
Volume 8, Issue 6, June – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUN763 www.ijisrt.com 191

Web Chat Application Using MERN Stack

Shivansh Sethi

Department of School of Computing

Graphic Era Hill University, Dehradun

India

Hemesh Mahra

Department of School of Computing

Graphic Era Hill University, Dehradun

India

Abstract:- The Internet has revolutionized the way we

communicate and access information, making the world

more interconnected. The primary objective of this

project is to create a chat application using Java multi-

threading and network concepts. The application enables

users to engage in private conversations or participate in

public chat rooms, facilitating the exchange of messages

among users. Additionally, it facilitates the sharing of

various resources such as files, images, and videos. This

online chat system offers enhanced reliability and security

compared to traditional systems. The implementation

utilizes Java, multi-threading, and client-server

architecture, with a scalable design for future

enhancements.

Keywords:- REST API, WebSocket, npm (Node Package

Manager), MongoDB, Express.js, React.js.

I. INTRODUCTION

Developers worldwide are continuously striving to

improve user experience and streamline application

development processes. Web development stacks, such as
MEAN and MERN, have emerged as popular choices for

building web applications rapidly. These stacks leverage pre-

existing frameworks, including JavaScript, to simplify

development tasks. This paper focuses on the MERN stack,

which comprises MongoDB, Express.js, React, and Node.js.

By using a single programming language, JavaScript,

developers can avoid syntax errors and confusion, while

benefiting from the flexibility offered by the MERN stack.

II. REALTION TO EXTERNAL ENVIRONMENT

The chat application allows users to easily connect and
communicate with network-connected systems. By selecting

a user or system from the list, a chat form opens, enabling

seamless communication through a socket-based connection.

III. FLOWCHART

Fig. 1. Flowchart

The flowchart illustrates the step-by-step process of the

chat application. It begins with the creation of a static server

socket that binds to a specific host and port. The server listens

for incoming requests and establishes connections with
clients. Once a connection is established, the server enables

simultaneous read and write operations, allowing clients to

communicate and share resources. Finally, when the

communication is complete, the socket is closed on both the

client and server sides.

IV. METHODOLOGY

The proposed application aims to move away from a

centralized system, commonly found in applications like

Skype, towards a decentralized approach for improved

robustness and security. The use of a distributed hash table
for indexing systems allows users to create their own buddy

lists without relying on a centralized database. When a user

wants to communicate with another user, the latter acts as a

server and authenticates the client. However, measures must

be taken to prevent masquerading attacks. The proposed

application incorporates the principles of decentralization and

user authentication to address these issues.

http://www.ijisrt.com/

Volume 8, Issue 6, June – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUN763 www.ijisrt.com 192

V. ARCHITECTURE

A. SERVER

A server may be a computer dedicated to running a

server application. Organizations have dedicated computer

for server application which has to be maintained periodically

and has to be monitored continuously for traffic loads would

never let them go down which affects the company’s revenue.

Most organizations have a separate monitoring system to

keep an eye over their server so that they can find their server

downtime before its clients. These server computers accept

clients over network connections that are requested.

 The server responds back by sending responses
being requested. There are many different server applications

that vary based on their dedicated work. Some are involved

for accepting requests and performing all dedicated works

like business application servers while others are just to

bypass the request like a proxy server. These server

computers must have a faster Central processing unit, faster

and more plentiful RAM, and bigger hard disc drive. More

obvious distinctions include redundancy in power supplies,

network connections, and RAID also as Modular design.

B. CLIENT
A client is a software application code or a system that

requests another application that is running on dedicated

machine called Server. These clients need not be connected to

the server through wired communication. Wireless

communication takes place in this process. Client with a

network connection can send a request to the server.

Fig. 2. Architecture

VI. CHAT APPLICATION OR CLIENT SIDE

The chat application is a crucial component of the

overall chat architecture, providing a direct interface for users

to interact with. It consists of two main parts:

1. Chat Client Engine: This component is responsible for

managing communication with the Chat Server Engine. It

utilizes internal modules such as the Chat REST API

Client Library and the Chat Web Socket Client Library to

facilitate seamless communication between the client and

the server.

2. Chat UI: The Chat UI is responsible for presenting data

to users in a user-friendly manner. It includes components

such as the Chat Contact List UI, which displays the list
of contacts or users available for communication, and the

Chat Dialog UI, which enables users to engage in

conversations and exchange messages.

By splitting the chat application into these distinct

components, users can effectively communicate and interact

with others while having a clear and intuitive user interface to

facilitate their chat experience.

VII. DESCRIPTION

 Initially, a static server socket is created, which is then

bound to a specific host and port.

 Once the server is instantiated and the socket is bound to

the host and port, it starts listening for incoming

connections on that port. The server is designed to accept

client requests through this specific port.

 Upon starting the server, it becomes capable of accepting

requests from clients.

 On the client side, a socket is instantiated to establish a

connection with the server.

 To handle multiple client requests, a new server thread is
created using the socket, enabling the server to accept

requests from multiple clients concurrently.

 After accepting a request, the server facilitates

simultaneous read and write operations, allowing the

requesting clients to communicate with each other and

share resources.

 Once the communication is complete, both the client and

server close the socket to terminate the connection.

VIII. SCENARIOS AND OPERATIONAL CONCEPTS

The operational concepts of the application rely on user

inputs. The List form presents a comprehensive list of

connected systems within the network, allowing users to

choose a specific name and initiate a connection through the

Chat form. The Connect button establishes the connection,

while the Refresh button updates the list of names. Error

handling is implemented to display a message if no name is

selected before clicking Connect.

http://www.ijisrt.com/

Volume 8, Issue 6, June – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUN763 www.ijisrt.com 193

IX. DEPENDENCIES

The project relies on various third-party packages and

modules installed using npm (Node Package Manager). The

package.json file serves as the project's manifest, containing

metadata and dependencies required for Node.js

development.

X. COMPONENTS

Components are the fundamental building blocks of

React applications. They can be JavaScript classes or

functions that accept properties (props) and return a React

element describing the UI section's appearance.

The chat application comprises several components,

including the Chat Client Engine, Chat UI, and various UI

elements for displaying the contact list and chat dialogs.

Fig. 3. React Components

XI. CHAT SERVER ENGINE

The Chat Server Engine is the core component

responsible for message delivery and dispatch. It includes the

Chat REST API, which handles tasks like user authentication

and settings, and the Chat WebSocket Server, which

transmits messages between users. The Chat App interacts

with these components through the Chat REST API Client

Library and Chat WebSocket Client Library.

XII. SYSTEM IMPLEMENTATION AND

MAINTENANCE

A. IMPLEMNTATION

The implementation phase holds significant importance

in ensuring the successful deployment of a new system.

Regardless of how well-designed a system may be, its

effectiveness can be compromised if the implementation

process is not carried out properly. This phase involves a

series of activities aimed at converting a newly developed

information system into an operational system that can be

used by end users.

B. TESTING
Testing plays a crucial role during the implementation

phase of a system. It encompasses activities such as system

testing, debugging computer programs, and evaluating the

effectiveness of information processing procedures.

C. TRAINING METHODS

Training methods can include vendor-provided training

and in-service training. Vendors often offer comprehensive

educational programs as part of their services, providing

courses by experienced trainers and sales personnel.

Participants get hands-on experience using the system under
the guidance of the trainer, who can quickly address any

questions or issues.

D. MAINTENANCE

After the successful implementation of a system and its

adoption by end users, the maintenance phase comes into

play. System maintenance encompasses ongoing activities

such as monitoring, evaluation, and modification of the

operational information system to ensure necessary

improvements are made. This phase also involves addressing

user errors that may arise due to unfamiliarity with the new

system and resolving any failures or issues that occur during
its operation. Additionally, regular reviews or audits are

conducted to verify that the system is fulfilling its intended

objectives.

XIII. CONCLUSION

Continuous improvement is essential for any

application. While the current focus is on text

communication, there are opportunities for further

enhancements. The goal is to develop a chat service web

application with a high-quality user interface. Future
extensions may include features such as file transfer, voice

and video messages, audio and video calls, and group calling.

http://www.ijisrt.com/

Volume 8, Issue 6, June – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUN763 www.ijisrt.com 194

Fig. 4. UI Design

REFERENCES

[1].https://www.ijeat.org/wp-
content/uploads/papers/v9i5/E9578069520.pdf

[2].http://indusedu.org/pdfs/IJREISS/IJREISS_3661_55346.pdf

[3].https://thescipub.com/pdf/jcssp.2015.723.729.pdf

[4].https://www.ijrte.org/wp-

content/uploads/papers/v7i5s2/ES2063017519.pdf

[5].https://core.ac.uk/download/pdf/187726106.pdf

http://www.ijisrt.com/
http://www.ijeat.org/wp-content/uploads/
http://www.ijeat.org/wp-content/uploads/
http://indusedu.org/pdfs/IJREISS/
http://www.ijrte.org/wp-content/uploads/
http://www.ijrte.org/wp-content/uploads/

