On Four-Dimensional Absolute Valued Algebras Containing a Nonzero Central Element

Abdelhadi Moutassim Centre Régional des Métier de l'Education et de Formation, Casablanca-Settat Annexe Provinciale Settat, Morocco

Abstract:- An absolute valued algebra is a nonzero real algebra that is equipped with a multiplicative norm ||ab|| = ||a|| ||b||. We classify, by an algebraic method, all fourdimensional absolute valued algebras containing a nonzero central element and commutative sub-algebra of dimension two. Moreover, we give some conditions implying that these new algebras having sub-algebras of dimension two.

Keywords:- Absolute Valued Algebra; Pre-Hilbert Algebra; Commutative Algebra; Central Element.

I. INTRODUCTION

Let A be a non-necessarily associative real algebra which is normed as real vector space. We say that a real algebra is a pre-Hilbert algebra, if it's norm ||. || come from an inner product (./.), and it's said to be absolute valued algebras, if it's norm satisfy the equality ||ab|| = ||a|| ||b||, for all $a, b \in A$. Note that, the norm of any absolute valued algebras containing a nonzero central idempotent (or finite dimensional) comes from an inner product [3] and [4]. In 1947 Albert proved that the finite dimensional unital absolute valued algebras are classified by $\mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O} , and that every finite dimensional absolute valued algebra has dimension 1, 2, 4 or 8 [1]. Urbanik and Wright proved in 1960 that all unital absolute valued algebras are classified by $\mathbb{R}, \mathbb{C}, \mathbb{H}$ and O [9]. It is easily seen that the one-dimensional absolute valued algebras are classified by \mathbb{R} , and it is wellknown that the two-dimensional absolute valued algebras are

classified by \mathbb{C} , \mathbb{C}^* , $*\mathbb{C}$ or \mathbb{C} (the real algebras obtained by endowing the space \mathbb{C} with the product $x * y = \overline{x}y$, $x * y = x\overline{y}$, and $x * y = \overline{x}\overline{y}$ respectively) [7]. The four-dimensional absolute valued algebras have been described by M.I. Ramirez Alvarez in 1997 [5]. The problem of classifying all four (eight)-dimensional absolute valued algebras seems still to be open.

In 2016 [5], we classified all four-dimensional absolute valued algebras containing a nonzero central idempotent and we also proved such an algebra contains a commutative subalgebra of dimension two. Here (**theorems 3.1 and 3.2**) we extend this result to more general situation. Indeed, Let A be a four-dimensional absolute valued algebra containing a nonzero central element a. If A has a commutative subalgebra of dimension two, then A is isomorphic to a new absolute valued algebras of dimension four. We also show, in **proposition 2.9**, that A contains a sub-algebra of dimension two if and only if $(a^2a)a = (a^2)^2$. We denote that a central idempotent is central element, the reciprocal does not hold in general, and the counter example is given (**theorems 3.1 and 3.2**).

In section 2 we introduce the basic tools for the study of four-dimensional absolute valued algebras. We also give some properties related to central element satisfying some restrictions on commutativity (lemmas 2.6, 2.7, 2.8 and proposition 2.9). Moreover, the section 3 is devoted to construct, by algebraic method, some new class of the four-dimensional absolute valued algebras having commutative sub-algebras of dimension two, namely A_1 , A_2 , A_3 , A_4 , B_1 , B_2 , B_3 and B_4 . The paper ends with the following main results:

- Theorem 3.1 Let A be a four-dimensional absolute valued algebra containing a nonzero central element a and commutative sub-algebra B = A(e, i), where i² = -e, ie = ei = ± i, then A is isomorphic to A₁, A₂, A₃, A₄, B₁, B₂, B₃ or B₄.
- > Theorem 3.2 Let A be a four-dimensional absolute valued algebra containing a nonzero central element a such that $(a^2a)a = (a^2)^2$, then A is isomorphic to A_1, A_2, A_3, A_4, B_1 or B_2 .

II. NOTATION AND PRELIMINARIES RESULTS

In this paper all the algebras are considered over the real numbers field \mathbb{R} .

- > Definition 2.1 Let B be an arbitrary algebra.
- B is called a normed algebra (respectively, absolute valued algebra) if it is endowed with a space norm: ||. || such that ||xy|| ≤ ||x|| ||y|| (respectively, ||xy|| = ||x|| ||y||, for all x, y ∈ B).
- B is called a division algebra if the operators L_x and R_x of left and right multiplication by x are bijective for all x ∈ B \ {0}.
- B is called a pre-Hilbert algebra if it is endowed with a space norm comes from an inner product (./.) such that

$$(./.): B \times B \longrightarrow \mathbb{R}$$
$$(x, y) \mapsto \frac{1}{4}(\|x + y\|^2 - \|x - y\|^2)$$

The most natural examples of absolute valued algebras are \mathbb{R} , \mathbb{C} , H (the algebra of Hamilton quaternion) and O (the algebra of Cayley numbers) with norms equal to their usual absolute values [2] and [8]. The algebras by \mathbb{C}^* , $*\mathbb{C}$ and $\overset{*}{\mathbb{C}}$ (obtained by endowing the space by \mathbb{C} with the products defined by $x * y = \overline{x}y$, $x * y = x\overline{y}$, and $x * y = \overline{x}\overline{y}$ respectively) where $x \to \overline{x}$ is the standard conjugation of \mathbb{C} . Note that the algebras \mathbb{C} and $\overset{*}{\mathbb{C}}$ are the only two-dimensional commutative absolute valued algebras.

We need the following relevant results:

- Theorem 2.2 [3] The norm of any finite dimensional absolute valued algebra comes from an inner product.
- Theorem 2.3 [4] The norm of any absolute valued algebra containing a nonzero central idempotent comes from an inner product.
- Theorem 2.4 [5] Let A be a four-dimensional absolute valued algebra containing a nonzero central idempotent e, then A is isomorphic to A_1 , A_2 , A_3 or A_4 defined by: $(\alpha^2 + \beta^2 = 1)$

A_1	e	i	j	k
e	e	i	$\alpha j + \beta k$	$-\beta j + \alpha k$
i	i	-е	$-\beta j + \alpha k$	$-\alpha j - \beta k$
j	$\alpha j + \beta k$	βj – αk	—е	i
k	$-\beta j + \alpha k$	$\alpha j + \beta k$	—i	—е

A_2	e	i	j	k
e	e	i	$\alpha j + \beta k$	$-\beta j + \alpha k$
i	i	—е	$-\beta j + \alpha k$	-αj - βk
j	$\alpha j + \beta k$	βj – αk	-е	i
k	$-\beta \mathbf{j} + \alpha \mathbf{k}$	$\alpha j + \beta k$	—i	—e

A3	е	i	j	k
e	e	i	$\alpha j + \beta k$	$-\beta j + \alpha k$
i	i	-e	$-\beta j + \alpha k$	-αj – βk
j	$\alpha j + \beta k$	βj – αk	-е	i
k	$-\beta \mathbf{j} + \alpha \mathbf{k}$	$\alpha \mathbf{j} + \beta \mathbf{k}$	—i	—е

A_4	e	i	j	k
e	e	i	$\alpha j + \beta k$	$-\beta j + \alpha k$
i	i	-e	$-\beta j + \alpha k$	-αj – βk
j	$\alpha j + \beta k$	βj – αk	—е	i
k	$-\beta j + \alpha k$	$\alpha j + \beta k$	—i	-e

Lemma 2.5 [5] Let A be a finite dimensional absolute valued algebra containing a nonzero central idempotent e, then A contains a commutative sub-algebra of dimension two.

- Lemma 2.6 Let A be a finite dimensional absolute valued algebra containing a nonzero central element a, then
- $x^2 = -||x||^2 a^2$, for all $x \in \{a\}^{\perp} = \{x \in A, (x/a) = 0\}$
- $xy + yx = -2(x/y)a^2$ for all $x, y \in \{a\}^{\perp}$
- $(xy/yx) = -(x^2/y^2)$ for all $x, y \in \{a\}^{\perp}$ such that (x/y) = 0.

Proof. 1) By theorem 2.2, the norm of A comes from an inner product and we assume that ||x|| = 1 (where $x \in \{a\}^{\perp}$), we have :

$$||x^{2} - a^{2}||^{2} = ||x - a||^{2}||x + a||^{2} = 2$$

That is $(x^2/a^2)=-1\,,$ which imply that $\|x^2+a^2\|^2=0$ therefore $x^2=-a^2$

2) It's clear.

3) We get this identity by simple linearization of the identity $||x^2|| = ||x||^2$.

Lemma 2.7 Let A be a four-dimensional absolute valued algebra containing a commutative sub-algebra B of dimension two. If x, y ∈ B[⊥], then xy ∈ B.

Proof. According to Rodriguez's theorem [7], B is

isomorphic to \mathbb{C} or \mathbb{C} . Then there exist an idempotent e and an element i such that B = A(e, i), where $i^2 = -e$ and ei = ie $= \pm i$. Let $F = \{e, i, j, k\}$ be an orthonormal basis of A, as A is a division algebra then L_j is bijective, so there exist j' such that i = jj'. We have $(j'/e) = (jj'/je) = (i/je) = \pm$ $(ie/je) = \pm (i/j) = 0$ and $(j'/i) = (jj'/ji) = (i/ji) = \pm$ $\pm (ei/ji) = \pm (e/j) = 0$ so $j' = \alpha j + \beta k$, with $\alpha, \beta \in \mathbb{R}$. Consequently we have $i = jj' = \alpha e + \beta jk$, which mean that $jk \in B$. Finally if we pose x = p j + q k and y = p' j + q' k with $p, q, p', q' \in \mathbb{R}$. We have $x y = (pp' + qq')e + (pq' - qp') jk \in B (jk = -kj)$.

➤ Lemma 2.8 Let A be a four-dimensional absolute valued algebra containing a nonzero central element a and commutative sub-algebra B, then $a \in B$.

Proof. By Rodriguez's theorem [7], B is isomorphic to

 \mathbb{C} or \mathbb{C} . That is, there exist an idempotent e and an element i such that B = A(e, i), where $i^2 = -e$ and $ie = ei = \pm i$. We distinguish the two following cases:

- If (a/e) = 0, by lemma 2.6, we have a² =−e, so a = ± i ∈ B (ai = ia and i² = −e).
- If $(a/e) \neq 0$, we put c = a (a/e) e, this imply that (c/e) = 0.

Since ce = ec, then $c^2 = - \|c\|^2 e = \|c\|^2 i^2$ which means that $c = \pm \|c\|$ i (ci = ic), thus $a = c + (a/e)e \in B$. We can put $a = \lambda e + \mu i$, with $\lambda, \mu \in \mathbb{R}$ ($\lambda^2 + \mu^2 = 1$) and let $b = \mu e - \lambda i \in B$ and $j \in A$ two elements orthogonal to a.

As aj = ja, we get $\lambda ej + \mu ij = \lambda je + \mu ji$ (1)

Using lemma 2.6, we have bj + jb = 0. This imply

 $\mu ej + \lambda ij = -\mu je - \lambda ji$ (2)

From the equalities (1) and (2), we obtain $2\lambda \ \mu \ ej + ij = (\mu^2 - \lambda^2) \ ji \quad (\lambda^2 + \mu^2 = 1)$

Therefore $(2\lambda \mu ej + ij/ij) = ((\mu^2 - \lambda^2) ji/ij)$

Applying lemma 3, we get

 $1 = (\mu^2 - \lambda^2)(ji/ij) = -(\mu^2 - \lambda^2)(j^2/i^2)$ (3)

Since $a^2 = (\lambda^2 - \mu^2)e \pm 2\lambda \mu i$, $i^2 = -e$ and $j^2 = -a^2$

then the equality (3) gives $(\lambda^2 - \mu^2)^2 = 1$. Hence $\lambda^2 - \mu^2 = 1$ or $\lambda^2 - \mu^2 = -1$, as $\lambda^2 + \mu^2 = 1$, then $\lambda^2 = 1$ (because, $\lambda = (a/e) \neq 0$). That is, $a = \pm e \in B$.

We give some conditions implying the existence of two-dimensional sub-algebras.

- Proposition 2.9 Let A be a four-dimensional absolute valued algebra containing a nonzero central element a, then the following assertions are equivalent:
 - $(a^2a)a = (a^2)^2$

A contains a commutative sub-algebra B of dimension two.

Proof. 1) \Rightarrow 2) If (a/a²) = 0, by lemma 2.6, we have $(a^2)^2 = -a^2$, so $a^2a = -a$ which means that B := A(a, a²) is two dimensional commutative sub-algebra of A.

- If a and a² linearly dependent, then a is a nonzero central idempotent. Therefore A contains a commutative sub-algebra of dimension two (lemma 2.5),
- we assume that $(a/a^2) = m \neq 0$ such that $m^2 \neq 1$. We pose $d = a^2 ma$, this imply that (d/a) = 0, using lemma 2.6, we have $d^2 = -||d||^2a^2 = -(1 m^2)a^2$ which means that

$$-(1 - m^{2})a^{2} = (a^{2} - ma)^{2} = (a^{2})^{2} - 2ma^{2}a + m^{2}a^{2}$$

So $-(1 - m^{2})a^{2} = (a^{2}a)a - 2ma^{2}a + m^{2}a^{2}$
Hence $-(1 - m^{2})a = a^{2}a - 2ma^{2} + m^{2}a = da - md$

Therefore $ad = da = -(1 - m^2)a + md$ this means that A(a, d) is a two-dimensional commutative sub-algebra of A. 2) \Rightarrow 1) Let B be a two-dimensional commutative sub-algebra of A, according to Rodriguez's theorem [7] B is

isomorphic to \mathbb{C} or \mathbb{C} . That is B:= A(e, i) such that ie = ei = $\pm i$ and i^2 = -e, where e is an idempotent of A. The lemma 2.8 proves that $a = \pm e$ or $a = \pm i$ and we have the two following cases:

• B is isomorphic to \mathbb{C} , hence a verifies the equality (1)

- B is isomorphic to C, then a = ±e satisfies the identity (1).
- But since ie = ei = -i and $i^2 = -e$, thus $(a^2a)a \neq (a^2)^2$.
- ➢ Remark 2.10 Let A be a four-dimensional absolute valued algebra containing a nonzero central element a and commutative sub-algebra B isomorphic to $\overset{*}{\mathbb{C}}$. If (a²a) a = (a²)², then a is a central idempotent of A

III. MAIN RESULTS

Theorem 3.1 Let A be a four-dimensional absolute valued algebra containing a nonzero central element a and commutative sub-algebra B = A(e, i), where i² = -e, ie = ei = ± i, then A is isomorphic to A₁, A₂, A₃, A₄, B₁, B₂, B₃ or B₄.

Proof. According to lemma 1, we have the following cases:

- $a = \pm e$ is a central idempotent of A, by theorem 2.3, A is isomorphic to A_1, A_2, A_3 or A_4 .
- 2) a = ± i is a central element of A. Let F = {e, i, j, k} be an orthonormal basis of A, since j²= k² = -i² = e and jk = -kj ∈ B (lemma 2.6), then (jk/e) = (jk/j²) = (k/j) = 0 hence jk = ± i.
- The set {e, i, ij, ik} is an orthonormal basis of A, then
 (ej/e) = (ej/e²) = (e/j) = 0, (ej/i) = ± (ej/ei) = ± (j/i) = 0
 and (ej/ij) = (e/j) = 0.
- Which imply that ej = ±jk, similarly (ek/e) = (ek/e²) = (e/k) = 0, (ek/i) = ± (ek/ei) = ±(k/i) = 0 and (ek/ik) = (e/k) = 0 Then ek = ± ij. According to lemma 3, (ej/je) = -(e²/j²) = (e/i²) = -1 hence ej = -je. Also (ek/ke) = -(e²/k²) = (e/i²) = -1, thus ek = -ke. We assume that j k = i and we distinguish the following cases:

B isomorphic to \mathbb{C} , we have ei = ie = i and $i^2 = -e$. So ej = ik and ek = -ij. Indeed, if ej = -ik then

$$(e+k)j=ej+kj=-ik-jk=-ik-i=-ki-ei=-(e+k)i$$

Which gives i = -j (A has no zero divisors), contradiction. Moreover, if ek = ij then

$$(e+j)k = ek + jk = ij + i = ji + ei = (e+j)i$$

The last gives k = i, which is absurd. We pose $ej = \alpha j + \beta k$ ($\alpha^2 + \beta^2 = 1$), then $ik = ki = \alpha e + \beta j$. And $ek = \lambda j + \mu k$, where $\lambda^2 + \mu^2 = 1$. Since (ek/ej) = 0, we get $\alpha \lambda + \beta \mu = 0$. So

$$(\alpha \mu - \beta \lambda)^2 = \alpha^2 \mu^2 - 2\alpha \mu \beta \lambda + \beta^2 \lambda^2$$

= $\alpha^2 \mu^2 + 2\alpha^2 \lambda^2 + \beta^2 \lambda^2$
= $\alpha^2 (\mu^2 + \lambda^2) + \lambda^2 (\alpha^2 + \beta^2)$
= $\alpha^2 + \lambda^2$

On the other hand we have.

$$\begin{aligned} (\alpha \ \mu - \beta \ \lambda)^2 &= \alpha^2 \ \mu^2 - 2\alpha \ \mu \ \beta \ \lambda + \beta^2 \ \lambda^2 \\ &= \alpha^2 \ \mu^2 + 2 \ \beta^2 \ \mu^2 + \beta^2 \ \lambda^2 \\ &= \mu^2 \ (\alpha^2 + \beta^2) + \beta^2 \ (\mu^2 + \lambda^2) \\ &= \mu^2 + \beta^2 \end{aligned}$$

So $\alpha^2 + \lambda^2 = \mu^2 + \beta^2 = 2 - (\alpha^2 + \lambda^2)$, which means that $\alpha^2 + \lambda^2 = 1$ and consequently $\alpha \mu - \beta \lambda = \pm 1$.

*) If $\alpha \mu - \beta \lambda = 1$, then

 $\begin{array}{l} \mu = \mu \ (\alpha \ \mu - \beta \ \lambda) = \alpha \ \mu^2 - \beta \ \lambda \ \mu = \alpha \ \mu^2 + \alpha \ \lambda^2 = \alpha \\ And \quad \lambda = \lambda \ (\alpha \ \mu - \beta \ \lambda) = \alpha \ \mu \ \lambda - \beta \ \lambda^2 = - \ \beta \ \mu^2 - \beta \ \lambda^2 = - \ \beta \end{array}$

Therefore the multiplication table of A is given by:

B ₁	e	i	j	k
e	e	i	$\alpha j + \beta k$	$-\beta j + \alpha k$
i	i	-e	$-\beta j + \alpha k$	$\alpha j + \beta k$
j	-αj – βk	$-\beta j + \alpha k$	e	i
k	βj – αk	$\alpha j + \beta k$	—i	e

**) If $\alpha \mu - \beta \lambda = -1$, then

 $\mu = -\mu (\alpha \mu - \beta \lambda) = -\alpha \mu^2 + \beta \lambda \mu = -\alpha \mu^2 - \alpha \lambda^2 = -\alpha$ And $\lambda = -\lambda (\alpha \mu - \beta \lambda) = -\alpha \mu \lambda + \beta \lambda^2 = \beta \mu^2 + \beta \lambda^2 = \beta$

Therefore the multiplication table of A is given by:

B ₂	е	i	j	k
e	e	i	$\alpha j + \beta k$	$\beta j - \alpha k$
i	i	-е	βj – αk	$\alpha \mathbf{j} + \beta \mathbf{k}$
j	-αj – βk	βj – αk	e	i
k	$-\beta j + \alpha k$	$\alpha \mathbf{j} + \beta \mathbf{k}$	—i	e

ii) B isomorphic to \mathbb{C} , we have ei = ie = -i, $i^2 = -e$ and jk = i. If we define a new multiplication on A by $x * y = \overline{x} \, \overline{y}$, we obtain an algebra $\stackrel{*}{A}$ which contains a sub-algebra isomorphic to \mathbb{C} . Therefore $\stackrel{*}{A}$ has an orthonormal basis which the multiplication tables are given previously. Consequently, the multiplication tables of the elements of the base F of A are given by :

B ₃	e	i	J	k
e	e	—i	-αj – βk	$\beta j - \alpha k$
i	—i	-e	$-\beta j + \alpha k$	$\alpha j + \beta k$
j	$\alpha \mathbf{j} + \beta \mathbf{k}$	$-\beta j + \alpha k$	e	i
k	$-\beta j + \alpha k$	$\alpha j + \beta k$	— i	e

and

B 4	e	i	j	k
e	e	—i	$-\alpha j - \beta k$	$-\beta j + \alpha k$
i	—i	-e	$\beta j - \alpha k$	$\alpha j + \beta k$
j	$\alpha j + \beta k$	βj – αk	e	i
k	$\beta j - \alpha k$	$\alpha j + \beta k$	—i	e

Theorem 3.2 Let A be a four-dimensional absolute valued algebra containing a nonzero central element a such that (a²a)a = (a²)², then A is isomorphic to A₁, A₂, A₃, A₄, B₁ or B₂

Proof. According to proposition 2.9, A contains a

commutative sub-algebra B isomorphic to \mathbb{C} or \mathbb{C} . By remark 2.10 and theorem 3.1, A is isomorphic to A₁, A₂, A₃, A₄, B₁ or B₂.

IV. CONCLUSION

We have the following two classical results:

- Every four-dimensional real absolute valued algebra containing a nonzero central idempotent is isomorphic to A₁, A₂, A₃ or A₄
- If A is a four-dimensional real absolute valued algebra containing a nonzero central idempotent, then A contains a sub-algebra of dimension two. Based on the findings of this article, the following conclusions can be drawn:
- In general, if A is a four-dimensional real absolute valued algebra containing a nonzero central element, then, A is isomorphic to A₁, A₂, A₃, A₄, B₁, B₂, B₃ or B₄.
- Note that, central idempotent is a central element. The reciprocal case does not hold in general, and the counter example is given (B₁ and B₂).
- We give some conditions implying that these new algebras having sub-algebras of dimension two. We show, that a four-dimensional real absolute valued algebra containing a nonzero central element a and having sub-algebra of dimension two if and only if $(a^2a)a = (a^2)^2$.

In future work, it is intended to classify all four dimensional real absolute valued algebra containing a nonzero central element.

ACKNOWLEDGMENT

The authors express their deep gratitude to the referee for the carefully reading of the manuscript and the valuables comments that have improved the final version of the same.

REFERENCES

- [1]. A. A. Albert, Absolute valued real algebras, Ann. Math, 48 (1947), 405-501.
- [2]. F. Hirzebruch, M. Koecher and R. Remmert, Numbers. Springer Verlag (1991).
- [3]. M. L. El-Mallah, On finite dimensional absolute valued algebras satisfying (x, x, x) =0. Arch. Math. 49 (1987), 16-22.

- [4]. EL-Mallah, Absolute valued algebras containing a central idempotent. J. Algebra. 128 (1990), 180-187. 108.
- [5]. A. Moutassim and M. Benslimane, Four dimensional absolute valued algebras containing a nonzero central idempotent or with left unit. int. J. Algebra, Vol 10, 2016, no. 11, 513-524.
- [6]. M. I. Ramirez, On four-dimensional absolute valued algebras, Proceedings of the International Conference on Jordan Structures (Malaga, 1997), univ. Malaga, Malaga, (1999), 169-173.
- [7]. A. Rodriguez, Absolute valued algebras of degree two. In Non-associative Algebra and its applications (Ed. S. Gonzalez), Kluwer Academic Publishers, Dordrecht-Boston-London (1994), 350-356.
- [8]. A. Rodriguez, Absolute-valued algebras, and absolutevaluable Banach spaces, Advanced Courses of Mathematical Analysis I, World Sci. Publ. Hackensack, NJ, 2004, 99-155.
- [9]. K. Urbanik and F. B. Wright, Absolute valued algebras. Proc. Amer. Math. Soc. 11 (1960), 861-866.