
Volume 8, Issue 6, June – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUN898 www.ijisrt.com 2354

A Case Study of How Test-Driven Development

Improves Software Quality

1Tharukshi Wickramasinghe
1Department of Information Technology

Sri Lanka Institute of Information Technology

Malabe, Sri Lanka

2Senal Walpola
2Department of Information Technology

Sri Lanka Institute of Information Technology

Malabe, Sri Lanka

3Tharindu Siriwardana

3Department of Information Technology Sri Lanka Institute

of Information Technology

Malabe, Sri Lanka

4Dilshan De Silva
4Department of Computer Science and Software

Engineering Sri Lanka Institute of Information Technology

Malabe, Sri Lanka

Abstract:- The purpose of this study includes the Test-

driven development (TDD) software development

approach, which involves developing tests before

implementing a feature into a software Application.

With comparisons to Test Last Development (TLD), this

study is focused on examining the effects of TDD on the

productivity and quality of internal and external

software. Results revealed an improvement in the quality

of the internal software and a significant improvement

in the quality of the external software. In general, TDD

seems to result in the development of software that is

more modular, simpler, and more tested. To properly

comprehend how TDD affects software development,

refer to the case study provided below.

Keywoeds:- Test-Driven Development (TDD), Software

Quality, Software Testing, Software Development, Test.

I. INTRODUCTION

Building, Releasing, and managing a more Reliable,

usable, and maintainable software application is not easy. In

order to build a well-performing application usually industry

follows Software Development Life Cycle (SDLC). In that

SDLC, testing the application which will match to the

requirements of carry a major portion of the entire

development to ensure software quality and manage future

development. Software testing is crucial since it detects

any issues or errors in the written code, allowing them to

be corrected before the software product is released. Test-

driven development (TDD) is a common agile approach in

the software development business. Before source code is

implemented, automated unit tests must be written

gradually. Initially presented as an Extreme Programming

(XP) component, it is currently utilized separately in the

industry [1]. This makes the programmer consider the

feature from various angles before writing any code for it.

Additionally, it offers tests that programmers can run to

make sure that newly added, updated, or refactored code

doesn’t disrupt any existing functionality. [2]

Even though Software Developers spend hours and

hours building the application and don’t spend much time

focusing on testing the application will directly affect the

software quality. Testing a properly defined test plan from

the be- ginning of the project will bring advantages in a few

main ways such as time to develop the properly working

product with properly defined unit testing, black box testing,

and white box testing will take less time compared to fixing

bugs when the product development phase running and for

the future use maintainability of the product also will be

increased. As well as reliability, efficiency, and usability

also can be ensured with a properly executed test plan.

Otherwise, developers would have to divide their time

between creating new functions or projects and spending

even more time fixing logical, functional, and other bugs.

Because TDD basically begins with the development of

test cases, the developer has a proper idea and knows

before beginning to develop the actual function that these

functions should pass these test cases in such a way and

This is the actual requirement of the component, etc.,

adhering to the TDD approach is much simpler for the

developer as well as the entire team. It would be much

easier for the developer to maintain their concentration

on the application development if they have a solid test

plan before creating the application. in addition to assisting

in eliminating self-doubts throughout the actual

development process.

Finally, If the Development team can release a

Properly tested and functionally verified system to

customers, it will increase their trust and satisfaction.

Therefore, the testing phase is compulsory to perform for

any kind of software if that software needs to ensure that all

the functionalities are working fine in the same way as the

requirements.

http://www.ijisrt.com/

Volume 8, Issue 6, June – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUN898 www.ijisrt.com 2355

 History and Evolution of TDD

The testing paradigms are the most obvious way that

modern TDD varies from TDD in the early computing

period. Modern TDD was streamlined through automated

testing, although early TDD was typically an

implementation of manual testing. Modern TDD was

born using the Junit tool, even if Kent Beck’s SUnit

suite is widely regarded as the pioneering TDD framework.

The website JUnit.org was founded on August 16th, 2000,

and shortly after that, on September 2nd, 2000, the NUnit

framework was registered on SourceForge. On November

25th, 2000, JavaUnit was also registered on SourceForge.

[3]

Java developers who preferred Agile or Extreme

Programming as their preferred software development

methodology were pleased with JUnit. Recently, a number

of unit testing frameworks with architectures based on Kent

Beck’s SUnit have appeared. They are collectively referred

to as the “xUnit class of tools,” and they are available for

almost all current programming languages, such as

“CUnit” for C, “CppUnit” for C++, ”RUnit” for R, etc.

 TDD Implementation

Understanding test-driven development’s definition

and practical use is crucial. TDD consists of four easy

steps.

 Write a test that fails: This implies that before

writing any code for a particular functionality, such

as a method to calculate taxes, you should first write a

test for that functionality, as well as the bare minimum

of code that will be needed to enable the test to actually

run, such as a method definition. Given that this is how

each test should start, it is the first and most crucial

stage in TDD. [4]

 Write code to allow the test to pass: The developer now

moves on to implementing the functionality needed

for the test to pass. The test is frequently run as the code

is being written to determine which portion of the code is

working. Most TDD practitioners believe that this real-

time, immediate feedback actually increases developers’

productivity. [4]

 Refactor the code (Optional): This is typically

referred to as a TDD phase that is carried out after the

test passes. Refactoring improves the clarity and

precision of the code. [4]

 For whatever functionality that the programmer or

developer wants to implement, they must go through the

preceding processes again. [4]

 Difference between Traditional Testing and TDD

The test’s first factor [5]. is the main distinction

between TDD and conventional software testing. Since the

entire code implementation is written out before any tests,

the traditional software testing paradigm uses the test last

approach, which views testing primarily as a verification

mechanism to make sure that the implementation works as

intended. The comparison between the typical testing

cycle and TDD is shown in the chart below. Here 1 shows

how the modern TDD process in testing and 2 shows how

the traditional testing process.

II. LITERATURE REVIEW

Test-driven development is a crucial aspect of the

software development approach and agile methodologies.

introduces how test cases created using the developer-first

approach impact software quality. Currently, all the QA

developers used some traditional methodologies such as

traditional test-last approaches.

Fig 1 Modern TDD

Fig 2 Traditional Testing

http://www.ijisrt.com/

Volume 8, Issue 6, June – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUN898 www.ijisrt.com 2356

In traditional test-last approaches, all dev test all the

test cases in t h e last of the software product application.

In this research measures how this traditional approach and

developer-first approach affect the software quality. In

addition to that this research paper investigated the quality

attributes for comparing the quality of the test-last and

developer-first approaches. In this research, all the attributes

are grouped as internal and external quality attributes for

the test cases. Code coverage and Mutation coverage are

used as internal quality attributes for the test cases. As

external quality attributes, they are measuring the

effectiveness of the code segment and the total number of

defects found in source code. This research papers mainly

focus on Agile methodology and how the quality improves

when changing the traditional approach to developer-first

approach. The result of this research is the experimental

evaluation of data reveals that the test-first group’s code is

of higher quality than the test-last group.

[5] The ability of test-driven development (TDD) to

raise the caliber of code has attracted a lot of interest from

both practitioners and scholars. Unit testing is crucial to

TDD even though it is largely a development practice. As a

result, it can be considered a strong substitute for the Testing

After Coding (TAC) method, which involves running unit

tests after developing the code. A research team

experimented at a Spanish software company to examine the

quality and productivity differences between these two

methodologies. The study discovered that while TDD

slowed down the entire development process, it also

improved the quality of unit testing. [5]

The ability of test-driven development (TDD) to raise

the caliber of code has attracted a lot of interest from both

practitioners and scholars. Unit testing is crucial to TDD

despite the fact that it is largely a development practice. As

a result, it can be considered a strong substitute for the

Testing After Coding (TAC) method, which involves

running unit tests after developing the code. A research team

experimented at a Spanish software company to examine the

quality and productivity differences between these two

methodologies. The study discovered that while TDD

slowed down the entire development process, it also

improved the quality of unit testing. [6] It should be

highlighted, however, that TDD has advantages beyond unit

testing since it can assist developers in identifying and

resolving possible problems early in the development cycle,

improving overall code quality and lowering maintenance

costs. The two primary research questions are the primary

focus of this study. analyzing the TDD and TAC (Test After

Coding) productivity. Researchers carried out an experiment

to assess the influence of Test-Driven Development (TDD)

and Testing After Coding (TAC) methodologies on the

accuracy and precision of unit tests. Prior to writing the

actual code, TDD involves creating unit tests to ensure

that it will work as intended. TAC, on the other hand, entails

doing unit tests following the writing of the code.

According to the study’s findings, TDD, as opposed to TAC,

produced a higher level of accuracy and precision in unit

testing. This is due to the fact that TDD enables

developers to find and fix problems early in the

development process, resulting in more accurate and exact

unit tests. TAC, on the other hand, may cause problems to

go unnoticed and not be discovered until later stages,

resulting in less accurate and precise unit tests. Overall, the

study emphasizes the advantages of utilizing TDD versus

TAC for enhancing the precision and accuracy of unit tests.

[7]

Writing unit test cases before implementing the code is

part of the Test-Driven Development (TDD) software

development technique. 24 experienced pair programmers

participated in a series of organized experiments to assess

the effect of TDD on code quality. While the other group

followed a waterfall-like process, one group used TDD to

create a small Java program. Subject to questions about

external validity, the experimental findings show that TDD

programmers produced higher-quality code as demonstrated

by the fact that they passed 18 percent more functional

black-box test cases than the control group. The TDD

programmers took 16 percent longer to do the work, though.

The findings of additional statistical research showed a

modest statistical link between the amount of time spent and

the final code quality. Notably, the control group frequently

skipped creating the necessary automated test cases after

finishing their code, raising concerns about the

effectiveness of waterfall-style approaches in encouraging

sufficient testing. This finding supports the idea that TDD

could lead to more unit testing being done in the software

industry. [8]

The effectiveness of test-driven development (TDD),

which is gaining popularity in software development, has

been assessed in the context of web-based system

development. The goal-question-metric design strategy was

used to create the study, making it simple to replicate it in

various industrial settings even with a small number of

participants. TDD had a favorable effect on software

development productivity, according to the study. In

comparison to the test-last development approach, TDD was

found to have a higher ratio of active development time

defined as the time spent writing code to total development

time. This implies that TDD motivates programmers to

produce higher-quality code more quickly, increasing

software development productivity. Overall, the results are

in favor of using TDD while creating software, especially

when creating web-based systems.

III. CASE STUDY DESIGN – METHODOLOGY

We used a survey questionnaire to gather the data for

this case study. The questionnaire will ask participants about

their experiences with TDD and non-TDD software

development processes, how they view software quality

with TDD and non-TDD, the time, cost, and effort

associated with both TDD and non-TDD software

development processes, the kinds of bugs or defects they

have encountered with TDD and non- TDD, and how they

feel about the role of automated testing in TDD. We can

effectively collect data from a wide number of people with

http://www.ijisrt.com/

Volume 8, Issue 6, June – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUN898 www.ijisrt.com 2357

various levels of software development experience by

employing a questionnaire.

The purpose of this study is to look into how Test-

Driven Development (TDD) affects the caliber of

software. Finding Software engineers with knowledge of

both TDD and non-TDD software development techniques

across diverse businesses are a key component of the study.

A survey questionnaire will be used to gather information

about participants’ experiences with TDD and non-TDD

software development processes, as well as information

about their opinions on the role of automated testing in TDD

and their perceptions of software quality, time, cost, and

effort.

By comparing the outcomes of the TDD and non-TDD

software development processes, it will be possible to

spot any changes in the software quality, time, cost, effort, or

types of bugs or defects that are found. The data will be

examined to spot patterns and trends. Using quantitative

data to back the results and participant quotations to offer a

qualitative viewpoint, the findings will be summarized and

conclusions concerning the effect of TDD on software

quality will be reached.

Based on the study’s findings, suggestions for software

development teams on how they might use TDD to raise the

quality of their work will be given. The study’s limitations,

including those related to sample size, participant choice,

and study scope, will also be explored. Finally,

recommendations for additional study will be made to build

on the study’s findings, such as looking into how TDD

affects particular business sectors or software programs.

IV. RESULT AND DISCUSSION

A software development methodology called Test-

Driven Development (TDD) places a strong emphasis on

building automated tests prior to writing actual code. Due to

its capacity to increase software quality by identifying errors

early in the development cycle, providing a safety net for

the code, and making sure that modifications to the code do

not cause new errors, TDD has grown in popularity over

time.

Investigating the effect of TDD on software quality

was the goal of our case study. A set of software engineers

who employed TDD in their development process were

given a questionnaire. The questionnaire covered a range

of TDD- related topics, including how it affects software

quality.

Our study’s findings suggest that TDD improves the

quality of software. Ninety percent of the developers said

TDD has raised the caliber of their program. This result is

in line with other research that demonstrated how TDD can

result in fewer faults in the finished product and higher

software quality. [9]

TDD can increase software quality in part because it

makes it easier to find and correct defects earlier in the

development cycle. Developers can find and correct faults

before they become significant problems by writing tests

first. As a result, the finished product has fewer flaws and is

simpler to maintain and update over time.

Additionally, our research revealed that TDD aided

developers in producing more solid and dependable

code. This is most likely a result of the safety net that TDD

offers, which catches mistakes early in the development

process and enables developers to rectify them before

they become significant problems. Over time, this results in

code that is more dependable and simpler to maintain.

In addition, TDD improved developers’ understanding

of the software’s requirements, according to our study.

Writing tests first forces developers to consider the needs of

the software more carefully, resulting in a more precise and

thorough implementation of those needs. [10]

Overall, our case study shows that TDD is a powerful

software development technique for raising the caliber of

software. The findings of our survey show that TDD can

aid in better understanding software requirements, writing

more robust and dependable code, and identifying and fixing

flaws sooner in the development process. These

advantages may result in a completed product with fewer

flaws, lower upkeep costs, and more client satisfaction.

V. CONCLUSION

As a result, our case study offers convincing proof that

Test-Driven Development (TDD) is an effective strategy for

raising the caliber of software. According to our research,

TDD enabled developers to find and correct bugs earlier

in the development cycle, leading to a final product with

fewer errors. As a result, software development projects

may see cheaper maintenance costs, higher customer

satisfaction, and ultimately, a better return on investment.

[10]

Additionally, TDD provided a safety net that catches

errors early in the development process, assisting developers

in writing more durable and dependable code. TDD also

aided developers in having a better understanding of the

software’s requirements, which resulted in a more precise

and thorough implementation of those requirements.

Overall, TDD offers many benefits for software

development projects and its impact on software quality

cannot be overstated. Our case study highlights the

importance of adopting TDD in software development

projects to ensure that the final product meets the highest

standards of quality and reliability.

http://www.ijisrt.com/

Volume 8, Issue 6, June – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUN898 www.ijisrt.com 2358

REFERENCES

[1]. W. Bissi, A. G. Serra Seca Neto, and M. C. F. P.

Emer, “The effects of test-driven development on

internal quality, external quality and productivity: A

systematic review,” Information and Software

Technology, vol. 74, pp. 45–54, 2016. [Online].

Available:https://www.sciencedirect.com/science/article/

pii/S0950584916300222

[2]. L. Crispin, “Driving software quality: How test-driven

development impacts software quality,” IEEE Software,

vol. 23, no. 6, pp. 70–71, 2006.

[3]. T. Freese, “Towards software configuration management

for test-driven development,” in Software Configuration

Management, B. Westfechtel and A. van der Hoek, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,

pp. 267–273.

[4]. J. Spacco and W. Pugh, “Helping students appreciate

test-driven development (tdd),” in Companion to the

21st ACM SIGPLAN Symposium on Object-Oriented

Programming Systems, Languages, and Applications,

ser. OOPSLA ’06. New York, NY, USA: Association

for Computing Machinery, 2006, p. 907–913. [Online].

Available: https://doi.org/10.1145/1176617.1176743

[5]. G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C. A.

Visaggio, “Evaluating advantages of test-driven

development: a controlled ex- periment with

professionals,” in Proceedings of the 2006 ACM/IEEE

international symposium on Empirical software

engineering, 2006, pp. 364–371.

[6]. George and L. Williams, “A structured experiment of

test-driven development,” Information and Software

Technology, vol. 46, no. 5, pp. 337–342, 2004, Special

Issue on Software Engineering, Applications, Practices

and Tools from the ACM Symposium on Applied

Computing 2003. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0950

584903002040

[7]. M. Siniaalto and P. Abrahamsson, “A comparative case

study on the impact of test-driven development on

program design and test coverage,” in First International

Symposium on Empirical Software Engineering and

Measurement (ESEM 2007), 2007, pp. 275–284.

[8]. Desai, D. Janzen, and K. Savage, “A survey of evidence

for test-driven development in academia,” SIGCSE

Bull., vol. 40, no. 2, p. 97–101, Jun 2008.

[Online].Available:

https://doi.org/10.1145/1383602.1383644

[9]. Janzen and H. Saiedian, “Does test-drive development

really im- prove software design quality?” IEEE

Software, vol. 25, no. 2, pp. 77– 84, 2008.

http://www.ijisrt.com/
http://www.sciencedirect.com/science/article/pii/S0950584916300222
http://www.sciencedirect.com/science/article/pii/S0950584916300222
http://www.sciencedirect.com/science/article/pii/S0950584903002040
http://www.sciencedirect.com/science/article/pii/S0950584903002040

