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Abstract:- Two nanowires coupled together such that 

one has only spin-orbit coupling and the other have 

Spin-orbit coupling and magnetism; reflection, and 

transmission of an electron occurs their interface. In the 

absence of the barrier strength z, reflection would not be 

possible and the electron will be maximally transmitted. 

However, when the chemical potential in the right region 

was greater than that of the left region, it acted as a 

small barrier, and allowed for small reflection at low 

energy. This reflection became insignificant at higher 

energy. Transmission of an electron reduced as z 

increased while reflection increased, but as the energy of 

the electron increased, transmission increased while 

reflection reduced to minimal. In the N1-N2-N3 

junctions, N2 acts as a barrier and causes spin-up 

reflection even when z = 0. On introducing the barrier z, 

N2-induced spin-up reflection occurs but reduces to 

minimum value as the energy of the electron increases, 

and then a barrier-induced spin-up reflection occurs, 

and keeps increasing to a steady value. During the 

second stage of spin-up reflection, increasing the energy 

energizes the reflection process. The tunneling 

conductance decreased with increasing barrier strength 

in both trivial and non-trivial phases. In the N1-N2-N3 

junctions, when the length of the central wire, L = 1.0, 

the tunneling conductance could quickly attain 

maximum values as the energy of the electron increased 

in both phases unlike when L = 0. The zero-bias 

conductance abruptly jumped from G (0) = 0 in the 

trivial regime to G (0) = 1 in the non-trivial regime. 

 

Keywords:- Nanowire, Spin, Helical, Eigenvalues, 
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I. INTRODUCTION 

 
In the last few years, most investigation on 

semiconductor nanowires (NWs) with Rashba spin-orbit 

coupling (RSOC) has centered on searching for Majorana 

quasi-particles, which are the building block for 

topologically secured quantum information [1-3]. When a 

Rashba NW is subjected to an external magnetic field, the 

wire is anticipated to have helical gap, and when such a 

system is in proximity to an s-wave superconductor, a single 

Majorana bound state at each end appears [1-2, 4]. Although 

signatures consistent with these extraordinary quasi-particles 

have been found in NWs proximized by superconducting 
films [5], the race to the demonstration of Majorana states 

have obstructed other inquisitively conceivable outcomes of 

NWs in quantum technologies. 

Without a question, NWs coming to lengths of 

distinctive 𝜇𝑚 and appearing quantum coherent transport 

are these days made both within the clean ballistic [6-9] and 

are realized in suspended geometries [10], in arrays [11-12] 

and networks [11]. Additionally, they can be utilized as 

adaptable substrates for hybrid epitaxial improvement on 

chosen angles to design heterostructures with ferromagnets 

and superconductors [13]. As well, NWs are an incredibly 

adaptable and tunable platform for nano-electronics since 

their conduction properties can be controlled both 

magnetically, for example, by applying a parallel magnetic 

field along the NW center and hence opening up a gap 
within the spectrum, or electrically by controlling the RSOC 

through gate voltages [14-16]. 

 

A vital necessity for the appearance of Majorana 

modes is the opening of a gap within the range at the Dirac 

point due to an applied external magnetic field. Without a 

doubt, the creation of such a gap can be understood most 

effortlessly for non-interacting electrons, and the fate of this 

“helical gap” within the interacting situation has been 

considered in recent years utilizing renormalization group 

(RG), Wigner crystal hypothesis and numerical simulations 
[17-20]. In fact, an applied external magnetic field breaks 

time-reversal symmetry. Notwithstanding, without external 

magnetic field when the system is time-reversal symmetric, 

it is reliable to permit for another spin non-conserving 

process - spin-umklapp scattering, which can moreover open 

a partial gap close to the band crossing [29]. Whereas this 

sort of scattering has been anticipated based on symmetry 

contentions, much less consideration has been given to 

understanding the microscopic mechanism behind it [4, 21-

22]. 

 

In principle, in an interacting quasi-1D Rashba wire, 
helical gaps can be created by either a magnetic field or by 

spin-umklapp scattering. This prompts the question around 

whether the two conceivable basic causes can be recognized 

experimentally. Each of these processes lead to 

exceptionally comparative experimental signatures in 

conductance values, where the opening of a helical gap 

comes about in a splitting of the conductance into half as the 

chemical potential is tuned near to the Dirac point [23].  
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Realizing and controlling Majorana fermions (MFs) in 

wires may be unequivocally less complex; [2] have shown 
analytically that nanowires with strong spin-orbit coupling, 

e.g., InAs or InSb wires, frame a helical gap, associated with 

topological insulator edges. Subsequently, these wires 

bolster MF states when in the vicinity to s-wave 

superconductors, and a magnetic field. It has been 

numerically shown by [24], that the conductance in 

Nanowire-normal metal and normal metal-Nanowire-normal 

metal junctions exhibit helical gaps. The Nanowire contains 

SOC and magnetism, while the normal metal can contain 

SOC but no magnetism. Although [24] have numerically 

performed this calculation, it would be very interesting to 

obtain analytical expressions for the conductance following 
a wave-matching approach for a similar system. Therefore, 

this study aims at studying analytically helical transport in 

nanowires with Rashba spin-orbit coupling and magnetic 

field.  

 

Our results show that when two nanowires are coupled 

such that the left region is a Rashba nanowire and the right 

region is a Rashba nanowire subjected to an external 

magnetic field perpendicular to SOC, electrons are reflected 

and transmitted uniquely at their interface; in the absence of 

any barrier z, the reflection will not occur although the 

chemical potential in the right region, 𝜇2 acts as a small 

barrier and allows for small reflection at low energy 

provided 𝜇2 > 𝜇1. This reflection becomes negligible at 

higher energies. The tunneling conductance decreases with 

increasing barrier strength in both the trivial and helical 

phases. In a two-junction system, N1–N2–N3, N2 acts as a 

barrier and causes N2- induced spin-up reflection at z = 0. 

N2-induced spin-up reflection reduces to a minimum when z 

is introduced and as the energy of the electron increases, 

hence barrier–induced reflection will occur and keep 
increasing to a steady value. Also, when L = 1, the tunneling 

conductance will quickly attain maximum value as the 

energy of the electron increases in both phases unlike the 

case of a short junction. The zero-bias conductance abruptly 

jumps from $ G (0) = 0 in the trivial region to G (0) = 1 in 

the helical phase. 

 

The paper is organized as follows. In Section 2, we 

model a system of two nanowires; one containing only SOC 

and the other containing SOC and magnetism. We will also 

discuss the scattering states at the junction of the two wires, 

hereby obtaining the reflection and transmission 
probabilities and the normal conductance. In Section 3, we 

will demonstrate a model for two junctions containing a 

normal metal, intertwined between two nanowires and then 

obtain the Reflection and Transmission probabilities and 

also the conductance. Finally, we will conclude our findings 

in Section 4. 

 

 

 

 

 

 

 

 

II. MODEL 

 

 
Fig 1 A Nanowire with Rashba SOC (In the Y-Direction) 

Having a Chemical Potential 𝜇1 and Coupled with Another 

Rashba Nanowire Having a Chemical Potential  𝜇2 
Subjected to an External Magnetic Field. 

 

Consider two nanowires, N1 and N2, which are 

coupled together such that N1 is a Rashba nanowire with 

chemical potential 1  and N2 is a Rashba nanowire with 

chemical potential 𝜇2 subjected to an external magnetic 

field. We have assumed a Rashba nanowire to be a nanowire 
containing SOC. The Hamiltonian of the two nanowires read 

[24] 

 

         𝐻0
𝑠 = (

𝑝2

2𝑚
− 𝜇𝑠) 𝜎0 −

𝛼𝑅

ℏ
𝑝𝜎𝑦 + 𝐵𝑥𝜎𝑥,                     [1] 

where 𝛼𝑅  is the Rashba spin-orbit coupling term and 𝜎 

is the Pauli matrices, B is the applied magnetic field and s = 

1, 2 with 𝐵1 = 0, 𝐵2 = 𝐵. The eigenvalues obtained from 

the characteristic equation are given by 
 

 

        𝐸±
𝑠 =

ℏ2𝑘𝑠
2

2𝑚
− 𝜇𝑠 ± √(𝛼𝑠𝑘𝑠)2 + 𝐵𝑠

2,        [2] 

 

Where 

 

𝑘𝑠 = ±√
2𝑚

ℏ2
√

m𝛼𝑅
2 + 𝜇𝑠 + 𝐸𝑠 ±

√
𝑚2𝛼𝑅

4

ℏ4 +
2m𝛼𝑅

2 𝐸𝑠

ℏ2 +
2m𝛼𝑅

2 𝜇𝑠

ℏ2 + 𝐵𝑠
2
       [3] 

 

The normalized eigenfunctions obtained from the 

characteristic equation are 𝜓𝑠(𝑥) =
1

√2
(

±𝛾𝑠

1
) 𝑒𝑖𝑘𝑠

±𝑥 and 𝛾 =
𝑖𝛼𝑅𝑘𝑠+𝐵𝑠

√(𝛼𝑅𝑘𝑠)2+𝐵𝑠
2
. The plot of the energy eigenvalues obtained in 

Eq. (2) for N1 is shown in Fig. 2(a). Introducing spin-orbit 
coupling aligned along the y-axis shifts the two parabolas at 

k = 0 by momenta ±𝑘𝑆𝑂 = ±
𝑚𝛼𝑅

ℏ2  and by energy 𝛥𝐸𝑆𝑂 =

±
𝑚𝛼𝑅

2

ℏ2 . There is no possibility to have a topological phase 

here when superconductivity is applied since for any 𝜇 there 

are two pairs of Fermi points that correspond to an even 

number and thus a trivial phase. Whereas, for a wire with a 

certain chemical potential and with no SOC, the energy 

versus momentum dispersion for a free electron consists of a 

single parabola. At k = 0, the electron has the minimum 

energy, 𝐸1 = −𝜇1. As 𝜇1 increases, the energy reduces to 

the point where there is no Fermi points (See Appendix A 
for detail). 
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Fig. 2(b) shows the energy spectrum of Eq. (2) for N2. 

The spectrum in this case has local and global extremes k = 

0 with energy −𝜇 ± 𝐵 and ±𝑘min = ±√𝑘𝑆𝑂
2 −

𝑘𝑧
2

4𝑘𝑆𝑂
2  with 

energy 𝐸min = −𝜇 − 𝐸𝑆𝑂 −
𝐵2

4𝐸𝑆𝑂
. An applied external field 

perpendicular to the SOC lifts the spin degeneracy at k = 0 

by removing the level crossing and opening a gap in the 

spectrum of 2B, this gap is known as the helical gap. When 

the system hosts an odd number of pairs of Fermi points per 

energy, the nanowire behaves as spinless. The system 

reaches the topological superconducting phase by placing 
the nanowire on an s-wave superconductor. When the 

chemical potential lies within this anti-crossing gap, the 

system has two Fermi points as opposed to four Fermi 

points in the case without an external magnetic field.  

 

 Scattering States 

The scattering states was obtained by considering the 

interface between the nanowires, N1, and N2, by connecting 

the wave functions in both regions at x = 0, reflection and 

transmission will occur. A right-moving spin-up electron 

from the left region can either be reflected as a spin-up and 
spin-down or transmitted as a spin-up and spin-down 

electron (See detailed derivation in Appendix B). 

 

The probability of a reflection from spin-up to spin-up 

𝑅↑↑, reflection from spin-up to spin-down 𝑅↑↓, transmission 

from spin-up to spin-up  𝑇↑↑, and transmission from spin-up 

to spin-down 𝑇↑↓ are given by 

𝑅↑↑ = |𝑎|2                𝑅↑↓ = |𝑏|2

𝑇↑↑ = |
𝑘2

++𝛼

𝑘1
++𝛼

| |𝑐|2            𝑇↑↓ = |
𝑘2

−−𝛼

𝑘1
+−𝛼

| |𝑑|2                     [4] 

 

The coefficients; a, b, c and d are shown in Appendix 

B. 

 

Reflection and transmission occurs at the interface 

uniquely (See Fig. 3), in absence of barrier z; reflection is 

insignificant and its value decreases with increasing E, at the 

same time electron is maximally transmitted; 𝑇↑↑ increases 

with increasing E and decreases with increasing B while 𝑇↑↓ 

increases with increasing B and decreases with increasing E. 

Also, as the barrier is increased, reflection is possible, from 

spin-up to spin-up, and insignificant from spin-up to spin-

down electron. 𝑅↑↑decreases as E increases because more 

energy is given to the electron to be transmitted, thereby 

reduce the reflection. 

 
Figure 4 shows the variation of transmission and 

reflection probabilities with barrier strength, z. Like 

previously established, reflection increases as z increases 

but reduces as the energy of the system increases. We also 

noticed that spin-down reflection is not possible irrespective 

of the values of z and E. Transmission increases as the 

energy of the system increases, but the presence of a barrier 

reduces the transmission. 

 

 
Fig 2 Energy Versus Wavevector, Showing Spin-Up Electron Travelling to the Right from the Left Region. The Electron can be 

Reflected as Spin-Up Electron at −K1
+ and Spin-Down Electron At −K1

− or Transmitted as Spin-Up Electron At K2
+ and Spin-

Down Electron At K2
−. The Values Correspond to Insb Nanowire [28]: M = 0.015me, ΑR = 20mevnm and Μ = 0.03mev. 

 

 Conductance 

The physical assumption used to define the problem of 

normal conductance is that the distribution function of all 

incoming particles is given by the equilibrium Fermi 

function. Within the BTK (Blonder, Tinkham, and 
Klapwijk) [25], all incoming electrons from the N2 side 

have the distribution function 𝑓0(𝐸), while those coming in 

from the N1 side are described by 𝑓0(𝐸 − 𝑒𝑉). 

 

Since the current must be conserved, it can be 

calculated in any plane. It is particularly convenient to do so 

in the N1 side of the interface where all current is carried by 

single particles. To find the current in our 1D model, we 

take the difference between 𝑓→(𝐸) and 𝑓←(𝐸); the 

distribution functions at the incident point and reflection 

point, and integrate over E. That is 

 
𝐼 = 𝑄𝐽

= 2𝑁(0)𝑒𝑉𝐹𝑄 ∫ [𝑓→(𝐸) − 𝑓←(𝐸)]𝑑𝐸
∞

−∞

                     [5] 

 

where 𝑄 is an effective-neck cross-sectional area, 

including a numerical factor for angular averaging which 

will depend on the actual 3D geometry. For example, in the 
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orifice model of point contact, 𝑄 =
𝜋𝑎2

4
, where 𝑎 is the 

radius of the orifice [26]. 𝑁(0)refers to the one-spin density 

of states at 𝐸𝐹. 

 

Using the assumption of incoming populations, we 
have that 

 

  𝑓→(𝐸) = 𝑓0(𝐸 − 𝑒𝑉)                     [6] 

 

 While 

 

𝑓←(𝐸) = |𝑎(𝐸)|2𝑓→(𝐸) + |𝑏(𝐸)|2𝑓→(𝐸) + |𝑐(𝐸)|2𝑓0(𝐸) +
|𝑑(𝐸)|2𝑓0(𝐸)           [7] 

 

Therefore, 

 

𝑓→(𝐸) − 𝑓←(𝐸) = 𝑓0(𝐸 − 𝑒𝑉) − |𝑎(𝐸)|2𝑓0(𝐸 − 𝑒𝑉) + 
|𝑏(𝐸)|2𝑓0(𝐸 − 𝑒𝑉) + (|𝑐(𝐸)|2 + |𝑑(𝐸)|2)𝑓0(𝐸) 

=(𝑓0(𝐸 − 𝑒𝑉) − 𝑓0(𝐸))(1 − |𝑎(𝐸)|2 − |𝑏(𝐸)|2)             [8] 

 

In obtaining Eq. (8), we used the properties |𝑎(𝐸)|2 +
|𝑏(𝐸)|2 + |𝑐(𝐸)|2 + |𝑑(𝐸)|2 = 1. The quantity (1 −
|𝑎(𝐸)|2 − |𝑏(𝐸)|2)  in Eq. (8) can be referred to as the 

transmission coefficient for electrical current. Therefore, Eq. 

(5) becomes 

  

𝐺(𝐸) = 𝐺0(1 − |𝑎(𝐸)|2 − |𝑏(𝐸)|2)                     [9] 

 

where 𝐺0 =
𝑒2

ℏ
  is the normal state conductance for a 

quantum point contact and 𝐺(𝐸) =
𝑑𝐼

𝑑𝑉
 is the zero-

temperature differential conductance. 

 

 
Fig 3 Intensity Plots of Transmission (T) and Reflection (R) Probabilities as Functions of the Incident Energy E and Magnetic 

Field B for Fixed Z. The Potential Barrier are Z = 0 And 2.0. The other Parameters are 𝜇1 = 0.2, 𝜇2 = 0.5 and 𝛼𝑅 = 0.05. 

 

 
Fig 4 Transmission (T) and Reflection (R) Probabilities as Function of Z for Nanowire-Nanowire Junction. The Following 

Parameters were used: 𝜇1 = 0.2, 𝜇2 = 0.5, 𝛼𝑅 = 0.05 and B = 0.2. 
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The characteristic plots of the conductance as a 

function of the energy are shown in Fig. 5. The tunneling 
conductance G (E) decreases with increasing barrier strength 

z in both the trivial and helical phases. We also find that the 

zero-bias conductance abruptly jumps from G(0) = 0 in the 

trivial regime to G(0) = 1 in the helical regime. This is 

unlike what would be obtained in the superconducting state, 

where the electron can undergo the Andreev reflection, 

which effectively carries over 2 electrons to a 

superconductor. As such, a particle with energy E gets 

completely Andreev reflected, and G(E)/G0(E) = 2 [27]. 

 

  
Fig 5 Variation of the Conductance G(E) with Energy E and 

Barrier Strength z for N1-N2 Junction. (a) Trivial Phase: 

𝜇1 = 0, 𝜇2 = 0.2, 𝛼𝑅 = 0.1 and B = 0. (b) Helical: 𝜇1 =
0.4, 𝜇2 = 0.5, 𝛼𝑅 = 0.1  and B = 0.1. 

 

III. NANOWIRE – NORMAL METAL – 

NANOWIRE JUNCTION (N1-N2-N3) 

 

Consider a system of two junctions; nanowire – normal 

metal junction and normal metal - nanowire junction. The 

nanowires contain spin-orbit coupling only but no 

magnetism while the normal metal contains spin-orbit 
coupling and is subjected to an external magnetic field. N1 

and N3 will represent Rashba nanowires, and N2 is the 

Rashba normal metal. 

 

 
Fig 6 Two Junctions System Nanowire – Normal Metal 

Junction and Normal Metal – Nanowire Junction. 

 

The Hamiltonians, eigenvalues, and eigenfunctions of 

each of the wires have been discussed in Section II. The 

scattering states will be obtained by first considering the 

interface between the Rashba nanowire N1, and normal 

metal N2, by connecting the wave functions in both regions 

at x = 0, reflection and transmission will occur (See the 

systematic diagram in Fig. 7). A right-moving spin-up 

electron from N1 can either be reflected as a spin-up and 

spin-down back to N1 or transmitted as a spin-up and spin-

down electron to N2. Secondly, we consider the interface 
between the normal metal N2, and Rashba nanowire N3, by 

connecting the wavefunctions in both regions at x = L. The 

transmitted spin-up and spin-down electron in N2 become 

the incident electron at the interface x = L, the electron can 

also be reflected as a spin-up and spin-down electron back 

to N2 or transmitted as a spin-up and spin-down electron to 

N3. 

 

 
Fig 7 Systematic Diagram Showing Reflection and 

Transmission at the Two Junctions. The Junction N1-N2 is 

Located at X = 0 and the Junction N2-N3 Is Located at X = 

L. 

 

The wavefunction describing the scattering states 

 

 
     [10] 

 

 𝑎1, 𝑏1,  e1,  e2,  e3,  e4, 𝑐1 and 𝑑1 are the coefficients of 

spin-up reflection in N1, spin-down reflection in N1, spin-

up transmission into N2, spin-down transmission into N2, 

spin-up reflection into N2, spin-down reflection into N2, 

spin-up transmission into N3, and spin-down transmission 

into N3, respectively. 

 
The respective probabilities are 

  

𝑅↑↑ = |𝑎|2,                 𝑅↑↓ = |𝑏|2, 

𝑇↑↑= |
𝑘3

++𝛼

𝑘1
++𝛼

| |𝑐|2,        𝑇↑↓ = |
𝑘3

−−𝛼

𝑘1
+−𝛼

| |𝑑|2                   [11] 

 

Intensity plots of transmission T and reflection R, 

probabilities as function of E and B, for L = 1.0 is shown in 

Fig. 8. When z = 0, spin-up reflection is possible at low 

energy, this is because the normal metal N2 acts as a barrier 

for the incoming electron. Introducing the potential barrier 
z, N2-induced spin-up reflection occurs but reduces to zero 

as the energy increases. Thereafter, a potential barrier-

induced spin-up reflection then occurs and keeps increasing 

to a steady value. During the second stage of spin-up 

reflection, increasing the energy energizes the reflection 

process. The opposite occurs during the transmission 

processes. 
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Using the BTK formalism explained in Section II, the 

difference between 𝑓→(𝐸) and 𝑓←(𝐸); the distribution 

functions at the incident point and reflection point, we have 

 

𝑓→(𝐸) − 𝑓←(𝐸) = 𝑓0(𝐸 − 𝑒𝑉) − (𝑓0(𝐸 − 𝑒𝑉)(|𝑎(𝐸)|2 +
|𝑏(𝐸)|2 + |𝑒3(𝐸)|2 + |𝑒4(𝐸)|2) + 𝑓0(|𝑐(𝐸)|2 + |𝑑(𝐸)|2 +

|𝑒1(𝐸)|2 + |𝑒2(𝐸)|2)) = (𝑓0(𝐸 − 𝑒𝑉) − 𝑓0(𝐸))(1 −
|𝑎(𝐸)|2 − |𝑏(𝐸)|2 − |𝑒3(𝐸)|2 − |𝑒4(𝐸)|2)                     [12] 

 

 

 

 

 

 

 

Therefore, Eq. (5) becomes 

 

𝐺(𝐸) = 𝐺0(1 − |𝑎(𝐸)|2 − |𝑏(𝐸)|2 − |𝑒3(𝐸)|2 − |𝑒4(𝐸)|2)   
[13] 

 

The characteristic plots of the conductance as a 

function of the energy for L = 0 and L = 1 are shown in Fig. 

9. The tunneling conductance G(E) decreases with 

increasing barrier strength z in both the trivial and non-

trivial phases. When L = 1, the tunneling conductance can 

quickly attain maximum values as the energy of the electron 

increases; for both trivial and non-trivial phases, unlike 

when L = 0. We also find that the zero-bias conductance 

abruptly jumps from G(0) = 0 in the trivial regime to G(0) = 

1 in the non-trivial regime. 

 

 
Fig 8 Intensity plots of Transmission (T) and reflection (R) probabilities as function of E and B for fixed z at L = 1.0 for N1-N2-

N3 junctions. The potential barrier are z = 0 and 2.0. The other parameters are 𝜇1 = 0.3, 𝜇2 = 0.5, 𝜇3 = 0.3 and 𝛼𝑅 = 0.05. 

 

 
Fig 9 Variation of the Conductance G(E) with Energy E and Barrier Strength z for N1-N2-N3 Junctions. A and C: Trivial Phase: 

𝜇1 = 0, 𝜇2 = 0.2, 𝛼𝑅 = 0.1 and B = 0. b and d: Helical: 𝜇1 = 0.4, 𝜇2 = 0.5, 𝛼𝑅 = 0.1 and B = 0.1. Also, We have chosen L = 0 

for a and b, and L = 1 for C and D. 
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IV. CONCLUSION 

 

When two nanowires are coupled together such that 

one has only SOC and the other have SOC and magnetism, 

reflection, and transmission of an electron occur at their 

interface. In the absence of the barrier strength z, reflection 

does not occur (Although when 𝜇1 < 𝜇2, 𝜇2 acts as a small 

barrier, and allows for small reflection at low energy. This 
reflection becomes insignificant at higher energy), the 

electron will be maximally transmitted. Transmission of an 

electron reduces as z increases while reflection increases, 

but as the energy of the electron increases transmission 

increases while reflection reduces to minimal.  

 

The tunneling conductance decreases with increasing 

barrier strength in both trivial and non-trivial phases. In the 

N1-N2-N3 junctions, when L = 1.0, the tunneling 

conductance can quickly attain maximum values as the 

energy of the electron increases in both phases unlike when 
L = 0. The zero-bias conductance abruptly jumps from G(0) 

= 0 in the trivial regime to G(0) = 1 in the non-trivial 

regime. This is unlike what would be obtained in the 

superconducting state, where the electron can undergo the 

Andreev reflection, which effectively carries over 2 

electrons to a superconductor. As such, a particle with 

energy E gets completely Andreev reflected, and G(E)/G0 

(E) = 2. 
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APPENDIX A: NANOWIRES WITHOUT RASHBA 

SPIN-ORBIT COUPLING AND MAGNETIC FIELD 

 

Consider two nanowires, N1 and N2, coupled together 

without spin-orbit coupling and magnetic field. The 

Hamiltonian for the system is given by 

 

𝐻0 =
𝑝2

2𝑚
− 𝜇𝑖                                                [A1] 

 

p is the momentum, m is the effective electron mass 

and 𝜇 is the chemical potential, and “i” represents the left or 

right region. The Hamiltonian in the left region is given by 

𝐻0
1 =

𝑝2

2𝑚
− 𝜇1.  

 

The Schrödinger equation for this region is
𝑑2𝜓

𝑑𝑥2 +

𝑘1
2𝜓 = 0, with eigenvalue𝐸1 =

ℏ2𝑘1
2

2𝑚
− 𝜇1, where the wave 

number 𝑘1 = ±√
2𝑚

ℏ2
(𝐸1 + 𝜇1) . Fig. 10 shows the energy 

versus momentum dispersion for a free electron that consists 

of a single parabola. At k = 0, the electron has the minimum 

energy, 𝐸1 = −𝜇1. As 𝜇1 increases, the energy reduces to 

the point where there are no Fermi points.  

 

 
Fig. 10 Energy Spectrum for the Left/Right Region 

 

The Schrödinger equation has the solution of the form 

 

𝜓(𝑥) = 𝐹𝑒−𝑖𝑘1𝑥 + 𝐺𝑒𝑖𝑘1𝑥.                                 [A2] 

 

If we consider a particle moving to the right, the 

coefficient 𝐹 = 0. The eigenfunction in the left region is 

therefore given as, 𝜓𝑘
1(𝑥) = 𝑒𝑖𝑘1𝑥, where 𝐺 = 1for a free 

particle. The wavevector has an imaginary term when𝐸1 +
𝜇1 < 0. The corresponding wavefunction is given by 

𝜓𝑘
1(𝑥) = 𝑒∓√𝑡1𝑥, where𝑡1 = |

2𝑚

ℏ2
(𝐸1 + 𝜇1)|.   
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Let’s consider a particle traveling to the left, the 

Hamiltonian in the right region reads 𝐻0
2 =

𝑝2

2𝑚
− 𝜇2. The 

Schrödinger equation (SE) reads 
𝑑2𝜓

𝑑𝑥2 + 𝑘2
2𝜓 = 0 and has the 

solution of the form 𝜓(𝑥) = 𝐴𝑒−𝑖𝑘2𝑥 + 𝐵𝑒𝑖𝑘2𝑥. Also, a free 

particle traveling to the left has the coefficient 𝐴 = 0. The 

eigenvector in the right region is therefore given as 𝜓𝑘
2(𝑥) =

𝑒𝑖𝑘2𝑥(𝑥 > 0). If we consider the scattering states for this 

system, the SE for 𝑥 < 0  reads  

 
𝑑2𝜓

𝑑𝑥2 + 𝑘2𝜓 = 0.                    [A3] 

 

The general solution for Eq. (A3) in the left region due 

to an incident electron is given by  

 

𝜓1(𝑥) = 𝑒𝑖𝑘1𝑥 + 𝑟𝑒−𝑖𝑘1𝑥.                                  [A4] 

 
The first term represents the incident wave, the second 

term represents the reflected wave and r is the reflection 

coefficient. Similarly, in the right region, 𝑥 > 0, the 

transmitted wave in the right region is given by 

 

𝜓2(𝑥) = 𝑡𝑒𝑖𝑘2𝑥,                                   [A5] 

 

where t is the transmission coefficient. The continuity 

of 𝜓(𝑥) at 𝑥 = 0 requires that 

  

𝜓(𝑥 < 0) = 𝜓(𝑥 > 0).                                  [A6] 

 

Also, the discontinuity of the derivative at𝑥 = 0 is 

given by 

 

𝛥 (
𝑑𝜓(𝑥)

𝑑𝑥
) = 𝑍𝜓(𝑥 = 0),                               [A7] 

 

Where 𝑍 =
2𝑚

ℏ2 𝑉. Using equations (A6) and (A7), the 

reflection probability was obtained as 

 

𝑅 =
(𝑘1−𝑘2)2+𝑍2

(𝑘1+𝑘2)2+𝑍2                                   [A8] 

 

And the transmission probability as 
 

𝑇 =
4𝑘1𝑘2

(𝑘1+𝑘2)2+𝑍2.                                   [A9] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B: SCATTERING STATES 

 

We considered two nanowires N1 and N2, coupled 

together to produce a junction. N1 is a Rashba nanowire and 

N2 is a Rashba nanowire subjected to an external magnetic 

field. The wavefunction describing the scattering states at 

the interface between them is 

 

𝛹(𝑥) = 𝜙1
+𝑒𝑖𝑘1

+𝑥 + 𝑎𝜙1
+𝑒−𝑖𝑘1

+𝑥 + 𝑏𝜙1
−𝑒−𝑖𝑘1

−𝑥𝑥 < 0

𝛹(𝑥) = 𝑐𝜙2
+𝑒𝑖𝑘2

+𝑥 + 𝑑𝜙2
−𝑒𝑖𝑘2

−𝑥                          𝑥 > 0
      [B1] 

 

Where 

 

 
[B2] 

 

The boundary conditions were obtained by introducing 

a delta potential 𝑈𝛿(𝑥) in the Hamiltonian of the system, 

 

𝐻0 = (
𝑝2

2𝑚
− 𝜇0) 𝜎0 −

𝛼𝑅

ℏ
𝑝𝜎𝑦 + 𝐵𝜎𝑥 + 𝑈𝛿(𝑥)𝜎𝑥            [B3] 

 

Then, the integration 𝐻0(𝑥)𝛹(𝑥) = 𝐸𝛹(𝑥) gives 

(
𝑑𝛹(𝑥)

𝑑𝑥
|

𝜀+
−

𝑑𝛹(𝑥)

𝑑𝑥
|

𝜀−
) 𝜎𝑥 =

2𝑚

ℏ2
(𝑈𝜎𝑥 − 𝑖𝛼𝑅𝜎𝑦)𝛹(𝑥 = 0), 

[B4] 

 

where 𝑍 =
2𝑚

ℏ2 𝑈. Eq. (B4) represents the discontinuity 

of the derivative at x = 0. Integrating Eq. (B4) around x = 0, 

we have 

 

𝛹(𝑥 < 0) = 𝛹(𝑥 > 0),                                  [B5] 
 

which is the continuity of the wavefunction at x = 0. 

Using the boundary conditions of Eqs. (B4) and (B5), the 

coefficients are given by 

 

 [B6] 

 

Where 

 

 

𝑃 = 4𝛾(𝑘2
+ + 𝑖(𝑍 − 𝛼))(−𝑖𝑘2

− + 𝑍 − 𝛼) 

−𝑘1
−(−𝑘2

−(−𝑖 + 𝛾2) + 4𝛾(−𝑍 + 𝛼)) + 𝑘1
+(−𝑖 + 𝛾)2 

+𝑘2
−(𝑖 + 𝛾)2 + 4𝛾(𝑖𝑘1

− − 𝑍 + 𝛼), 
𝑄1 = 𝑘1

+(𝑘2
+(−𝑖 + 𝛾)2 − 𝑘2

−(𝑖 + 𝛾)2

+ 4𝛾(−𝑖𝑘1
− + 𝑍 − 𝛼)) 

+4𝛾(𝑘2
+ + 𝑖(𝑍 − 𝛼))(−𝑖𝑘2

− + 𝑍 − 𝛼) 

−𝑘1
−(−𝑘2

−(−𝑖 + 𝛾)2 + 𝑘2
+(𝑖 + 𝛾)2 + 4𝛾(−𝑍 + 𝛼)).     [B7]    
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