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Abstract— A clear methodology for mesh-based 

simulation technique is presented in this study. The 

principles from creating the model to creating geometry, 

mesh generation, calculation, and result analysis (post-

processing) were highlighted. Some of the results picked 

from previous works that employed the mesh-based 

technique were presented and that demonstrates how 

robust this technique is. It is obvious that today the use of 

computer simulations, in general, is paramount and that 

with computer simulations, different solutions can be 

evaluated numerically, and only promising designs are 

sent to the laboratory or production line for scale-up 

production. 
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I. INTRODUCTION 
 

Traditionally, computer simulations are carried out over 

system domains made of meshed (grid) surfaces. According 

to [1], “traditional modelling approaches make use of 

parametric patches, implicit surface, or subdivision surfaces 

that have been well integrated into 2D or 3D software”.  The 

procedure for mesh-based simulation includes building a 

geometry, meshing and solution of the model equations using 

a given software. The system is first translated into a 

geometry which is latter discretized into mesh of a given size 

and finally the model, which is normally a differential 

equation, is solved. After building the geometry the operation 
is usually carried out in three stages (mesh generation, 

solution and postprocessing) and this, sometimes, require 

three independent software to do the job. For example, in 

computational study of mass transfer at surfaces with reactive 

nanocones [2] the geometry and meshing were done by Gmsh 

software, whereas solution and postprocessing were carried 

out by Elmer and Paraview, respectively. Each of the stages 

mentioned above is as important as the other and the error in 

one stage will significantly lead to an error in the other. 

However, some software (e.g. COMSOL) were developed in 

such a way that it can handle all the three operations. 
 

When complex geometries were involved in a 

quantitative study of a physical phenomenon, numerical 

methods (such as finite element method) that discretize space 

are often the best method [3]. The procedure for 

discretization in Multiphysics is not much different with the 
numerical simulation that is based on partial differential 

equation discretization. 

 

 
 

II. MODEL, GEOMETRY AND CALCULATION 
 

A. Partial Differential Equations 

In numerical studies, a problem is represented in form of 

differential equations (partial differential equation). The 

Partial differential equation (PDE) is an equation that relates 

a function of several variables to its partial derivatives. Many 

problems in engineering and sciences are presented in form 

PDE, e.g., wave equation, mass transfer equation, heart 
transfer equation, Schrödinger equation etc. Mostly, physical 

phenomena are modelled by equations that relate several 

partial derivatives of physical quantities such as momentum, 

velocity, forces, temperature, etc [4].  Equation 1 and 2 shows 

the example of first and second order partial differential 

equation in three dimensions (3D). 
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The typical way to solve PDEs is to discretize them 

since they constitute a large sparse of matrix problem. 

However, there are many ways of discretizing PDEs and the 

simplest is finite difference approximations for partial 
operators. The finite element method replaces the original 

function (overall equation of the global domain) with a 

function (sub-equations) that has some degree of smoothness 

but is piecewise polynomial on simple cells such as rectangle, 

squares, or triangles. These triangles or rectangles are called 

the grid or mesh in 2D or 3D.  
 

With numerical PDEs, the conditions at one or both 

extremes need to be specified in other to set limit or 

boundary. Therefore, initial value and boundary value 

problems are included as constraints equations in the solution 

of PDEs. Boundary conditions are practically essential for 

defining computational problems because the resultant 

quality of computations can critically be decided on how 

those boundary conditions are numerically treated [5]. 
 

 Boundary value and initial value problems 

When a solution and derivatives value of a system of 

differential equations (ordinary or partial) is specified at more 

than one point, it is said to be a boundary value problem 

(BVP). The points at which these derivatives are specified are 
called the boundaries, which they occur at the extreme. Since 

differential equation represent problems in engineering, it is 

very important to know the boundary condition for such 

problems so as to proffer solutions. For instance, in mass 

transfer problems on the surface of a block [2] , the initial 

concentration at surface ‘A’ and the final concentration at the 
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opposite surface ‘B’ must be specify. This knowledge will 

help in understanding what happens in-between at a 
particular time and the whole profile can be figured out. 

 

In the order hand, the initial value problem (IVP) is a 

differential equation along with a specified condition at initial 

state or with an appropriate number of initial conditions. The 
IVP does not require to specify the value at boundaries rather 

it needs the values at initial condition. This usually apply for 

dynamic system that is changing over time. In summary, in 

IVP the conditions at one extreme of the interval are known 

whereas in BVP the conditions at both extremes of the 

interval are known and that is why all PDEs are BVP and 

IVP. For instance, we need the initial position and velocity of 

a particle in motion to be able to solve for its position under 

differential equation at time t. 
 

 Discretization 

There are two major approaches to discretisation namely, 

Langrangian and Eulerian. Where the former has it’s 

coordinate and properties defined for every local field, the 

latter has it’s coordinate and properties defined for the overall 

system. 
 

 
Fig. 1: Structured mesh (A) and unstructured mesh (B) 

 

In Eulerian approach, discretisation is completed in a 

fixed space and no movement of nodes and elements is 

required (Fig. 1A). This approach is suitable for simple 

geometries and for fast calculation, it is however, not suitable 

for high deformable and complex geometries. In the other 

hand, the Langrangian approach has it’s nodes associated 

with material particles thereby representing free surfaces 

(Fig. 1B), this helps to evaluate the deformation and define 

the interfaces of different materials [6]. Therefore, 

Langrangian approach can handle  high deformation model 
due to non-restriction of a closed domain [7]. 

 

There is also an approach called Arbitrary Langrangian-

Eulerian (ALE) that combines the two approaches and 
harnessed the advantage of both Langrangian mesh and the 

Eulerian mesh. In this approach, the nodes in the mesh can be 

flexible and move as the material deforms like the 

Langrangian mesh or fixed in a space and eliminate the issue 

of mesh distortion as in Eulerian mesh or it can move in some 

arbitrary manner [8]. This flexibility offered by ALE has a 

great advantage of handling large distortion problems. 
 

 

B. Geometry and mesh generation 

A geometry of a computational domain represents a 
specific problem of interest by its physical features which 

include all details of its shape, size, and dimension. The 

problem may be presented in two or three dimensions 

depending on the precision requirement and the cost of 

simulation. After creating (building) the geometry, the next 

step is geometric discretization, in other word, meshing or 

grid formation. Meshing is usually performed so as to divide 

the models into cells and the mesh is generated inform of 

polygons or polyhedral that connect in a series of lines and 

points. There are varieties of software for geometry and mesh 

generation, and these includes open-sourced software such as 

Gmsh, NETGEN, GridPro, MeshGenC++, etc and 
commercial software like ANSYS, Gambit, Grid Pro, CFD, 

etc. The mesh generated could be structured or unstructured. 
  

 
Fig. 2: Structured mesh (A) and unstructured mesh (B) 

 

The structured meshes are meshes with implicit 

connectivity whose structure allows for easy identification of 

elements and nodes (Fig. 2A). In the other hand unstructured 

meshes (Fig. 2B) has general connectivity with an arbitrary 

structure and the connectivity of its elements must be defined 

and stored [9]. Structured mesh requires less memory 

compared to the unstructured mesh. The choice depends on 

many factors such as memory requirement, numerical 

accuracy, ease of generation, computation time, among 

others. Moreover, it is very difficult or impossible to compute 
structure mesh for a complex geometric domain or a 

geometry that requires high resolution mesh at a localized 

region. 
 

 Gmsh 
Gmsh is the software used for mesh generation in one of 

the case studies reported in this thesis. Gmsh is a three-

dimensional finite element grid generator, it has a built-in 

CAD engine and post-processor. It is a user-friendly mesh 

tool that has an advanced visualisation capability (Gmsh 

manual). Basically, Gmsh is built around four modules: 

geometry, mesh, solver and post-processing. In building a 

geometry the constituents are points, lines, surfaces and 

bodies. These constituents form a complete solid model 

where lines are defined from points, surfaces from lines, and 

bodies from surfaces. The mesh generation is performed in 
similar way as the geometry: lines are discretized first; the 

mesh of the line is then used to mesh the surfaces; then the 

mesh of the surfaces is used to mesh the volumes. Fig. 3 is an 

example of solid geometry (cube) with unstructured mesh. 
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Fig. 3: A cubic geometry with unstructured mesh 

 

Gmsh software is robust in building and meshing any 

kind of geometry which can be exported to finite element 

solver like Elmer for calculation and post-processing. Detail 

guide on how Gmsh is use in building geometry and meshing 

could be found in the user manual [10]. 
 

C. Calculation and post-processing 

After building the geometry of a particular problem and 

generating the mesh, the project file is then opened/imported 

to a solver for calculations where the model has to be setup 

and appropriate equation defined. In this work Elmer 

Graphical User Interface solver (ElmerGUI) is used for the 

solutions of the mesh-based approach problems and a 

Visualization Toolkit ParaView is used for post-processing. 
 

 Elmer 

Elmer is an open-source finite element multiphysical 

simulation software. The software has a graphical user 

interface (ElmerGUI) which is capable of importing finite 

element mesh files in various formats [11]. It can also set up 
PDE systems for solution and export the model data and 

results for Elmer Solver. The stages in running the simulation 

with Elmer are:  

 Model setup 

 Add equation 

 Add material 

 Add body force 

 Set initial conditions 

 Set boundary conditions 
 

To setup the model, the simulation type that is either 

steady-state or unsteady-state need to be specified. Maximum 

iteration, maximum output level, and time-stepping method 

also need to be specified. In addition to the simulation 

parameters, some constants, e.g gravity, vacuum permittivity, 
Stefan Boltzmann, and unit charge, are being specified. There 

are handful of equations to be used depending on the type of 

problem one has. In our case, ‘model PDE’ and ‘linear 

elasticity’ equations were used for mass transfer and linear 

elastic problem respectively. 
 

The idea behind choosing a material in the material 

library is to use the specific properties of the material in 

question e.g density, heat capacity, specific heat capacity etc 

for accurate computation and results.  Initial and boundary 

conditions are set, and the simulation is run after saving the 

model. The result file is then open with a post-processing 

software ParaView in our case. 

 ParaView 

This a post-processing software to read the Elmer output 
file in the format ‘vtu’. “It is an open-source, multi-platform 

scientific data analysis and visualization tool that enables 

analysis and visualisation of extremely large datasets” [12]. 

ParaView has a collection of libraries for various applications 

including web visualization, in-situ analysis with catalyst and 

scripting using python [13]. To provide backbone for 

visualization and data processing ParaView uses the 

Visualization Toolkit (VTK). The VTK supports various 

visualization algorithms which includes vector, scalar, 

tensor, texture and volumetric methods. It also includes mesh 

smoothing, contouring, polygon reduction and Delaunay 

triangulation [14]. 
 

 
Fig. 4: Para View application window 

 

In this work, ParaView 5.9.1 version was used, and the 

application window is as shown in Fig. 4. The mass transfer 
contours, von Mises stresses and displacement were analysis 

using ParaView. The files are in ‘vtu’ format for both 

structured and unstructured grids. After uploading, then 

‘apply’ button is pressed. Analysis of various properties of 

the model is done using different filters. Details on how 

ParaView is used for visualization and post-processing can 

be found in [14], [12]. 
 

III. RESULTS  
 

The numerical methodology for mesh-based simulation 

is used to solve a variety of problems in engineering and 

sciences  yielding promising and near-perfect results [2], 

[15]–[18].  
 

For instance, in [2], the mesh-based simulation was 

used to compute a mass transfer on surfaces structured with 

reactive nanocones where current densities were computed 

on the surfaces of the conical electrodes, greatly advancing 

the field of electrochemistry. In that work, Gmsh software 

was used to build and mesh the geometry of the conical 

electrode surface. However, the simulation is done using 

ELMER and then post-processed with ParaView. Some of 

the results were shown in Fig. 5 and Fig. 6. 
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Fig. 5: (a); the computational domain and (b); conical 

boundary section [2]. 
 

 
Fig. 6: Local current densities along conical face for (a) α = 

5° and (b) α = 135° , S* = 1 and S* = 10 [2]. 
 

In another research [15] the mesh-based approach was 

used to compute a linear elasticity problem on a wooden bar 

that is subjected to a load of 200N at one end and fixed at the 

other end. The bar geometry was built and meshed, and the 
stress and displacement were computed. Fig. 7 shows the 

stress distribution using colour code. 
 

 
Fig. 7: The von Mises stress on a wooden bar Using mesh-

base technique [15].  
 

Additionally, a mesh-based approach can be used to 

compute flow issues with shifting boundaries and interfaces; 

however, this approach must account for the distortion caused 

by the mesh's movement. Tonon et al., 2021 conducted 

research on a mesh-moving technique without cycle-to-cycle 

accumulation of distortion and clearly demonstrated how to 

measure the mesh distortion as well as the quality of the mesh 

as it affects the prospective results. Figure 8 shows the extent 

of the mesh displacement at maximum angle of attack [16]. 
 

 
Fig. 8: Mesh displacement magnitude at root palne (top) and 

tip plane (bottom) [16]. 
 

IV. CONCLUSION 
 

In this article, the procedures and ideas of mesh-based 

simulation are described. The basics of building geometry 

and meshing with Gmsh (a finite element mesh generator), 

computing with Elmer (a finite element method solver), and 

analysing the results obtained with Paraview are described in 

depth. Several of the outcomes of this methodology were 

highlighted, and base on that, it is clear that the meh-based 
technique is reliable and effective for using numerical 

computation to address a wide range of problems in 

engineering and the sciences. 
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