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I. INTRODUCTION 
 

The theory of difference equation is developed with 

the definition of the difference operator ∆(−1)u(k) = u(k − 1) 

− u(k), k ∈N, where N is the set of natural numbers. Many 

authors suggested the possible study by redefining the 

operator as ∆−lu(k) = u(k − 𝑙 ) − u(k), k∈R. The theory 

developed already with the difference operator ∆ agrees 

when  ̀= −1. 
 

In 2011, M.MariaSusai Manuel, et.al, [6], have 

extended the definition of ∆α to ∆α(−l`) which is defined as 

∆α(−l`)v(k) = v(k − 𝑙) − αv(k) for the real valued function v(k), 

k∈(0,∞). In [7], the authors have used the generalized α-
difference equation;  

 

v(k − 𝑙) − αv(k) = u(k), k ∈ [0,−∞), 0 <𝑙< k (1) 
 

and obtained a summation solution of the above 

equation in the form 

 

                  (2) 
 

) where,  denotes the integer part of . 
 

II. PRELIMINARIES 
 

In this section, the authorpresent some basic definition and some results on generalized α-difference operator and 

polynomial factorials, which will be useful for subsequent discussion. 
 

 Definition: The inverse of the generalized α−difference operator denoted by  on u(k) is defined as,if∆α(−`)v(k) = u(k) 

and `ˇ(k) is defined, then 
 

, (3) 
 

where cjis a constant for all k ∈R−`(j),j= (𝑙`˜(k)). 
 

III. FINITE SERIES 
 

In this section, we present some significant results, and applications on finite sums of knpowers of α using the inverse of 

∆α(−1`). 
 

 Lemma 3.1 If k >0,0 <𝑙<k,α>1 ,then 

  (4) 
 

Proof: By taking , 
 

we have ∆α(−l`)v(k) = u(k), which gives  
 

                                                                           (5) 
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Replacing k by k −𝑙 in (5), we get 

                                                              (6) 
 

Substituting (6) in (5), we get 
 

                                                (7) 
 

Proceeding like this we get 
 

 
 

 

,  
 

which gives (4) 
 

 Example 3.2 Let u(k) = k,α= 2,𝑙= 4,k = 11 in (4),(17) we obtain 
 

 
 

 
 

 Example 3.3 Let u(k) = k2,α= 3,𝑙= 5,k = 13 in (4) and (18) we obtain 
 

 
 

 
 

 Theorem 3.4  

For k ∈ [0,∞),0 <𝑙< k and n ∈N(1), 
 

                                   (8) 
 

Where 
 

 
 

In particular when n = 4, 
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where  
 

Proof: As in the proof of Lemma 3.1, by applying (8) to the expression of ∆α(−l`), we get 

  (9) 

Now the proof follows by substituting α2 = α and ` 𝑙 2 = 𝑙 ` in (16),(17),(18),etc,we get 

in (9) and (4) 
 

IV. HIGHER ORDER SERIERS 
 

In this section, the authorobtain the sum of higher order alpha series by equating the closed and summation form solutions of 

the generalized higher kind alpha difference equation. The higher order generalized α-difference equation is defined as 
 

 Theorem 4.1  

For k ∈ [0,∞),0 < `𝑙< k,k >0 and α >1. 
 

  
 

Proof. Replacing  ̀by 𝑙1 and α by α1 in (4), we have 

  

  (10) 

Replacing 𝑙1 by 𝑙2 and α1by α2 in (10), we get 
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  (11) 

For ] replacing k by k − r`1 in (11) and multiplying both sides by , we find 

that 

 

Adding (11) and (12) for ] and applying (10), we derive 

 

 

Replacing r1,r2 by r2,r3 and 𝑙1,𝑙2 by 𝑙2,𝑙3 in (13), we find 

 

` 

 )) (14) 

Replacing k by k − r𝑙 1 in (14) and multiplying both sides by  and adding the corresponding expressions for

], we derive 
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Continuing this process we get the proof of the theorem. 
 

 Corollary 4.2 Taking n = 2, u(k) = k2 in the Theorem 4.1, we have 
 

 k ` 

 

  (15) 

Proof. Since ∆α2(𝑙2)k0 = (k − 𝑙2)0 − α2k0 = (1 − α2)(1), we have 

 . (16) 

From ∆α2(𝑙2)k= (k − 𝑙2) − α2k = k(1 − α2) − 𝑙2(1) and (16), we get 

 . (17) 

 

Now ∆  yields 

 
and hence by (16) and (17), we find 

 . (18) 

Taking ∆  on both sides of (18) and applying (16) and(17) for `𝑙1, we arrive 

  (19) 

 

Now the proof follows by applying (18) and(19) in the Theorem (4.1). Following example is an verification of corollary 
(4.2). 

 Example 4.3 Let k = 10,𝑙1 = 3,𝑙2 = 4 and α1 = 2, α2 = 3 in Corollary 

4.2,(18) and (19) 

 

 

  (20) 

Corollary 4.4 Taking n = 2, u(k) = k in the Theorem 4.1 
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 k ` 

 

 )) (21) 

 

 Example 4.5 

Let k = 7,l1 = 2 = α1,α2 = 3 = l2 in (21)and using (19) 

 

 

 )) (22) 

 Corollary 4.6 
Taking n = 2, u(k) = k2,α1 = α2 = α in the Theorem 4.1, we have 

 

 

  (23) 

 Example 4.7  

Let k = 32𝑙1 = 6,𝑙2 = 7 and α = 5 in equation (23),(18) and (19) 
 

 

 
 

                                                    (24) 
 

V. INFINITE SERIES 
 

 Lemma 5.1  

If 

, then 
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  (25) 

Proof: By taking , 

we have ∆α(−l`)v(k) = u(k), which gives 

v(k − 𝑙) − αv(k) = u(k) 

 v(k −𝑙) = u(k) + αv(k) (26) 

Replacing k by k +𝑙 in (26), we get 

 

 Example 5.2 
Let 

 in (25), we obtain 

 

 Example 5.3 
Let 

 in (25), we obtain 

 

 Theorem 5.4 
If 

, 

0 <𝑙<k,k∈ [0,∞), then 

  (27) 

where 

 
 

VI. HIGHER ORDER SERIES 
 

 Theorem 6.1 
If 

 
 

Then 
 

 
 

Proof. Replacing  ̀by𝑙1 and α by α1 in (25), we have 
 

. (29) 
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Replacing 𝑙1 by 𝑙2 and α1by α2 in (29), we get: 
 

. (30) 
 

For r = 1,2,3··· replacing k by k + r𝑙1 in (30) and multiplying both sides by α1
r−1 u(k + r𝑙1 + 𝑙2) + α2u(k + r𝑙1 + 2𝑙2) + α2

2u(k + r𝑙1 + 

3𝑙2) + ··· 

. 

Adding (30) and (31) for r = 1,2,3··· and applying (29), we derive 

(31) 

 ) (32) 

 3 3 2 2 

Replacing k by k + r𝑙1 in (33) and multiplying both sides by  and adding the corresponding expressions for r = 0,1,2,··· 

we derive; 
 

         (34)  
 

Continuing this process we get the proof of the theorem. 
 

 Corollary 6.2: Taking n = 2, u(k) = k in the Theorem 6.1, we have 
∑∞
𝑟1=0

∑∞
𝑟2=0

𝛼1
−1𝛼2

−1(k + r1𝑙1+ r2𝑙2) = ∆−1α1(𝑙1)∆−1α2(𝑙2)k (35) 
 

 Example 6.3Put k = 12, l1 = 4,𝑙2 = 6 and 

, inequation (35) and (19) 

 

Corollary 6.4If 

, 

0 <𝑙i < k, then 

 

Proof.The proof follows by taking α1 = α2 = ... = α in Theorem 6.1 

 Corollary 6.5 
Taking n = 2,u(k) = k2 in the Corollary 6.4, we have 
 

  (37) 
 

 

 

 

 

Replacing r1,r2 by r2,r3 and 𝑙1,𝑙2 by 𝑙2,𝑙3 in (32), we find  

 

u(k + r2`2 + r3`3) = ∆−α1(−1  ̀)∆−α1(−1)u(k) α2 
(33) 
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 Example 6.6 Put k = 13,𝑙1 = 3,𝑙2 = 4 and  in equation (37) 
 

 
 

VII. POLYNOMIAL FACTORIAL OF Α SERIES 
 

In this section, the authorpresent some significant results, and applications on positive variable k is finite and infinite sums 

of  and powers of α using the inverse of ∆α(−1`). Suitable examples are given to illustrate our main results. 
 

 Theorem 7.1 If 

 k >0,α>1,𝑙∈ (0,∞), then 

  (38) 

Proof:From (2.1) and taking n ∈R(1) in (38),we get (38) 

 Theorem 7.2 
 

Ifα >1,𝒍∈ (0,∞), then 

 

Proof:Now the proof follows by 

                  in (1) 

 Example 7.3k = 5,𝑙= 3,α = 2,n = 1 in equation (39) 
 

 
 

 Example 7.4k = 5,𝒍= 2 = α,n= 2 in equation (39) 

 

 Theorem 7.5If 

, then 

  (40) 

Proof:Now the proof follows by  in (25) 
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 Example 7.6If 

in equation (40) 
 

 
 

−0.05 = −0.05 
 

 Example 7.7If 

 in equation (40) 
 

 
 

−0.011832611 = −0.011832611 
 

Proof.The proof follows by taking α1 = α2 = ...αn = 1 in Theorem 6.1 
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