (17)  
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IV. INFINITE Q-DERIVATIVE SERIES 

 
 In this section, the author derived the sum of higher power of geometric progressions using the inverse of generalized q-

derivative operator.  

 

4.1. Definition  The inverse of genegalized q-derivative operator denoted by ∇𝑞(𝛼)
−1  is definied as if ∇𝑞(𝛼)𝑣(𝑘) = 𝑢(𝑘) then 𝑣(𝑘) =

∇𝑞(𝛼)
−1 𝑢(𝑘) and the 𝑛𝑡ℎ order inverse operaor denoted by ∇𝑞(𝛼)

−𝑛  is definied as ∇𝑞(𝛼)
𝑛 𝑣(𝑘) = 𝑢(𝑘) then 𝑣(𝑘) = ∇𝑞(𝛼)

−𝑛 𝑢(𝑘)   

 

4.2. Theorem  Let 𝑘 ∈ (∞, −∞),𝑙𝑖𝑚
𝑟→∞

1

𝛼𝑟 𝑢(𝑘𝑞𝑟) = 0 then  

∇𝑞(𝛼)
−1 𝑢(𝑘) = −

1

𝛼
∑

∞

𝑟=0

1

𝛼𝑟
𝑢(𝑘𝑞𝑟−1), 𝑘 > 0, 𝑞 ≠ 0 

 (22) 

Proof: From (1) and Definition 4.1, we have 

 

𝑣(𝑘) = −
1

𝛼
𝑢(𝑘) +

1

𝛼
𝑣(𝑘𝑞) (23) 

 Replacing 𝑘 by 𝑘𝑞 in (29) and substituting in (29), we obtained 

 

𝑣(𝑘) = −
1

𝛼
𝑢(𝑘) −

1

𝛼2
𝑢(𝑘𝑞) +

1

𝛼2
𝑣(𝑘𝑞2) 

 
Continuing this process, we get (22). 

 

4.3. Theorem  Let 𝑘 ∈ (∞, −∞),𝑙𝑖𝑚
𝑟→∞

1

𝛼𝑟 𝑢(𝑘𝑞𝑟) = 0 then  

1

𝛼1𝛼2

∑

∞

𝑟1=0

∑

∞

𝑟2=0

1

𝛼1
𝑟1 𝛼2

𝑟2
𝑢(𝑘𝑞1

𝑟1−1
𝑞2

𝑟2−1) =                     ∇𝑞1(𝛼1)
−1 ∇𝑞2(𝛼2)

−1 𝑢(𝑘) 

 (24) 

 Proof:  Proof followed by From (1) and Definition 4.1 and Theorems 4.2.,  

 

4.4. Theorem  Let 𝑘 ∈ (∞, −∞),𝑙𝑖𝑚
𝑟→∞

1

𝛼𝑟 𝑢(𝑘𝑞𝑟) = 0, then  

 

−
1

𝛼1𝛼2𝛼3
∑∞

𝑟1=0 ∑∞
𝑟2=0 ∑∞

𝑟3=0
1

𝛼1
𝑟1 𝛼2

𝑟2𝛼3
𝑟3 𝑢(𝑘𝑞1

𝑟1−1
𝑞2

𝑟2−1
𝑞3

𝑟3−1
) = ∇𝑞1(𝛼1)

−1 ∇𝑞2(𝛼2)
−1 ∇𝑞3(𝛼3)

−1 𝑢(𝑘) (25) 

 

Proof:  Proof followed by From (1) and Definition 4.1 and Theorems 4.2., 4.3.          

 

4.5.Theorem Let 𝑘 ∈ (∞, −∞),then ∑∞
(𝑟)[1→𝑡]

∏𝑝
𝑡=1 𝛼𝑡

−𝑟𝑡 𝑢(∏𝑛
𝑡=1 𝑞𝑡

𝑟𝑡𝑘) =  (−1)𝑝 ∏𝑖
𝑡=1 𝛼𝑡

𝑟𝑡∇𝑞(𝛼)[1→𝑡]

−1 𝑢(𝑘) 

 (26) 
Proof:  Proof followed by From (1) and Definition 4.1 and Theorems 4.2., 4.3.,4.4.  

 

        and proof shoud end with a square                                ◻ 

 

4.6. Example  By taking 𝑝 = 10, in Theorem2.4 and 𝑘 = 15, 𝑞 = 9, 𝛼 = 0.25, 𝑚 = 4 and 𝑛 = 2 in (17), we get, 

4.7.  

1510

910 − 0.25
= ∑

∞

𝑟=1

(0.25)𝑟−1(
15

9𝑟
)10 = 165.3817169 

  

The following Corollary illustraes Theorem 4.8 

 

4.7. Corollary  If 𝑛 is positive integer, then 

∑∞
𝑟=1

𝛼𝑟−1

𝑞𝑟𝑛 =
1

𝑞𝑛−𝛼
, 𝛼 > 0, 𝑞𝑛 ≠ 𝛼 (27) 

 

Proof: The proof follows by substituting 𝑢(𝑘) = 𝑘𝑛 in (31)  
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4.8. Theorem   Let 𝑘 ∈ (−∞,∞), then  

∇𝑞(𝛼)
−1 𝑢(𝑘) = ∑

∞

𝑟=0

𝛼𝑟𝑢(
𝑘

𝑞𝑟+1
), 𝑞 ≠ 0 

 (28) 

 

Proof: From (1) and Definition 4.1, we have 

 

𝑣(𝑘) = 𝑢(
𝑘

𝑞
) + 𝛼𝑣(

𝑘

𝑞
) (29) 

 Replacing 𝑘 by 
𝑘

𝑞
 in (29) and substituting in (29), we obtained 

 

𝑣(𝑘) = 𝑢(
𝑘

𝑞
) + 𝛼𝑢(

𝑘

𝑞2
) + 𝛼2𝑢(

𝑘

𝑞2
) 

Continuing this process, we get (28). 

 

4.9. Theorem   Let 𝑘 ∈ (∞, −∞),𝑙𝑖𝑚
𝑟→∞

1

𝛼𝑟 𝑢(𝑘𝑞𝑟) = 0 then  

 

∑∞
𝑟1=0 ∑∞

𝑟2=0 𝛼1
𝑟1 𝛼2

𝑟2 𝑢(
𝑘

𝑞1
𝑟1+1

𝑞2
𝑟2+1) = ∇𝑞1(𝛼1)

−1 ∇𝑞2(𝛼2)
−1 𝑢(𝑘), 𝑞 ≠ 0 (30)  

 

Proof: From (1) and Definition 4.1  

 

4.10. Theorem  

Let 𝑘 ∈ (∞, −∞),𝑙𝑖𝑚
𝑟→∞

1

𝛼𝑟 𝑢(𝑘𝑞𝑟) = 0  

 

then ∑∞
𝑟1=0 ∑∞

𝑟2=0 ∑∞
𝑟3=0 𝛼1

𝑟1𝛼2
𝑟2 𝛼3

𝑟3𝑢(
𝑘

𝑞1
𝑟1+1

𝑞2
𝑟2+1

𝑞3
𝑟3+1) =             ∇𝑞1(𝛼1)

−1 ∇𝑞2(𝛼2)
−1 ∇𝑞3(𝛼3)

−1 𝑢(𝑘), 𝑞 ≠ 0 (31)   

 

Proof: From (1) and Definition 4.1 

 

4.11. Theorem  Let 𝑘 ∈ (∞, −∞), then  

 

∑∞
(𝑟)[1→𝑡]

∏𝑝
𝑡=1 𝛼𝑡

𝑟𝑡𝑢(∏𝑛
𝑡=1 𝑞𝑡

−𝑟𝑡+1
𝑘) = ∏𝑝

𝑡=1 ∇𝑞(𝛼)[1→𝑡]

−1 𝑢(𝑘)(32) 

 

Proof:  Proof followed by From (1) and Definition 4.1 and Theorems 4.8, 4.9,4.10 and  

 

  Proof shoud end with a square                                ◻ 

 

 

V. CONCLUSION 

 

The author derived several results and theorem using q-

derivative and its inverse and they were verified with 

example. By taking different fuctions 𝑢(𝑘) and 𝑣(𝑘) one can 

obtain corresponding finite and infinite series formulas. 
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