From Nature to Design Studio: Analyzing Biomimicry-based Curricula in Architectural Education

Mona Hassan Soliman Professor at the Department of Architecture Faculty of Engineering, Fayoum University Fayoum, Egypt Mamdouh Ahmed Farag Lecturer at the Department of Architecture Faculty of Engineering, Fayoum University Fayoum, Egypt

Fatima Ahmed Hosny Demonstrator at the Department of Architecture Faculty of Engineering, Fayoum University, Fayoum, Egypt

Abstract:-Conventional learning curricula in architectural education are not always conducive to promoting creativity, innovation, and sustainability, posing a problem for architectural students. The study explores the potential of integrated biomimicry-based curricula to enhance architectural students' learning experience by investigating the principles of Biomimicry. The analytical study emphasizes the possibilities of integrating biomimetic curriculum programs in the architectural practice of architectural students to improve students' learning efficiency. The methodology involves analyzing case studies that demonstrate these approaches' effectiveness in enhancing architectural students' learning experience. The results offer valuable insights and recommendations for using biomimicry in integrating effective curricula for architectural students, concluding that this integration can positively impact students' learning outcomes.

Keywords:- *Biomimicry; architectural learning; curriculum design; education.*

I. INTRODUCTION

Architectural education is crucial in shaping the future of our built environment and providing an effective learning experience that promotes creativity, innovation, and sustainability is essential. However, traditional architectural learning curricula may not always be conducive to these objectives, with many students feeling uninspired and disengaged during conventional curricula. Biomimicry has emerged as a promising approach to address these issues and enhance the efficiency of architectural students' learning. This approach draws on the natural world (Pawlyn, 2016) to inform design solutions for architectural students using the two aspects of biomimicry, the solution-based and the problem-based approaches. The integration of both in architectural education has the potential to transform students' learning experience into an inspiring motive (Arumugam, et al., 2023). By incorporating principles and strategies inspired by Nature, students can develop a deeper understanding of ecological systems and sustainable design practices (Ruiz-Pastor, et al., 2022).

II. BIOMIMICRY IN ARCHITECTURAL EDUCATION

A. Biomimicry Approaches

The combination of biomimicry and architecture can be accessed through two approaches: (a) the problem-based or top-down approach, and (b) the solution-based or bottom-up approach. The problem-based approach involves designing with biology in mind, studying natural solutions, and selecting an analogy to imitate and abstract into an architectural design. This approach is then combined with the traditional architectural design process, which consists of eight stages, including committing to considering numerous possibilities, clearly articulating objectives and goals, collecting resources, analyzing information, ideating creative solutions, choosing the best concept, implementing it, and evaluating the outcome (Kilmer & Kilmer, 2014). The solution-based or bottom-up approach involves studying natural solutions, understanding abstracting principles, setting technical implementation, and identifying the design challenge. The Design Spiral is a six-step process for turning inspiration into the architectural design by applying the steps of the solution-based approach, involving identifying observations of nature, translating functions into architectural terms, discovering biomimicry thinking in nature sources, abstracting nature's strategies back to the architectural engineering profession, emulating strategies using comparative analysis methods, and evaluating the design solution (Purwaningsih, et al., 2018).

B. Biomimicry Levels

Biomimicry can be integrated with architecture at three levels: (a) organism, (b) behavior, and (c) ecosystem (Benyoucef & Razin, 2018). The organism level involves replicating the forms, materials, functions, and processes of individual organisms. The behavior level involves observing how organisms interact with their environment to survive, which can help designers create solutions that better understand and appreciate nature. The ecosystem level provides a comprehensive understanding of the relationship of an organism with its environment, including how different elements work together in a cycle for survival and adaptation (Zari & Storey, 2007). By utilizing the benefits of these levels in architectural education, biomimicry can offer creative

solutions rooted in natural intelligence to enhance students' knowledge, inspiration, and productivity.

- C. Enhancing Learning Experience Through Biomimicry in Architectural Education
- Promoting the cognitive abilities of architectural students

Biomimicry has the potential to foster the reasoning abilities of architectural students by providing them with inspiring resources to help them to pay attention, extract information, analyze it, and apply the results in their projects world (Gamage & Dayarathne, 2012). By following the strategy of either of the two approaches of biomimicry, architectural students can learn to design more energyefficient, sustainable, and adaptable buildings in addition to encouraging them to consider the relationship between the built environment and the natural world design (AskNature, 2021).

Encouraging hands-on learning in the design studio.

Biomimicry-based curricula in architecture education not only provide students with a deeper understanding of sustainable building design but also enhance their hands-on experience and teamwork spirit (Schleicher, et al., 2019). By studying natural systems and processes, students are encouraged to collaborate and apply biological principles to real-world design challenges. Through biomimicry-based projects, students learn to work together, share ideas, and develop solutions that are efficient, resilient, and harmonious with the environment identity (Chemi, 2017). This collaborative approach helps students to hone their problemsolving skills and creativity (Yurtkuran, et al., 2013), preparing them to become responsible and innovative designers, encouraging cooperation between students, and enhancing their hands-on experience, preparing them for a successful career in sustainable building design (Gruber & Imhof, 2017).

> Adopting the incubation phase of creative thinking.

Biomimicry is a valuable tool for architectural students during the incubation phase of their creative thinking process. This phase is when the mind unconsciously processes information and makes connections between knowledge that can lead to breakthrough solutions (Kahvecioglu, 2007). By studying nature and its solutions to problems, students can gain new perspectives and ideas for their designs as it provides an open-ended task based on discussion and puzzles (Kalantari, et al., 2020). Therefore, the biomimicry-based curriculum is a stimulating and relevant method of learning that encourages students to think creatively and adopt an incubation phase, leading to more innovative and sustainable solutions in architecture (Stevens, et al., 2019).

Providing an immersive intuition-based architectural experience.

Intuition is a concept that has been studied extensively in psychology and philosophy. It is a nonverbal, non-analytical method of comprehending and making decisions, often referred to as a "gut feeling" or "sixth sense" (Yalcin, 2021). In architecture, intuition is a crucial component of the illumination phase, which is the foundation of creative thinking (Alipour, 2019). By experiencing the biomimicrybased curriculum and tapping its insights into the unconscious mind, students can access a vast store of knowledge and experiences that can lead to new and unexpected connections between ideas and concepts. This provides a visualized approach to the learning process in a holistic and interdisciplinary manner that enriches students' imagination and illuminates design themes and details (Fiorentino & Montana-Hoyos, 2014).

III. OBJECTIVES OF THE STUDY

- To analyze previous attempts at implementing biomimicry in architectural education and identify the key principles and strategies used in these curricula.
- To identify the challenges and barriers faced in implementing biomimicry-based curricula in architectural education and propose potential solutions.
- To provide valuable insights and recommendations for integrating effective biomimicry curricula in architectural education, based on the analysis of case studies demonstrating successful implementation.

IV. DATA AND METHODOLOGY

The data presented in this study uses a thematic analytical study of eight case studies implementing biomimicry in architectural education. To guide our analysis, we have developed a strategy that involves several steps. The first step is to understand the curriculum objectives of each case study. This includes identifying the specific learning outcomes and goals that were targeted by incorporating biomimicry into the curriculum. The second step is to identify the biomimicry-based approaches used in each case study. This involves examining the teaching methods, assignments, and projects that were designed to introduce biomimicry concepts and principles to students. The third step is to consider the design process arrangements followed in each case study. This includes understanding how biomimicry was integrated into different stages of the design process, how many students participated in each case study, and their academic level. By following this strategy, the study identifies a SWOT analysis for each case study and recommends improvements that can create more effective learning spaces for architecture students.

A. Nature Analogs for Early Design Students

The study was conducted in 2011 at Texas Tech University on a class of early design students for an academic semester aiming to bring the principles of sustainability and nature-inspired metaphors and analogies into students' projects by using the solution-based approach of biomimicry thinking to draw inspiration from nature solutions on organism level (Ajlouni, 2011). However, as shown in the analysis in Table I, the focus on analogs and metaphors led to the oversimplification of understanding natural systems. Additionally, the curriculum objectives focused on appreciating nature's artistic and conceptual aspects but overlooked the ecological and social complexities.

Table 1: SwO1 Analysis of Nature Analogs for Early Design Students Case Stud				
Strength	Weaknessess	Opportunities	Threats	
 Promoting an innovative approach to problem-solving that goes beyond traditional technical solutions. Using metaphor and analogies as tools for enhancing creative design. 	Design Shiral	• The approach of problem-solving could attract students who are interested in exploring new ways of thinking and creating.	and analogies may not be	

Table 1: SWOT Analysis of "Nature Analogs for Early Design Students" Case Stud

B. Arthropods-Architectural Articulation for First-Year Students

The study is an exercise conducted in 2012 at Uludag University on a class of 48 first-year architectural students for three weeks, of seminars, designs, and evaluations, aiming to enhance three-dimensional thinking and problem-solving skills by understanding the biomimetic design principles and analyzing nature models on the organism level. Using the approach of problem-based, the exercise asked students to figure out a biomimetic-based design for a mobile space drawing inspiration from different kinds of arthropods, like bees. In the first week, students formed groups and researched arthropods in a seminar on "articulation." The second week focused on studio work. In the final week, students presented their designs in a classroom setting, showcasing models, digital videos, and creative dramas (Yurtkuran, et al., 2013). Although the teamwork of the 12 groups enabled students to cooperate and discuss their analytical study effectively, as shown in the analysis of Table II, the study confirmed that two weeks weren't sufficient for almost all groups, except for one group.

Table 2: SWOT Analysis of "Arthropods-Architectural Articulation for First-Year Students" Case Study

Strength	Weaknessess	Opportunities	Threats
•Encouraging creativity	•Oversimplifying the	• Potential to inspire new	•Risk of perpetuating a
and problem-solving	understanding of the	and innovative	narrow view of
skills through the study of	complex biological	biomimetic design	biomimicry
arthropods.	system	solutions in architecture	• Not addressing the causes
• Understanding	•Not addressing the	through the problem-	of environmental and
biomimicry principles in	social and cultural	based approach.	social problems in
architecture.	aspects of biomimicry		architecture.
	in architecture.		

C. Using Inspiration from Nature

The study was conducted in 2014 at Karadeniz Technical University on a class of 100 second-year architectural students through six steps, biomimicry presentation, literature research. analytical study, brainstorming, design configuration, and final presentation. By using the approach of problem-based, students managed to articulate biomimicry into an architectural project, Life Under the Sea, aiming to help students to board the method of finding solutions by looking at nature and strengthening students' perspective of the relationship between architecture and nature. Students worked individually to submit a final poster for the project presenting their attempts at the micro or macro-organism level inspired by sea creatures (Tavsan, et al., 2015). As shown in Table III, despite students showing a great commitment to participate with their biomimetic insights, the individual practice tied up their creativity with limited possibilities for imitating one natural organism in their design process.

D. Sustainable Design and Environment Through Biomimicry

The study was conducted as an undergraduate elective course in 2015 at Ozyegin University on a group of 19 architectural students for 15 weeks aiming to improve students' algorithmic thinking and problem-solving skills to enhance their performance in multifaceted architectural projects. The methodology adopted the solution-based approach of biomimicry throughout three mimicking levels, organism, behavior, and ecosystem by dividing students into three categories each to apply one mimicking level. In the first group, students emphasized analogies and metaphorical properties, in the second group, students translated the properties from a performance-based perspective, and in the third group, students optimized the nature-based processes (Yazici, 2015). Although the study method is a motive for other institutions to adopt comparable educational programs, it is crucial to acknowledge the shortcomings, including its limited sample size and absence of a control group, to enhance the curriculum's efficacy, as shown in the analysis of Table IV.

Table 3: SWOT Analysis of "Using Inspiration from Nature" Case Study
--

Strength	Weaknessess	Opportunities	Threats	
• Increasing motivation,	•The duration of the	•The use of	•Limiting the	
conceptual change, and	study and the time	analogies in	application of	
support contact among	distance between the	teaching scientific	biomimicry to	
concepts by embracing an	design process stages	concepts could be	fictional life under	
untraditional design problem	were not published,	applied to other	the sea may result in	
for students.	which could affect the	fields of study,	the neglect of using	
• Promoting student-centered	reliability of the	promoting	biomimicry in the	
learning, and enhancing	results.	interdisciplinary	traditional type of	
problem-solving abilities.		learning.	projects.	

Strength	Weaknessess	Opportunities	Threats
• Providing a comprehensive	• The study did not include a	• Inspiring other	• The resistance of
approach to integrating	control group, which	institutions to	traditional
biomimicry principles into	makes it difficult to	incorporate biomimicry	design
architectural design	determine the effectiveness	principles into their	approaches and
education.	of the course.	architectural design	teaching
• Encouraging active learning	•The study adopted the	curricula.	methods may
by enhancing students'	application of biomimicry	• Building	hinder the
technical skills in software	only on single or	interdisciplinary	adoption of
programs, like Rhino, and	independent items without	collaborations between	biomimicry
Grasshopper.	considering the wider	architectural and biology	principles.
	frame of the design	students to develop new	
	concept.	biomimetic designs.	

E. Mission Mars 2024: Biomimetic Structural Organism

The study was conducted as a workshop part of the coursework of architecture design for 15 teams of secondyear architectural students (six to seven students each) in 2017 at Izmir University of Economics for two weeks aiming at improving critical thinking and problem-solving skills and enhancing their digital skills in multifaceted architectural projects in addition to expanding their imagination beyond the traditional terms of design projects. The methodology adopted the problem-based approach using the organism level of biomimicry to build a home for the first settlers on Mars (Varinlioglu, et al., 2018). Table V indicated that although the workshop had a limited two weeks of practice, using biomimicry as a supplementary design approach positively impacts architectural students.

Table 5. SWOT Analysis of	"Mission Mars 2024 Biomimetic	Structural Organism" Case Study
	Wildission Walls 2024. Diominiette	Structural Organishi Case Study

Strength	Weaknessess	Opportunities	Threats
• Providing practical and	• The limited duration of	• Inspiring other institutions	•The resistance of
hands-on experience.	two weeks, which may	to incorporate biomimicry	traditional design
• Using digital tools alongside	not have been enough	principles into their	approaches and
biomimicry as an advanced	time for students to	architectural design	teaching methods
method of creating models.	fully grasp the	curricula.	may hinder the
•Encouraging students to	concepts of	•The focus on designing	adoption of
think creatively of	biomimicry and apply	for new environments,	biomimicry
unconventional solutions	them effectively.	such as Mars, can lead to	principles.
and widen their imagination.		new innovations in	
_		sustainable design	
		practices.	

F. Biomimetic Design in Construction Systems

The study was conducted for a whole semester in 2019 at Port Said University for six teams of third-year architectural students aiming at fostering students' creativity by promoting observing structural systems found in nature. Moreover, the study also used the problem-based approach including the organism level of biomimicry to guide students' submission of the posters of virtual models with physical 3D models. The design process consisted of four phases, starting with introductory lectures and active learning, followed by cooperative discussion and self-learning, then research and analysis of nature-based examples, and finally the application of the analyzed system to a physical for peer review and instructor discussion during the final submission (Shahda, 2019). As shown in Table VI, the methodology fosters critical thinking and creativity. However, it lacks information on participants and comparison to other methods. The proposed approach can be extended to other design fields but may face challenges due to a lack of resources and resistance to traditional teaching methods.

G. Biomimicry in Architecture

The study was conducted for 12 weeks as an elective course for 18 senior students in 2018 at the Architecture Department of MSA University aiming to foster students' capabilities of creativity and originality in their architectural practice using parametric design and software programs like Rhino and Grasshopper to apply the solution-based approach of biomimicry. During the course, fourth-year architecture students were introduced to the biomimicry approach through a combination of lectures and active learning. The lectures focused on various topics related to using biomimicry in building design, such as how plants inspire facades and biomimicry with steel sheets. Students then participated in idea generation by mapping out their ideas, which were later classified using a provided system. As mentioned in Table VII, students were asked to complete a questionnaire to evaluate their experience and provide feedback on the course (Amer, 2019).

Table 6: SWOT	Analysis of "	Biomimetic	Design in	Construction	Systems"	Case Study

Tuble 0. 5 WOT Multysis of Diominiette Design in Consultation Systems Case Study			
Strength	Weaknessess	Opportunities	Threats
• Providing a holistic	•The lack of information	• Inspiring other	• The resistance of
framework of biomimetic	on the number of	institutions to	traditional
construction systems.	participants makes it	incorporate biomimicry	design
•Creating a diversity of	difficult to assess	principles into their	approaches and
students' applications by	students' teamwork.	architectural design	teaching
integrating physical and	• The study did not compare	curricula.	methods may
virtual 3D models.	the effectiveness of the	• The constructional	hinder the
•Employing assessment	proposed methodology to	approach has the	adoption of
criteria for evaluating	other biomimetic	potential to revolutionize	biomimicry
students' performance.	curricula.	design education across	principles.
		various disciplines.	

Table 7: SWOT Analysis of	""Biomimetic Design in	Construction S	vstems" Case Study
	Diominical Design in	Construction 5	ysicillis Case Study

Strength	Weaknessess	Opportunities	Threats
• The course content covers	• Few students	•The course could be	•The resistance of
fundamental issues of the	faced difficulties	delivered within a	traditional design
biomimicry concept and	in fulfilling all the	multi-disciplined	approaches and teaching
helps students form	course tasks.	approach through	methods may hinder the
creative and sustainable	• Students did not	coordination between	adoption of biomimicry
designs through parametric	have enough time	the architectural	principles.
design.	for physical	department and other	•Limiting the biomimicry
• Incorporating parametric	models as the	disciplines, giving	application to the building
design in the course gives	elective course is	students more	envelope may cause a
students opportunities to	only a three-credit	opportunities to	further misunderstanding
implement biomimetic	hour course.	design workable	of biomimicry associations
ideas.		dynamic models.	with architecture.

H. Studio One: Discovering Bio-Inspired Design and Fabrication

The study was conducted for two semesters as a master's program for four teams of post-graduates in 2019 at the Architecture Department of the University of California. The curriculum focuses on developing 21st-century skills like critical thinking and problem-solving through studio classes and tailored seminars. The program also collaborates with academic research institutions, professionals in the building industry, museums, and industry partners to support its teaching structure. Additionally, Studio One hosts guest lectures from leading experts in the field. The curriculum objectives include providing a multidisciplinary learning experience, promoting inquiry-based research, encouraging students to explore larger-scale prototypes, and applying biomimicry through collaborations with museums and

industry partners. By applying both the problem-based and the solution-based approaches, the course integrated four phases: creating a design brief, investigating natural organisms, studying bio-inspired design principles, and building a physical model for testing. The course focused on analyzing modern design and fabrication techniques, as well as exploring natural models from a different perspective. The teaching approach involved two angles: starting the development process from fundamental biological knowledge and resolving technical issues to enhance existing design solutions. Students were exposed to scientific publications and tasked with finding inspirational examples from nature to address architectural challenges, as shown in the analysis in Table VIII. While students' achievements varied from 2D sketches and virtual 3D models to physical models at the end of the project (Schleicher, et al., 2019).

Table 8. SwO1 Analysis of Biommetic Design in Construction Systems Case Study								
Strength	Weaknessess	Opportunities	Threats					
• Providing a multidisciplinary learning	•Not providing an	•The study could be	•The resistance of					
experience that combines architecture,	exact number of	expanded to include a	traditional design					
engineering, and biology.	students who	larger number of	approaches and					
•Encouraging students to push their	participated in the	students and evaluate its	teaching methods may					
initial ideas beyond the usual scale of	experiment.	impact on a larger scale.	hinder the adoption of					
small models into larger-scale	•Not referring to any	•The study could	biomimicry principles.					
prototypes and pavilions.	type of questionnaire	incorporate feedback	•The study may face					
• The teaching approach involves	or field survey to	from students through	challenges in terms of					
pursuing the work from two angles: the	press the perspective	questionnaires or field	funding and resources					
"Biology Push" and the "Technology	of students at the end	surveys to improve the	required to collaborate					
Pull", which encourages students to	of the semester.	teaching approach.	with museums and					
think creatively.			industry partners.					

Table 8: SWOT Analysis of "Biomimetic Design in Construction Systems" Case Study

V. CONCLUSION

Biomimicry is a valuable tool in architectural design education, as shown by the aforementioned eight case studies. By incorporating natural systems into the design process, students can develop sustainable and innovative solutions while improving their creative thinking and problem-solving skills. Metaphors and analogies are particularly helpful for early design students, providing a method to learn about sustainable design thinking. Also, observing and analyzing natural organisms can enhance three-dimensional thinking and problem-solving skills applicable to architectural design. While comparing natural systems to human-made products aids in teaching scientific concepts and promoting conceptual change. Furthermore, integrating computational design tools and biomimetic ideas into architecture education fosters algorithmic thinking and holistic design skills. Overall, integrating biomimicry into architectural curricula inspires creative thinking, cultivates algorithmic reasoning and allencompassing design abilities, and stimulates imaginative thinking and unconventional resolutions. In addition, this interdisciplinary approach equips students with 21st-century abilities like ingenuity, collaboration, and scientific proficiency. Eventually, as shown in Table IX, integrating biomimetic design thinking should begin with early students in the first academic level by embracing an adventurous unconventional experience for students followed by a more professional and interdisciplinary practice in the higher educational levels.

Case Study	Strategy	Approach	Duration	Participation	Achievements
Nature Analogs for Early Design Students	Exploring Nature using analogies and metaphors in an academic course for early design students	Solution- based	A whole semester	NOT MENTIONED (Individual submission)	Conceptual sketches & 3D Models
Arthropods- Architectural Articulation for First-Year Students	Enhancing the Problem-solving skills of novices by analyzing Arthropods' behavior, form, and movement	Problem- based	Three weeks	48 Students (12 Teams)	Conceptual sketches & 3D Models & Animated Videos
Using Inspiration from Nature	Enriching novices' imagination by designing a house for life under the sea inspired by Sea creatures	Problem- based	Not mentioned	100 Students (Individual submission)	Printed Posters & 3D Models & Virtual Models
Sustainable Design and Environment Through Biomimicry	Improving undergraduates' algorithmic thinking and problem- solving skills for holistic design	Solution- based	15 weeks	19 Students (Individual submission)	Virtual Models
Mission Mars 2024: Biomimetic Structural Organism	Developing second-year students' digital and fabrication skills by creating an unconventional design using inspiration from living organisms	Problem- based	Two weeks	15 Teams (six to seven students in each)	Printed Posters & Virtual Models & 3D Models
Biomimetic Design in Construction Systems	Promoting third-year students' deep understanding of construction systems by exploring the natural organisms	Problem- based	A whole semester	Six Teams (Students' number was NOT MENTIONED)	Printed Posters & 3D Models
Biomimicry in Architecture	Using Rhino and Grasshopper with seniors to practice to apply	Solution- based	A whole semester	18 Students (Individual submission)	Printed Posters & Virtual Models

Table 9: Thematic Analysis of the Architectural Articulation of Biomimicry-Based Curricula Case Studies

	biomimicry on designing a sustainable building envelope				
Studio One:	Providing a cross-disciplinary	Solution-		Four Teams	Project
Discovering Bio-	course for one-year-post graduates	based	Two Semesters	(Students' number	Presentations &
Inspired Design and	involving fabrication phase by	&		was NOT	Virtual Models
Fabrication	collaborating with various industry	Problem-		MENTIONED)	& 1:1 Physical
	partners and museums	based			Models

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

- [1.] Ajlouni, R. (2011). *Biomimicry Studio: Nature-Inspired Sustainable Design Thinking Approach*. University of Nebraska, Lincoln, s.n., pp. 117-122.
- [2.] Alipour, L. (2019). Intuitive and Logical Way of Thinking in the Education of Architectural Design Courses. Architect. Eng. Urban Plan, 29(2), pp. 161-170.
- [3.] Amer, N. (2019). Biomimetic Approach in Architectural Education: Case study of 'Biomimicry in Architecture' Course. Ain Shams Engineering Journal, 10(3), pp. 499-500.
- [4.] Arumugam, G., Abidin, S., Kusumo, C. & Jain, A. (2023). *Teaching Nature and Architecture: Student-Led Account of Biomimicry Innovations in the Tropics*. Biomimetics, 8(13), pp. 1-18.
- [5.] Ask Nature (2021). Biomimicry Global Design Challenge Gallery. [Online] Available at: https://asknature.org/collection/biomimicry-globaldesign-challenge/[Accessed 22 January 2023].
- [6.] Benyoucef, Y. & Razin, A. (2018). *Biomimicry Architecture: from The Inspiration by Nature to The Innovation of The Saharan Architecture*. Architecture and Engineering, 3(4), p. 5.
- [7.] Chemi, T. (2017). A Safe Haven for Emotional Experiences: Learning Perspectives on Participation in the Arts. In: Emotions and Pedagogical Innovation. Aalborg, Denmark: Sense Publishers: https://www.sensepublishers.com/, pp. 9-25.
- [8.] Fiorentino, C. & Montana-Hoyos, C. (2014). The Emerging Discipline of Biomimicry as a Paradigm Shift towards Design for Resilience. The International Journal of Designed Objects, 8(1), pp. 6-13.
- [9.] Gamage, A. & Dayarathne, R. (2012). Learning from Nature: Towards an Earth-based Biomimicry Approach to Ecologically Sustainable Design (ESD). Dammam University, Saudi Arabia, s.n., pp. 2-13.
- [10.] Gruber, P. & Imhof, B. (2017). Patterns of Growth— Biomimetics and Architectural Design. Buildings, 7(32), p. 7.
- [11.] Kahvecioglu, N. (2007). Architectural Design Studio Organization and Creativity. A|Z ITU Journal of Faculty of Architecture, 4(2), p. 7.

- [12.] Kalantari, B., Nourtaghani, A. & Farrokhzad, M. (2020). An Educational Model of Creativity Enhancement in Design Studios Using Prior Researches. Space Ontology International Journal, 9(3), pp. 19-22.
- [13.] Kilmer, R & Kilmer, W. (2014). Designing Interiors-Second Edition. Hoboken, New Jersey: John Wiley & Sons, Inc.
- [14.] Pawlyn, M. (2016). *Biomimicry in architecture*. British Library: Published by RIBA Publishing.
- [15.] Purwaningsih, R. et al., 2018. Product Development Using Bio-mimicry Design Spiral Approach of Swimming Aid. Semarang, Indonesia, E3S Web Conf, pp. 2-4.
- [16.] Ruiz-Pastor, L., Chulvi, V., Royo, M. & Sampaio, J. (2022). *Bio-inspired Design as A Solution to Generate Creative and Circular Product Concepts*. International Journal of Design Creativity and Innovation, pp. 1-20.
- [17.] Schleicher, S. et al. (2019). *Studio One: A New Teaching Model for Exploring Bio-Inspired Design and Fabrication*. Biomimetics, 4(34), pp. 2-10.
- [18.] Shahda, M. (2019). Biomimicry as a Tool to Enhance the Skills of Architecture Students in Understanding Construction Systems. Architecture Research, 9(5), pp. 126-142.
- [19.] Stevens, L., De Vries, M., Mark, B. & Helen, K.
 (2019). *Biomimicry Design Education Essentials*. Delft, Netherlands, s.n., pp. 459-468.
- [20.] Tavsan, C., Tavsan, F. & Sonmez, E. (2015). Biomimicry in Architectural Design Education. Trabzon, Turkey, Elsevier Ltd., pp. 489-496.
- [21.] Varinlioglu, G., Pasin, B. & Clarke, H. (2018). Unconventional Formulations in Architectural Curricula: An Atelier on Design for Outer Space Architecture. A|Z ITU Journal of Faculty of Architecture, 15(1), pp. 93-105.
- [22.] Yalcin, Z. (2021). Intuition in the Design Studio: A Perspective on Student's Creativity and Design Process. Design Studio, 3(1), pp. 38-43.
- [23.] Yazici, S. (2015). A Course on Biomimetic Design Strategies. Vienna, Austria, CAAD Education, pp. 111-118.
- [24.] Yurtkuran, S., Kırlı, G. & Taneli, Y. (2013). Learning from Nature: Biomimetic Design in Architectural Education. Bursa, Turkey, Elsevier Ltd, pp. 634-638.
- [25.] Zari, M. & Storey, J. (2007). An Ecosystem Based Biomimetic Theory for A Regenerative Built Environment. Lisbon, Portugal, s.n., pp. 3-4.