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I. INTRODUCTION  

 

Let A  be a non-necessarily associative real algebra 

which is normed as real vector space. We say that a real 

algebra is a pre-Hilbert algebra, if it’s norm ‖. ‖ come from 

an inner product  (./. ), and it’s said to be absolute valued 

algebras, if it’s norm satisfy the equality ‖ab‖ = ‖a‖‖b‖, for 

all a, b ∈ A . Note that, the norm of any absolute valued 

algebras containing a nonzero central idempotent (or finite 

dimensional) comes from an inner product [3] and [4] . In 

1947 Albert proved that the finite dimensional unital absolute 

valued algebras are classified by  ℝ, ℂ, H and O , and that 

every finite dimensional absolute valued algebra has 

dimension 1, 2, 4 or 8 [1].  Urbanik and Wright proved in 

1960 that all unital absolute valued algebras are classified by 

ℝ, ℂ, H and O [9]. It is easily seen that the one-dimensional 

absolute valued algebras are classified by ℝ, and it is well-

known that the two-dimensional absolute valued algebras are 

classified by ℂ, ℂ∗,  *ℂ  or ℂ
∗

 (the real algebras obtained by 

endowing the space ℂ with the product x ∗ y = x̅y, x ∗ y =
xy̅, and  x ∗ y = x̅ y̅  respectively) [7]. The four-dimensional 

absolute valued algebras have been described by M.I. 

Ramirez Alvarez in 1997 [5]. The problem of classifying all 

four (eight)-dimensional absolute valued algebras seems still 

to be open. 
    

In 2016 [5], we classified all four-dimensional absolute 

valued algebras containing a nonzero central idempotent and 

we also proved such an algebra contains a commutative sub-

algebra of dimension two. Here (theorems 3.1 and 3.2) we 

extend this result to more general situation. Indeed, Let A be 

a four-dimensional absolute valued algebra containing a 

nonzero central element a.  If A has a commutative sub-

algebra of dimension two, then A  is isomorphic to a new 

absolute valued algebras of dimension four. We also show, in 

proposition 2.9, that A contains a sub-algebra of dimension 

two if and only if (a2a)a = (a2)2. We denote that a central 

idempotent is central element, the reciprocal does not hold in 

general, and the counter example is given (theorems 3.1 and 

3.2).  

    
In section 2 we introduce the basic tools for the study of 

four-dimensional absolute valued algebras. We also give 

some properties related to central element satisfying some 

restrictions on commutativity (lemmas 2.6, 2.7, 2.8 and 

proposition 2.9). Moreover, the section 3 is devoted to 

construct, by algebraic method, some new class of the four-

dimensional absolute valued algebras having commutative 

sub-algebras of dimension two, namely A1, A2, A3, A4, B1, 

B2, B3 and B4. The paper ends with the following main 

results:                                              

 

 Theorem 3.1 Let A be a four-dimensional absolute 
valued algebra containing a nonzero central element a 

and commutative sub-algebra B = A(e, i) , where i2 = 

−e, ie = ei = ± i, then A is isomorphic to A1, A2, A3, A4, 

B1, B2, B3 or B4 .   

                                               

 Theorem 3.2 Let A be a four-dimensional absolute 

valued algebra containing a nonzero central element a 

such that  (a2a)a = (a2)2, then A is isomorphic to A1, A2, 

A3, A4, B1 or B2 .  

                                                                                                                            

II. NOTATION AND PRELIMINARIES RESULTS 
 

In this paper all the algebras are considered over the 

real numbers field   ℝ.  

  

 Definition 2.1 Let 𝐵 be an arbitrary algebra. 

  

 B is called a normed algebra (respectively, absolute 

valued algebra) if it is endowed with a space norm: ‖ . ‖ 

such that ‖xy‖ ≤ ‖x‖‖y‖ (respectively, ‖xy‖ = ‖x‖‖y‖, 

for all x, y ∈ B). 
 B is called a division algebra if the operators Lx and Rx 

of left and right multiplication by x are bijective for all             

x ∈ B ∖ {0}.   

 B is called a pre-Hilbert algebra if it is endowed with a 

space norm comes from an inner product (./.) such that 
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(./. ) ∶  B × B ⟶  ℝ 

 

(x, y) ⟼  
1

4
(‖x + y‖2 − ‖x − y‖2) 

 

The most natural examples of absolute valued algebras 

are ℝ, ℂ, H (the algebra of Hamilton quaternion) and O (the 

algebra of Cayley numbers) with norms equal to their usual 

absolute values [2] and [8]. The algebras by ℂ∗,  *ℂ and ℂ
∗

 

(obtained by endowing the space by ℂ  with the products 

defined by x ∗ y = x̅y,   x ∗ y = xy,̅ and x ∗ y = x̅ y̅  

respectively) where x →  x̅ is the standard conjugation of  ℂ. 

Note that the algebras ℂ and ℂ
∗

  are the only two-dimensional 

commutative absolute valued algebras. 

                                                                                                                                                                                                          

We need the following relevant results: 

 

 Theorem 2.2 [3] The norm of any finite dimensional 

absolute valued algebra comes from an inner product.                            
 

 Theorem 2.3 [4] The norm of any absolute valued 

algebra containing a nonzero central idempotent comes 

from an inner product.                                                  

 

 Theorem 2.4 [5] Let A be a four-dimensional absolute 

valued algebra containing a nonzero central idempotent 

e, then A is isomorphic to A1, A2, A3 or A4 defined by:  

(α2+ β2 =1) 

 

 

A2 e i j k 

e e i αj + βk −βj + αk 

i i −e −βj + αk −αj − βk 

j αj + βk βj − αk −e i 

k −βj + αk αj + βk −i −e 

 

 

A4 e i j k 

e e i αj + βk −βj + αk 

i i −e −βj + αk −αj − βk 

j αj + βk βj − αk −e i 

k −βj + αk αj + βk −i −e 

 

 Lemma 2.5 [5] Let A be a finite dimensional absolute 

valued algebra containing a nonzero central idempotent 

e, then A contains a commutative sub-algebra of 

dimension two. 

 

 Lemma 2.6 Let 𝐴 be a finite dimensional absolute 
valued algebra containing a nonzero central element  

𝑎, then  

  

 x2 =  −‖x‖2a2, for all x ∈ {a}⊥:      = {x ∈A, (x/a) = 0}  

  

 xy + yx = −2(x/y)a2  for all x, y ∈ {a}⊥  

   

 (xy/yx) = −(x2/y2) for all x, y ∈ {a}⊥ such that (x/y) = 0.                                                                                                              

 

Proof. 1)  By theorem 2.2, the norm of A comes from 

an inner product and we assume that ‖x‖ = 1 (where  x ∈
{a}⊥),  we have : 

 
‖x2  − a2‖2 = ‖x −  a‖2‖x +  a‖2 = 2 

 
That is (x2/a2)  =  −1 , which imply that  ‖x2 +

a2‖2 = 0  therefore  x2 = −a2 

 
2) It’s clear.  

 

3) We get this identity by simple linearization of the 

identity ||x2|| = ||x||2.  

          
 Lemma 2.7 Let A be a four-dimensional absolute valued 

algebra containing a commutative sub-algebra B of 

dimension two. If x, y ∈ 𝐵⊥, then xy ∈ B.  

                                                                                                                                                                                                                   

Proof. According to Rodriguez’s theorem [7], B is 

isomorphic to ℂ  or ℂ
∗

. Then there exist an idempotent e and 

an element  i  such that B = A(e, i), where i2 = − e and  ei = ie 

= ± i.                                                                                                                          Let F = {e, i, j, k} be an orthonormal basis of A, as A is 

a division algebra then Lj is bijective, so there exist j′ such 

that i = jj′. We have                      (j′/e) = (jj’/je) = (i/je) = ± 

(ie/je) = ± (i/j) = 0 and                         (j′/i) = (jj’/ji) = (i/ji) = 

± (ei/ji) = ± (e/j) = 0                                                                                                             

so  j′ = αj + βk,  with      α, β ∈ ℝ.  Consequently we have              

i = jj′ = αe + β jk, which mean that jk ∈ B. Finally if we pose   

x = p j + q k and y = p′ j + q′ k   with p, q, p′, q′ ∈ ℝ. We 

have                                                                                                                                       x y = (pp′ + qq′)e + (pq′ − qp′) jk ∈ B (jk = −kj). 

 

 Lemma 2.8 Let A be a four-dimensional absolute valued 

algebra containing a nonzero central element  a  and 

commutative sub-algebra B, then a ∈ B. 

                                                                                                                                                                                                                

Proof.  By Rodriguez’s theorem [7], B is isomorphic to 

ℂ  or ℂ
∗

. That is, there exist an idempotent e and an element i 

such that  B = A(e, i), where i2 = −e and  ie = ei = ±i . We 

distinguish the two following cases: 

 

 If (a/e) = 0, by lemma 2.6, we have a2 =−e, so a = ± i ∈ B  

(ai = ia and i2 = −e ). 

 If (a/e) ≠ 0, we put c = a – (a/e) e, this imply that   (c/e) = 

0. 

 

Since ce = ec, then   c2 = − ∥c∥2e = ∥c∥2 i2 which means 

that     c =±∥c∥ i (ci = ic), thus a = c + (a/e)e ∈ B. We can put             

a = λ e +μ i, with  λ, μ ∈  ℝ   (λ2 + μ2= 1) and let                        

b = μ e – λ i ∈ B  and  j ∈ A two elements orthogonal to  a.   

A1 e i j k 

e e i αj + βk −βj + αk 

i i −e −βj + αk −αj − βk 

j αj + βk βj − αk −e i 

k −βj + αk αj + βk −i −e 

A3 e i j k 

e e i αj + βk −βj + αk 

i i −e −βj + αk −αj − βk 

j αj + βk βj − αk −e i 

k −βj + αk αj + βk −i −e 

http://www.ijisrt.com/


Volume 8, Issue 3, March – 2023                              International Journal of Innovative Science and Research Technology                                         

                                                      ISSN No:-2456-2165 

 

IJISRT23MAR123                                                               www.ijisrt.com                                                                                262    

As aj = ja, we get λ ej + μ ij = λ je +μ ji     (1)                                            

 
Using lemma 2.6, we have bj + jb = 0. This imply      

 

μ ej + λ ij = −μ je − λ ji                     (2)                             

 

From the equalities (1) and (2), we obtain                                               

2λ μ ej + ij = (μ2 – λ2) ji    (λ2 +μ2= 1)                                                     

 

Therefore            (2λ μ ej + ij/ij) = ((μ2 – λ2) ji /ij)  

                                                                                               

Applying lemma 3, we get  

    

1 = (μ2 – λ2)(ji/ ij) = – (μ2 – λ2)(j2/ i2)                  (3)  
 

Since         a2= (λ2 – μ2)e ± 2λ μ i,  i2 = – e  and  j2 = – a2   

                                                                 

then the equality (3) gives  (λ2 – μ2)2 = 1. Hence   λ2 – μ2 = 1 

or λ2 – μ2 = – 1, , as  λ2 + μ2 = 1, then λ2 = 1  (because,  λ = 

(a/e) ≠ 0). That is, a = ± e ∈ B. 

  

We give some conditions implying the existence of 

two-dimensional sub-algebras. 

                                                                   
 Proposition 2.9 Let A be a four-dimensional absolute 

valued algebra containing a nonzero central element a, 

then the following assertions are equivalent:  

 

 (a2a)a = (a2)2  

 

A contains a commutative sub-algebra B of dimension 

two. 

 

Proof.  1) ⇒ 2) If (a/a2) = 0, by lemma 2.6, we have 

(a2)2= −a2, so a2a = − a which means that B := A(a, a2) is two 
dimensional commutative sub-algebra of A.  

                                                                                                                                                                 

 If  a and  a2  linearly dependent, then a is a nonzero 

central idempotent. Therefore A contains a commutative 

sub-algebra of dimension two (lemma 2.5),  

 we assume that (a/a2) = m ≠ 0 such that m2 ≠ 1. We pose 

d = a2 − ma, this imply that (d/a) = 0, using  lemma 2.6, 

we have d2 = −∥d∥2a2 = −(1 – m2)a2 which means that                            

 

− (1 – m2)a2 = (a2 − ma)2 = (a2)2 − 2ma2a + m2a2                                                                                          

So    − (1 – m2)a2 = (a2a)a− 2ma2a + m2a2                                                                                                        
Hence      − (1 – m2)a = a2a − 2ma2 +m2a = da – md 

 

Therefore   ad = da = −(1 – m2)a + md  this means that 

A(a, d) is a two-dimensional commutative sub-algebra of A.                                                                                                                             

2) ⇒ 1) Let B be a two-dimensional commutative sub-

algebra of A, according to Rodriguez’s theorem [7] B is 

isomorphic to ℂ or ℂ
∗

 . That is B:= A(e, i) such that ie = ei = 

±i and i2= −e, where e is an idempotent of A. The lemma 2.8 

proves that       a = ±e or a = ±i   and we have the two 

following cases: 

                                                                                                                                                   

 B is isomorphic to ℂ, hence  a verifies  the equality (1)                                                                                                                     

 B is isomorphic to ℂ
∗

, then a = ±e satisfies the identity 

(1).  

 

 But since ie = ei = −i and i2 = −e, thus (a2a)a ≠ (a2)2.   

                                                                                                                                                                                

 Remark 2.10 Let A be a four-dimensional absolute valued 

algebra containing a nonzero central element a and 

commutative sub-algebra B isomorphic to ℂ
∗

. If (a2a) a = 

(a2)2, then a is a central idempotent of A 

 

III. MAIN RESULTS  

 
 Theorem 3.1 Let A be a four-dimensional absolute 

valued algebra containing a nonzero central element a 

and commutative sub-algebra B = A(e, i) , where i2 = − 

e, ie = ei = ± i, then A is isomorphic to  A1, A2, A3, A4, 

B1, B2, B3 or B4. 

                                                  

Proof.  According to lemma 1, we have the following 

cases:  

 

 a = ± e is a central idempotent of A, by theorem 2.3, A is 

isomorphic to A1, A2, A3 or A4. 

 

 2) a = ± i  is a central element of A. Let F = {e, i, j, k} be 
an orthonormal basis of A, since j2= k2 = −i2 = e and  jk = 

−kj ∈ B (lemma 2.6), then (jk/e) = (jk/j2) = (k/j) = 0 

hence jk = ± i.  
 

 The set {e, i, ij, ik} is an orthonormal basis of A, then                                                                           

(ej/e) = (ej/e2) = (e/j) = 0, (ej/i) = ± (ej/ei) = ± (j/i) = 0                

and  (ej/ij) = (e/j) = 0.  
 

 Which imply that   ej = ±jk, similarly                                                                                                           

(ek/e) = (ek/e2) = (e/k) = 0, (ek/i) = ± (ek/ei) = ±(k/i) = 0           

and (ek/ik) = (e/k) = 0 Then  ek = ± ij. According to 

lemma 3, (ej/je) = −(e2/j2) = (e/i2) = −1  hence ej = −je.                        

Also (ek/ke) = −(e2/k2) = (e/i2) = −1, thus  ek = −ke. We 

assume that  j k = i and we distinguish the following 

cases:  
                                                                                                                           

B isomorphic to ℂ, we have ei = ie = i  and i2 = −e. So 
ej = ik and ek = −ij. Indeed, if ej = −ik then                                         

 

(e + k)j = ej + kj = −ik − jk = −ik – i = − ki – ei = − (e + k)i 

  

Which gives i = − j   (A has no zero divisors), 

contradiction. Moreover, if ek = ij then 

 

(e + j)k = ek + jk = ij + i = ji + ei = (e + j)i 

 

The last gives k = i, which is absurd. We pose ej = αj + 

βk   (α2 + β2 = 1), then  ik = ki = αe + βj. And ek = λj + μk, 

where   λ2+ μ2 =1. Since (ek/ej) = 0, we get  α λ+ β μ = 0. So 
                           

(α μ − β λ)2 = α2 μ2 − 2α μ β λ + β2 λ2 

= α2 μ2 + 2α2 λ2 + β2 λ2 

= α2 (μ2 + λ2) + λ2 (α2 + β2) 

= α2 + λ2 
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On the other hand we have. 
                                                     

(α μ − β λ)2 = α2 μ2 − 2α μ β λ + β2 λ2 

= α2 μ2 + 2 β2 μ2 + β2 λ2 

= μ2 (α2 + β2) + β2 (μ2+ λ2) 

= μ2 + β2  

 

So α2+λ2 = μ2+β2 = 2 – (α2+ λ2), which means that α2+ 

λ2 = 1 and consequently α μ − β λ = ± 1. 

 

*) If α μ − β λ = 1, then  

   

μ = μ (α μ − β λ) = α μ2 − β λ μ = α μ2 + α λ2 = α 
And    λ = λ (α μ − β λ) = α μ λ − β λ2 = − β μ2 − β λ2 = − β 

 

Therefore the multiplication table of A is given by:  

 

                                                                                                                            

**) If α μ − β λ = −1, then   

 

μ = −μ (α μ − β λ) = −α μ2 + β λ μ = −α μ2 − α λ2 = −α 

And   λ = −λ (α μ − β λ) = −α μ λ + β λ2 = β μ2 + β λ2 = β 

 

Therefore the multiplication table of A is given by: 

  

 

ii) B isomorphic to ℂ
∗

, we have  ei = ie =− i, i2 = −e and 

jk = i. If we define a new multiplication on A by  𝑥 ∗  𝑦 =

 𝑥̅ 𝑦̅,  we obtain an algebra A
∗

 which contains a sub-algebra 

isomorphic to ℂ. Therefore A
∗

 has an orthonormal basis which 

the multiplication tables are given previously. Consequently, 

the multiplication tables of the elements of the base F of A 

are given by : 

 

 

and 

                                                                                  

 

 Theorem 3.2 Let A be a four-dimensional absolute 
valued algebra containing a nonzero central element a 

such that     (a2a)a = (a2)2, then A is isomorphic to A1, 

A2, A3, A4, B1 or B2  

 

Proof.  According to proposition 2.9, A contains a 

commutative sub-algebra B isomorphic to ℂ or ℂ
∗

. By remark 

2.10 and theorem 3.1, A is isomorphic to A1, A2, A3, A4, B1 

or B2. 

                                                                                                                                                                                              

IV. CONCLUSION 

 

We have the following two classical results: 

                                                                                                                                       

 Every four-dimensional real absolute valued algebra 

containing a nonzero central idempotent is isomorphic to 

A1, A2, A3 or A4  
 

 If  A is a four-dimensional real absolute valued algebra 

containing a nonzero central idempotent, then A contains 
a sub-algebra of dimension two. Based on the findings of 

this article, the following conclusions can be drawn:  

                                                                             

 In general, if A is a four-dimensional real absolute valued 

algebra containing a nonzero central element, then, A is 

isomorphic to A1, A2, A3, A4, B1, B2, B3 or B4 .  

                                                                                                                                                             

 Note that, central idempotent is a central element. The 

reciprocal case does not hold in general, and the counter 

example is given (B1 and B2).  

                                                                                                                                                                                 

 We give some conditions implying that these new 

algebras having sub-algebras of dimension two. We 
show, that a four-dimensional real absolute valued 

algebra containing a nonzero central element   a  and 

having sub-algebra of dimension two if and only if 

(a2a)a = (a2)2. 

                                                                                                                                                                     

In future work, it is intended to classify all four 

dimensional real absolute valued algebra containing a nonzero 

central element. 
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