
Volume 8, Issue 7, July 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUL2415 www.ijisrt.com 2790

Learning and Understanding:
Test-Driven Development in Software Development

Prakriti Dhang

Department of Computer Science,

Malmö University, Sweden

Abstract:- Test Driven Development (TDD) is one of the

important approaches in software development.

Sometimes, it is very difficult to understand what the

codes of a system are doing, so to have a clear

understanding one needs to write test cases first with the

expected output, for these type of development TDD is

required. This is to make the code cleaner and fault free.

In software engineering, one has to undergo some testing

to meet the company's goal and customers need. One of

the software development approaches in software

engineering is Test-Driven Development (TDD). An

attempt is made to reveal the necessity of Test-Driven

Development (TDD) for software development. On

reviewing the literatures, challenges and problems were

identified while adopting TDD. In this paper, a conclusion

is made on TDD as an essential approach in software

engineering.

Keywords:- Software Development, Software Engineering,

Test Cases, Test-Driven Development.

I. INTRODUCTION

Software Engineering is a structured way of creating,

designing, implementing, testing, and maintaining software

application [1]. For successful production of software
application one need to develop some principal, algorithms,

tools, and system. Figure 1 shows all the activities that

include in the software development process.

Fig. 1: Software Development Life Cycle

As stated [2]: "While testing any system, it can only

show the presence of bugs, it will not show the absence of

bugs".

The above statement says on undergoing the testing

process it shows only the faults and the locations of the faults

in the system. Testing is a good way to find any bugs in the

program. So, after every completion of the development

cycle, one needs to undergo a testing process. Testing is one
of the processes in the software development cycle where

testing is a process [3] of finding faults or defects in a

software application or in other words one can say testing is

to verify software application but not validating the

applications.

The main objective of a software engineer is to produce

a constructive valuable, qualitative, and reliable products to

the customers. Test-Driven Development is one of the

structured of testing where one write test cases first then start
writing the code and these are written in small chunks [4].

Test-driven means to evaluate the condition of software

applications, which means to determine the quality of

software applications. TDD is one of the best practices in

Extreme Programming(XP) [3]. But now in recent days, TDD

can be written in many other programming languages

The paper is divided into several sections. In section 2,

the background of TDD and TDD cycle is explained with the

merits of using TDD in software development. Section 3

illustrates the literature review of using TDD, findings, and

problem faced by the developer while using TDD. Section 4

will be the conclusion of my study with future work. The
paper ends with a list of references.

II. TEST- DRIVEN DEVELOPMENT

Test-Driven Development (TDD) is a software

development process [3] where the development cycle is

divided into short development cycles which includes writing

test cases, little modification and finally eliminating the

duplicates and these cycles are repeated after each completion

of a cycle. So when one writes test cases one needs to fulfill

some criteria. The criteria that are needed to be fulfilled are

an input value, some boolean conditions, and an expected

result. Initially in TDD, one writes the test cases and then run

those test to check whether it will pass or fail. After failing

the test one modifies the code to pass the test and then refactor

http://www.ijisrt.com/

Volume 8, Issue 7, July 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUL2415 www.ijisrt.com 2791

it. Initially, each test case fails as one has not implemented

the code, and this ensures that the test works and achieved a

fault. In this way, the functionality of the test can be

implemented [3]. The process of TDD with a flowchart

diagram is explained in the following section.

A. Test-Driven Development (TDD) process

The TDD process goes through the following steps. In

figure 2, each process of Test-Driven Development [1,3,5] is

explained.

Fig. 2: Test-Driven Development (TDD) process

 Initialize: The first step of Test-Driven Development

(TDD) process is identifying the functions or features that

are required to write test.

 Write a test: In this step, one write a test that defines the

improvement of a function. Writing a test is important for

the developer because the developer needs to understand

the requirement and specification of features clearly so as

to execute the tests further without any difficulties.

 Runs to check if the test fails: After the test is written,

tests are executed. This test generates a report defining
whether the test has passed or fail. On the report basis, it

will proceed to the next step. If it passes it will go to the

intial step to write test cases for the next segment of a code

and if it does not pass it will move to next step where one

make changes in the code. The report is maintained

throughout the process. This step mainly focuses on

examining the behavior and outputs of a test.

 Writing minimum code to pass the test: In this step, as

discussed, after the test fails it modifies some functions

with a minimum change in the code so to pass the test. It

then runs the test to check the status of the test. If it passes

this time it goes for refactoring step.

 Refactor the code and test again: The final step is the

refactor existing code, where all test runs successfully, and

move to the next new function for implementation as

shown in the above flowchart diagram. Basically, in

refactor it checks for any duplication in the test.
Refactoring is used to improve the internal structure of a

code without changing any functions.

In this way, the whole process is repeated for the next

new bunch of functionality.

B. Merits of using Test-Driven Development (TDD)

One can gain interest in using TDD, which are listed

below [1,3,5].

 Code coverage is an ideal way of identifying defects or

faults in the development process. These coverage is tested

after writing the test cases [1,3]. This informs about how

much one's code is covering.

 In TDD, for each bug separate tests are created [5]. If one

creates a separate test for each bug, the developer spends

less time in debugging.

 TDD reduces the cost of regression testing as one can check

no new bugs have occurred even when one modifies in the

code.

 TDD ensures good quality of code and product, as tests are

written first.

 TDD shares a report of the test in documentation after each

successful execution of the test. The document describes all

the tests and helps programmers to have a clear idea of what

each segment of code supposed to do [1,3].

III. LITERATURE REVIEW

Test Driven Development (TDD) to a program

developer refers in developing code structure and evaluating

test functionality [1]. TDD is a combination of three factors

which includes test-first design, test implementation, and

refactoring where one first design the test cases then start

implementing and run to check the result, after getting

expected result one eliminates the duplicate code using

refractor. Initially, the test cases fail when executing the first

time, then writing a small amount code to satisfy the test
condition to pass, then refactoring it to improve the

functionality and structure of the code, and ensure that this

http://www.ijisrt.com/

Volume 8, Issue 7, July 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUL2415 www.ijisrt.com 2792

time the tests will pass [3,6] even after modification. Test

cases are written in a framework such as JUnit, so whenever

one modifies a code, the test can be re-run to make sure the

test cases that passed earlier will pass after the modification

of the code as well. A mantra [7] for TDD was discovered

called ''TDD mantra: Red-Green-Refactor''. In figure 3 the

"RED-GREEN-REFACTOR" of Test Driven Development

(TDD) lifecycle is shown, where red means tests fail after

writing a test. Green means to pass the test. Refactor means

eliminating all the duplicates from the code and if it works it

starts with a new function of the code.

Fig. 3: Test-Driven Development Lifecycle

Test Driven Development (TDD) repeatedly repeats the

steps of writing test cases that fail, passing them with

minimum code change, and then refactoring the tests with

modifications. After achieving the expected test results at

each stage, the ideas of writing code increases

This leads to an increase in confidence and an increase

in productivity as the developer knows once it work correctly

it will works in the future.

As discussed above, test cases are written before

developing the code. To write test cases, the developer must

clearly understand the specification and the requirements [3]

The developer can achieve the requirements and

specifications through the use case diagram in Unified
Modeling Language(UML). UML diagrams are the most

interactive way of describing the interaction between a

system and the user [8]. Class diagrams are used to write the

methods. For better understanding, the internal and external

behavior of a system, state diagrams, and activity diagrams

are required for TDD approach, whereby looking at these

diagrams one can write all possible test cases. As an example,

possible test cases are shown in table 1 (taken from my

academic project work), there can be more test cases.

Table 1: Test Cases in Test Driven Development (TDD)

Test cases with expected and actual results

Test Cases Test Steps Input Excepted result Actual result Pass/Fail

Test Case 1 User

Identification:

User logged in

with user-id and

password

Correct input of

user-id and

password

A message

displays:

Successful login

A message displays:

Successful login

Pass

Incorrect input Failure message

displays

Failure message not

displayed

Fail

Incorrect input Failure message

displays

Failure message

displays

Pass

Text field blank Message displays:

Fill blank spaces

Message displays: Fill

blank spaces

Pass

Test Case 2 Documents
submission

Checks for the file
size of the document

Message displayed
as invalid file size

Message not displayed Fail

Checks for the file

size of the document

Message displayed

as invalid file size

Message displayed as

invalid file size

Pass

JUnit is one of the testing framework [9] of TDD in java

platform. In this testing framework, one write test cases and
run it. A developer can write a test in any testing framework

[3,5] like PyUnit which is a testing framework for Python and

there is a testing framework for .Net as well and many more

testing frameworks are available to write test cases.

Few companies admit that adopting TDD can affect the

productivity, internal quality, external quality, and test quality

if there are dealing with the complex system and some

companies admit that productivity will increase with a TDD

approach [10]. As with TDD, one can improve external

quality of code as in external quality faults are detected
quickly, it also improves the internal quality and test quality

as it is observed that fixing faults in code is much easier than

designing. In [11] the study was based on verifying the skills

required to apply TDD in industries. A quasi-experiment

based on the analysis of the level of external software quality

and productivity has been made among 30 people from the

industry. The people were divided into three groups on the

basis of having knowledge of TDD. The analysis shows that

there is no such difference in the external software quality and
productivity. Apart from this, it has been observed

statistically that having knowledge about TDD could increase

the external software quality and productivity. A [12] with 30

undergraduate third-year students from Computer Science

background has undergone a certain procedure to analyze the

effects on the internal quality of software as well as the

developer’s productivity when using TDD and retainment of

TDD over months. Analyzation was based on two statistical

approaches descriptive and inferential statistics. Descriptive

statistical analyzation was plotted in a boxplot and inferential

statistical was displayed in a tabular format. It has been

shown that the external quality of the software product and

the productivity of the developers affects neither of them

while using TDD. Rather, the differences are only in

producing tests among TDD users and non-TDD users.

Students who were using TDD produced more tests than the

students who were not using TDD. Thus, on producing more

http://www.ijisrt.com/

Volume 8, Issue 7, July 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUL2415 www.ijisrt.com 2793

number of tests one can retain TDD for better improvement

in writing tests.

TDD is not only to apply in development of software,
TDD can also be applied in the development of a randomized

algorithm [13]. Randomized algorithms are those types of

algorithms which help to solve the problems when having

more results that are not expected to have. In this study, a

framework for Junit called ''ReTest'' has been developed. A

case study, with ten participants which were further divided

into two groups according to their experiences with

programming knowledge. All the participants have been

trained about TDD and developed some function using TDD

with ReTest framework. Analysis has been done by asking

questions and has been found that the ReTest framework will

be useful to the developers leading with such type of

algorithms. An analysis of using Test-Driven Development

approach in startup companies [14] discussed the merits and

demerits of using Test-Driven Development. For analyzing, a

set of research questions for two companies has been made.

The analysis process was followed by thematic analysis on
interview data. The analyzation results show the demerits of

TDD that if a developer not having proper knowledge of

using TDD, will unable to write test cases. The main

advantage of Test Driven Development (TDD) is that one

write the test cases before start developing the code. By this

method, one can estimate the expected outcome. A developer

knows the test will fail initially but after modifying the code,

it will pass at a point and one also has to verify the previous

tests, that the tests passed before is still passing even after

modification. Once the function is implemented [3], this

process helps the developer, to not to miss any section of the

code.

IV. PROBLEMS AND CHALLENGES

Here are some problems and challenges on using the

TDD method are listed from the review.

The main problem with TDD is understanding the

requirements of the tests. If a developer doesn't know how to

write tests, then the developer will not able to write the

required code for the test. One can find another problem with

time consumption where the company changes the design of

the system repeatedly, one also need to change test cases

simultaneously. As one write a test, then run the test with

some modification and make sure that it will still run even

after the modification. If one doesn't change accordingly the

whole code will stop working and one has to repeat the whole

process again.

TDD model has some limitations while applying to GUI

development [15]. The major issue was in the user interface

where requirements were not specified clearly. The issue may

be found with the window size, templates and this becomes a

problem when undergoing regression testing and

maintenance. Challenging part in TDD is dealing with a

complex test. For a complex test, effective test cases required

in order to fulfill the requirements and these test can be

difficult to build and more time will take.

V. FINDINGS

In [3,6,7] one can achieve better test coverage and

confidence in developing and implementing code when using
TDD method.

Many Software companies support Test Driven

Development (TDD), as TDD produce the code simpler and

reduces a time in implementating the code. TDD produces

better result and design which increases the software quality.

TDD generates a report to help software engineer to know

about each segment of code so that they can a write test on

the report basis.

Using TDD is not the ultimate process, after using TDD

one need to go through a system testing [1] which is one of

the levels in software testing where one needs to validate the

system. In the validation process, it checks whether the

system has fulfilled the customer's need or not, it also checks

the quality, reliability and also checks that the system is

giving output as per expectation.

VI. CONCLUSION AND FUTURE WORK

Test Driven Development (TDD) is used in the software

development process as it is easy to adaopt. This is because

TDD helps the developer to focus on small segments of code

at a time. As TDD has some merits and demerits but still

developers are adopting the use of TDD as one say this is a
productive way of developing software. The main benefit of

TDD is one can analyze the design before start coding. Once

the developer acquires knowledge of using TDD, it is much

easier to handle test cases. The ultimate conclusion is that the

Test Driven Development (TDD) process is one of the

important approaches in improving test quality, external

quality, internal quality of software products.

In the future, more studies can be carried out on TDD in

large companies dealing with complex problems.

ACKNOWLEDGEMENT

The work is supported by Department of Computer
Science, Malmö University.

REFERENCES

[1.] Sommerville I, “Software Engineering”, 10th ed,

England: Pearson, 2016. pp. 102-134, 227-252.

[2.] Dijkstra EW, ''The Humble Programmer.'' , October

1972, Comm. ACM 15, NUmber: 10, Volume: 15

[3.] Krampell M, Unit Testing and TDD, PPT.

[4.] Jeffries R, Melnik G, ``Guest Editors' Introduction:

TDD--The Art of Fearless Programming'', Published

2007 in IEEE Software, DOI:10.1109/MS.2007.75.

[5.] Nair J, ''An Introduction to Test-Driven development'',

TestLodge, Updated: September 2018, Published:

February 2018.

[6.] Madeyski L, Kawalerowicz M: “Continuous Test-

Driven Development — A Novel Agile Software

Development Practice and Supporting Tool”, in

Proceedings of the 8th International Conference on

Evaluation of Novel Approaches to Software

http://www.ijisrt.com/

Volume 8, Issue 7, July 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUL2415 www.ijisrt.com 2794

Engineering (ENASE), ANGERS, 2013: p.260-267.

DOI: 10.5220/0004587202600267.

[7.] Beck K, ''Test Driven Development: By Example'',

2002, Addison-Wesley, Boston, MA, USA.

[8.] Bennett S, Skelton J, and Lunn K, ''Schaum's outline

of UML'', 2001, New York: McGraw-Hill, ISBN: 0-

07-709673-8.

[9.] Astels D ,''Test Driven development: A Practical

Guide'', 2003, Prentice Hall Professional Technical

Reference.

[10.] Turhan B, Diep M, Layman L,H.Erdogmus,''How
Effective is Test Driven Development'' ,October 2010.

[11.] Fucci D, Caivano D, Romano S, Scanniello G, Juristo

N, Teresa M, and Thuran B, ''Towards an

operationalization of test-driven development skills:

An industrial empirical study'', 2015, Information and

Software Technology, Volume 68, December 2015, pp

82-97, https://doi.org/10.1016/j.infsof.2015.08.004

[12.] Fucci D, Caivano D, Romano S, Scanniello G, Juristo

N, Teresa M, and Thuran B, ''A Longitudinal Cohort

Study on the Retainment of Test-Driven

Development'', 2018, ESEM, October 2018, Oulu,

Finland, arXiv:1807.02971v1 [cs.SE].

[13.] Ivo AS, Guerra EM, Porto SM, Choma J, and Quiles

MG, ''An approach for applying Test-Driven

Development (TDD) in the development of

randomized algorithms'', 2018, Ivo et al. Journal of

Software Engineering Research and Development
(2018) 6:9, doi: 40411-018-0053-5.

[14.] Kenigbolo MS, ''A case study of Test Driven

Development'', 2017, ResearchGate, Thesis, DOI:

10.13140/RG.2.2.27852.92803.

[15.] Dhandapani S, ''GUI Development in TDD Model-

Case Study'' ,July 14, 2016, Journal of Software, doi:

10.17706/jsw.11.11.1139-1144.

http://www.ijisrt.com/

