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Abstract:- In this paper, the numerical solution of the 

statistical chains of matrix B is successfully used to 

calculate the sound intensity field in audio rooms. 
 

Here we use B-chain techniques as a real 

breakthrough with the time-dependent sound field 

problem in 3D geometric space. We offer the appropriate 

design of audio rooms via an example of a cuboid pieces. 
 

We also show that B-chain techniques can produce 

rigorous statistical proof of Sabines' imperial formula for 

reverberation time in audio rooms. 
 

In addition, the definition of so-called statistical 

weights of geometric shapes is introduced and found to be 

effective in solving double and triple integration as well as 

sound diffusion transfer equation in audio rooms. 
 

I. INTRODUCTION 
 

During the last century, the classical mathematical 

statistical methods sublimated by the precise calculation of 

probabilities succeeded in solving different physical 

situations and consequently entered one branch of science 

after another. 
 

In statistical methods, logic and common sense replace 

heavy mathematics. 
 

Nowadays, a new theory of probability and statistics 

has appeared. 

 

This theory[1,2,3]called the Cairo technique is expected 

to be able to solve an ever widening field of complex 

mathematical and physical situations as a natural extension of 

its surprising success in solving the partial differential 
equations of Laplace and Posson as well as the heat 

diffusion/conduction equation (in its most general form). 
 

Later, the same theory was successfully applied to solve 

sound scattering, double and triple integrals, and Gamma 
function integration[1,2,3]. 

 

A new weapon in numerical methods has emerged just 

from nature's own probabilities and statistics. 
 

We hypothesize that the inability of current 

computational methods[4,5] to handle large physical 

situations is mainly due to the lack of a correct definition of 

probability in 4D x-t space which should itself be the 

cornerstone of all statistical operations as in the case of B 
matrix strings and the whole Cairo technique. 

 

However, chains of transition matrices B work thanks 

to a new theoretical device: when the probability statistic 

tends towards certainty for a large number of trials. 
 

The transition probability statistical matrix Bi,j 

conforms to the linearity, symmetry and binarity imposed by 

nature itself. 
 

The application of the B-matrix statistical chains in 

the theory and design of audio rooms is the subject of this 

article. 
 

In more detail, sound quality in audio rooms is 

determined by four main factors, 

 an appropriate reverberation time TR 

 an appropriate sound level or sound intensity Is  

 uniform sound distribution. 

 low noise / signal ratio. 
 

Sabine's semi-imperial formula sometimes referred to 

as Sabine's theory, proposed a century ago, remains the main 
formula for calculating TR reverberation time in audio rooms.  

 

Moreover, it is also an approximate basis for calculation 

of sound intensity Is W/m^2 in audio rooms. 
 

Is  is assumed to be uniform and is practically expressed 

in decibels. 
 

The reverberation time TR seconds for an empty room, 

as given by Sabines formula, can be expressed as follows: 
 

TR = 53.46 V/ C A S. . second. . . . . . (1) 
 

Assuming the speed of sound in air C, at NPT is 330 

m/s, then, 
 

TR = 0.162 V/A S,. . second. . . . . (2) 
 

For empty rooms. 
 

where V is the volume of the room in m^3, A is its total 

interior 
 

area in m^2 and S is the average sound absorption 

coefficient S(av) defined as. 
 

S (av) = (A1 S1 + A2 S2 +.. An Sn) / (A1 + A2 + ... 

An). . . (3) 
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The sound absorption of an average human individual 

is between 0.2 and 0.4 Sabine, so for soundproofing rooms 
populated by N humans, we propose that the denominator in 

equation 2 be simply changed to AS+ N (humans) * 0.3 

Sabine units. 

 

In other words, equation 2 becomes, 
 

TR = 0.162 V / (A S+Nh *0.3) . second. . . . . (4) 
 

Note that : 

 The appropriate or recommended TR for large cathedrals 
and mosques is between 2 and 2.5 seconds. 

 TR =2 seconds is an optimal reverberation time for a 

concert entrance, 

 TR =One second is an optimal reverberation time for a 

amphitheater conference room. 

 TR =0.3 to 0.5 seconds is standard for recording studios. 
 

TR Below 0.3 seconds is an acoustically dead room 

while 
 

TR above 2.5 seconds is an annoying echogenic piece. 
 

On the other hand, Sabinestheorem predicts the 

intensity of sound  in audio rooms Is is given by, [1,2] 
 

Is =  sum of sound power sources (P1+P2+..+Pn )in 

watts / (A S + N (humans 
 

* 0.25) . . . Watts/m^2. ………………………... . . (5), 
 

Eq 5 can be expressed in terms of reverbration timeTR 

as, 
 

Is = sum of sound power sources P in watts * TR / 0.161 

V .  

. . Watt/meter ^ 2 ..................................................... (6) 
 

However, since the practical unit of Is is the decibel 

(db), 
 

where, 
 

I in decibel = 10 Log (base10) Is / Is (0). . ……… . (7) 

I(0) is conveniently chosen as the hearing threshold for 

a normal human ear of a healthy person. 

I(0)= 10^-12 watt/m^2 or zero decibel. 
 

And the pain threshold that causes damage to the human 

ear is 1 watt/m^2, which is 120 db. 
 

The range of 40 to 70 db is the recommended loudness 

in audio rooms to be quite audible and more comfortable for 

the human ear. 
 

In conclusion : 

Sabine's semi-imperial incomplete formula, sometimes 

called Sabine's theory, proposed a century ago is still a widely 

accepted formula for calculating reverberation time in audio 

rooms (RT), and in roughly estimate the volume of the sound. 
 

 

 

 

Clearly, a reconsideration or further investigation is 

needed, which is the subject of this article. 

II. THEORY 
 

The claim that mathematics is the language of physics 

has always been a given and widely accepted fact, but the idea 

that the reverse might be true is quite unexpected. 
Through this work, we apply the statistical chains of the 

matrix B to calculate the sound intensity inside the audio 

rooms as well as their reverberation time. 
 

Note that the B-matrix chains do not use any 

mathematical law or formula, but they fit in experimentally 

(via the simulation algorithm) like nature itself. 
 

However, the B-matrix itself is well defined via the 

following physical conditions: 
 

For Cartesian coordinates in 1,2 and 3D space, the 

inputs B i , j respect or are subject to the following conditions: 
 

 B i , j = 1/2-RO/2,1/4-RO/4 and 1/6-RO/6 in 1D, 2D and 3D 

respectively for i adjacent to j and B i, j = 0 otherwise . 

RO=B i,i ie the main diagonal input elements. Condition (i) 

translates an equal a priori probability of all directions in 

space, ie no preferred direction. 
 

Note that i condition is not a strict law but rather a sort 

of statistical thermodynamic regularity. 
 

Also, condition i had been used by Maxwell in his 

derivation of the Maxwell-Boltzmann velocity distribution 

formula. 
 

 B i, j = B j, i for all i, j. 

Matrix B is symmetrical to conform to nature's symmetry 

and physical principles of reciprocity and detailed balance. 

 B i, i = RO, i.e. the main diagonal consists of equal or 

constant entries RO . 

RO can take any value in the interval [0,1]. 
 

Condition (ii) corresponds to the assumption of equal 

and similar residue after each jump or time step dt for all the 

free elementary nodes. 

 The sum of B i, j = 1 for all rows (or columns) away from 
the borders and the sum B i, j < 1 for all the rows connected 

to the borders. 
 

 The condition iv means that the probability of the whole 
space = 1. Obviously, the statistical matrix B is very 

different from the mathematical Laplacian matrix and the 

mathematical statistical matrix of the Markov transition 

probability. 
 

The physical nature of B is clear and briefly explained 

above through its four conditions i-iv which support the 

hypothesis of being an accurate model of how nature works. 
 

It is worth mentioning that the transition matrix B 
mentioned above is eligible for studying canonical 

thermodynamic systems where the exchange of energy 

between the system and its environment is allowed. 
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Another closed matrix B (called Bc) for closed or 

isolated  systems (such as soundproof audio rooms) where 

there is no energy exchange between the system and its 

environment is similar to matrix B at except for condition iv 

which should be replaced by: 
 

The sum of B i, j = 1 for all rows (or columns) away from 

borders and similarly the sum of B i, j = 1 for all rows 

connected to borders. 
 

A thorough study of the acoustic properties of rooms 

requires the introduction and calculation of the so-called 

statistical weights of geometric shapes having a certain 

number of nodes as shown below. 
 

The statistical weights themselves are best explained 

with numerical examples as follows, 
 

A. 1D geometric shape (straight line), 

Numerical integration I=∫ y dx from x=a to x=b can be 

reached by chains of matrices Bc where one arrives at [6], 
 

I=6h/77(6.Y1 +11.Y2 + 14.Y3+15.Y4 +14.Y5 + 11.Y6 

+ 6.Y7) 
 

h is the space interval between two nodes. 
 

The statistical integration formula for the area under the 
curve, written above for 7 nodes, which is an extension of 

Sympson's rule to 3 nodes, can be expressed as follows: 
 

I=SW1.Y1+SW2.Y2+SW3.Y3+SW4.Y4+SW5.Y5+S

W6.Y6+SW7.Y7 
 

It is obvious that SW1=6/77 . . etc 
 

It is obvious that SW1=6/77 . . etc 

B. 2D rectangular shape 

The finite double integral I=∫∫ f(x,y) dx dy... for the 
domain D1 

 

a<=x<=b and c<=y<=d 
 

Similarly, the process of double numerical integration , 
 

I=∫∫ f(x,y) dxdy 
 

on the D1 domain divided into 9 equidistant nodes can 

be realized via the Bc-Matrix chains like, 
 

IBc = 9h^3/29.5( 

2.75Z(1.1)+3.5Z(1.2)+2.75.Z(1.3)+3.5Z(2.1)+4.5Z(2.2)+ 3 
.5Z(2.3)+2.75Z(3.1)+3.5Z(3.2)+2.75Z(3.3)) 

 

where h is the equidistant interval on the x and y axes. 
 

Obviously the 9 statistical weights in the 2D example 

above are as follows, 
 

2.75/29.5,3.5/29.5,2.75/29.5,3.5/29.5,4.5/29.5,3.5/29.5

,2.75/29.5,3.5/29.5,2.75Z/29.5 
 

which is an extension of Sympson's 9-node double 

integration rule. 
 

C. 3D cuboid shape 

The finite double integral I=∫∫∫ f(x,y,z) dx dy dz for the 

domain D1 
 

a<=x<=b, c<=y<=d and e<=y<=f 
 

subdivided into 27 equidistant nodes as shown in Figure 

1. 
 

 

 
Fig. 1: 3D cuboid subdivided into 27 equidistant nodes 
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Again, the finite triple statistical numerical integration 

process, 
 

I=∫∫∫ f(x,y,z) dx dy dz 
 

on the D1 domain divided into 27 equidistant nodes can 

be realized via the Bc-Matrix chains like cases i and ii. 
 

I=∫∫∫ W(x,y,z) dxdydz 
 

on the domain of the cube. 
 

The numerical results are, 
 

I = 

27h^4/59(2.555W(1,1,1)+3.13W(1,2,1)+2.555.W(1,3,1)+3.1

3W(2,1,1)+3.876W(2,2,1)+ 

3,13W(2,3,1)+2,555W(3,1,1)+2,555W(3,2,1)+3,13Z(3,3,1) . 

. . etc.) 
 

This formula is an extension of Sympson's double 

integration rule to the triple integration rule. 
 

III. APPLICATION TO SOUND ROOMS 
 

This is not absolutely new since a few essays based on 

sound scattering theory (eg Chiara 2012) have been 

published. We assume that the main flaw of the long 

procedure of Chiara [4] and other authors is that they did not 

use the statistical thermodynamic regularity (condition i) in 

their approaches. 
 

A. Reverbration time TR  

It can be assumed that the temporal evolution of the 

energy density (sound, heat, energy em..etc) in a 3D system 

[7,8] is subject to the following relation which is in itself a 

consequence of the thermodynamic regularity statistic 

(condition i): 
 

U(t)= U(0). Exp(-const . A/V) . . . (8) 
 

Eq 8 as adjusted to sound rooms becomes, 
 

U(t)= U(0). Exp(-t.C.A.S /V) . . . (9) 
 

The reverberation time TR is defined as the time when 
U(t) drops to one million (10^-6) from its initial value. 

 

In other words, 
 

Log(10)[U(t=TR)/U(0)]=-6 
 

when substituted in Eq 9 we get, 
 

-6=-TR.C.A.S /V 
 

OR, 
 

TR=6V/CAS . . .time without dimension space of the 

matrix B (10) 
 

Note that when moving in the unit space of the B 4D x-

t matrix, the real time t is completely lost. 
 

 

 

Retrieving the real time is not complicated but a bit 

long. 
In short the real time t is 
 

t= n^2. dt  . . . condition (4) 
 

where n is the number of dimensions of the geometric 

object: 
 

Obviously, for the 3D object n=3 and n^2=9 
 

And for the 2D object, 
 

n=2 and n^2=4. 
 

This explains why molecules (or equivalently energy 

density) take longer to diffuse in 2D than in 3D. We can now 

rewrite Eq 10 as, 
 

TR=6x9V/CAS=54V/CAS . . . .sec in real-time space 

(11) 
 

If we compare equation 11 with Sabines reverberation 

time formula, 
 

TR = 53.46 V/c A S. . dry with Eq 11 we find a 

surprising agreement. 
 

absolute error in Sabine's formula=-.54 
 

relative error=-.54/54=-.01 
 

Showing that Sabine's formula is quite accurate. 
 

Notice that: 
 

 Condition 4 is a serious condition and corresponds to what 

is called spatial compression. this means it takes more time 

for molecules or energy density to diffuse in a 2D object 

than in 3D. 
 

This is a consequence of the statistical regularity 

condition in the chains of the matrix B which predicts a 

diffusion coefficient: 
 

α(3D)=9/4 * α(2D) 
 

Equations 8 and 9 suggest that: 

 The theoretical diffusion coefficient depends on the 
geometric characteristics of the surrounding room through 

the A/V ratio sometimes called its characteristic length Lc 

which is the mean free path between two successive 

collisions of the sound "ray" with the walls. 

 two 3D bodies of different shapes cannot have the same 

volume to area (V/A) ratio unless both have exactly the 

same volume and area. 
 

Both are physical rules imposed by the laws of nature 

itself. However, at the same time, you can find many 

exceptions to rules i and ii, but only when applied outside 

their scope. 
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B. The sound energy density field 

The distribution of the sound energy density field in audio 
rooms[9,10], especially the uniformity, is a serious matter and 

requires careful attention. 
 

In current literature, uniformity of sound energy density 

field distribution in audio rooms is achieved by inserting 
additional audio devices such as reflectors, diffusers, 

absorbers, etc. 
 

In the following analysis, we describe how to achieve 

the maximum uniformity possible through proper speaker 
placement. 

 

This analysis is best explained through the statistical 

weights SW,s of the cube in Fig.1 
 

The statistical weights are calculated via the closed 

transition matrix Bc and their numerical values at the 27 

nodes are presented in Table I. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Numerical values of the statistical weights at the 27 

nodes of the cube of Fig.1. 

                        Node     statistical weight 

1                0.7100 

2                0.9728 

3                0.710 

4                0.9728 

5                1.31427 

6                0.9728 

7                0.7100 

8                0.9728 

9                0.710 

10              0.97281 

11              1.31427 
12              0.9728 

13              1.3142 

14              1.7606 

15              1.3143 

16              0.9728 

17              1.3143 

18              0.9728 

19              0.710 

20              0.9728 

21              0.710 

22              0.9728 
23              1.31427 

24              0.9728 

25              0.710 

26              0.9728 

27              0.710 
 

Notice that: 

 The statistical weights at the 27 nodes add up to 27. 

 There is complete symmetry around the center (node 14). 
 

The geometric shape in Fig.1 and its corresponding statistical weights at the 27 nodes suggest that placing 4 loudspeakers at 

nodes 11, 13, 15, 17 would produce an efficient and uniform sound field. 

Table 2: Shows the acoustic energy field at the 27 nodes in Fig.1 
   23.1387901       40.3952217       23.1387901       40.3952255       46.2775764       40.3952255       23.1387901       40.3952255       23.1387901     
   58.0422783       52.1599274       58.0422821       52.1599312       116.084564       52.1599312       58.0422821       52.1599350       58.0422859     
   23.1387901       40.3952217       23.1387901       40.3952255       46.2775764       40.3952255       23.1387901       40.3952255       23.1387901 
 

Table II. The acoustic energy density field at the 27 

nodes in Fig.1 due to the placement of 4 loudspeakers each 

with a power of 100 units at nodes 11, 13, 15, 17. 
 

Alternatively, if the same four loudspeakers are 

transferred to nodes 2, 4, 6, 8, the numerical results produced 

are shown in Table III. 

Table 3: The numerical results produced when four loudspeakers from Table II are transferred to nodes 2, 4, 6, 8. 
   50.8281326       40.7318916       50.8281326       40.7318878       101.656258       40.7318878       50.8281326       40.7318878       50.8281288     
   23.5050011       41.1520615       23.5050011       41.1520615       47.0099983       41.1520615       23.5050011       41.1520615       23.5050011     

   7.97098923       12.1604652       7.97098923       12.1604652       15.9419785       12.1604662       7.97098923       12.1604662       7.97098923 
 

Notice that: 

 The sound energy distribution of Table II is more efficient and more uniform than that of Table III. 

 The sum of the energy densities in Table II is 1170 units while the sum of the energy densities in Table III is 870 units. 
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The ratio of the sums 1170/870(1.345) is equal to the 

ratio of their statistical weights 1.3143/0.9728(1.3510). 
 

IV. CONCLUSION 
 

In this paper, the numerical solution of the statistical 

chains of matrix B is successfully used to calculate the sound 

intensity field in audio rooms. 
 

Also, we show that B-chain techniques can produce 

rigorous statistical proof of Sabines' imperial formula for 

reverberation time in audio rooms. 
 

This proves that Sabine's formula for the reverberation 

time TR is fairly accurate.  
 

In the current literature the computation of the non-

uniform sound energy density field inside audio rooms is 

abscent whereas the present article we do it with high 

precision and speed. 
 

In addition, the definition of so-called statistical weights 

of geometric shapes is introduced and found to be effective in 

solving double and triple integration as well as sound 

diffusion transfer equation in audio rooms. 
 

NB. All calculations in this article were produced 

using the author's double-precision algorithm to ensure 

maximum accuracy, as follows by ref. 11 for example. 
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