
Volume 8, Issue 7, July – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUL026 www.ijisrt.com 254

An Improved Computational Precision in Expanding

Graphical User Interface Capabilities for Linear

Systems

1Umar Iliyasu, 2Mukhtar Abubakar and 3Mary Oyenike Olanrewaju
123Department of Computer Science and Information Technology, Federal University Dutsinma, Katsina State, Nigeria

Abstract:- This paper aim to enhance computational

precision in solving linear systems by incorporating

advanced numerical techniques into a user-friendly

Graphical User Interface (GUI). The implemented

methods include LU Doolittle Decomposition, LU Crout

Decomposition, Gauss-Seidel, Jacobi Iteration, and Over

relaxation. A comprehensive literature review provides

insights into existing approaches and GUI frameworks

for linear system solvers. The methodology focuses on

GUI design considerations and utilizes MATLAB 2022a

for implementation. Through examples and evaluations,

the performance of the methods was analyzed, although

exact solutions are not found within the provided

examples. The research highlights the strengths and

limitations of each method, emphasizing the need for

further improvements and adjustments. The findings

contribute to GUI-based linear system solvers and

suggest future work in convergence improvement, error

analysis, GUI enhancements, and extension to nonlinear

systems, performance comparison, and user feedback.

Keywords:- Precision, Computation, Linear, System, GUI

I. INTRODUCTION

Linear systems are prevalent in various scientific and

engineering disciplines, serving as a fundamental tool for

mathematical modeling and analysis. They arise in diverse

applications, such as electrical circuits, structural mechanics,

fluid dynamics, optimization problems, and data analysis.

The solutions to linear systems provide valuable insights

into the behavior and characteristics of the underlying

processes or systems being studied. Accurate and efficient

solutions to linear systems are crucial for obtaining reliable

results and making informed decisions. Inaccurate solutions

can lead to erroneous conclusions and impact the validity of
subsequent analyses. Additionally, computational efficiency

is vital, particularly when dealing with large-scale linear

systems, as it directly affects the time required to obtain

solutions. Therefore, advancements in computational

precision and the development of effective numerical

techniques for solving linear systems are of great

importance. Existing GUI frameworks for solving linear

systems often lack support for incorporating advanced

numerical techniques, such as LU decomposition, iterative

methods (Gauss-Seidel and Jacobi), and over relaxation.

This restricts users' choices and hampers their ability to

select the most suitable method for their specific problem.

More also various GUI frameworks lack robust input

validation mechanisms specific to linear systems. This can
lead to erroneous inputs and inaccurate solutions.

Additionally, error handling techniques within the GUI are

often insufficient, resulting in limited feedback to users in

the case of errors or inconsistencies. Despite the widespread

use of linear systems in scientific and engineering domains,

there are several challenges and limitations associated with

existing graphical user interface (GUI) frameworks for

solving these systems. These limitations hinder the accuracy,

efficiency, and user-friendliness of linear system solutions.

By addressing the aforementioned problems, this research

aim to enhance computational precision in solving linear

systems by improving the capabilities of GUI frameworks.
The research aims to provide users with a comprehensive

toolbox of advanced numerical techniques, robust input

validation and error handling mechanisms, and advanced

visualization tools. These enhancements will enable users to

obtain accurate and efficient solutions, make informed

decisions, and gain valuable insights from the analysis of

linear systems.

II. RELATED WORK

GUI frameworks play a crucial role in facilitating user
interaction with linear system solvers. This section reviews

existing frameworks, including MATLAB's Linear Algebra

Toolbox and SciPy's numerical computation library. The

evaluation focuses on their user interface design,

functionality, and available features. The review reveals

limitations in the current GUI frameworks, emphasizing the

need for enhancements to improve user experience and

incorporate a wider range of numerical techniques

(MATLAB, 2021; Virtanen et al., 2020).

The authors in (Ullah & Bae 2016) present a graphical
user interface (GUI) for solving linear systems using both

direct and iterative methods. The GUI provides an intuitive

interface for inputting system matrices, selecting solution

methods, and visualizing the results. The paper discusses the

design principles and usability of the GUI framework.

The work of (Chreiber & Matsumoto, 2017))

introduces GUIBENCH, a benchmarking tool for evaluating

GUI frameworks for linear algebra computations, including

linear system solvers. The tool measures performance,

usability, and visualizations offered by different GUI

http://www.ijisrt.com/

Volume 8, Issue 7, July – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUL026 www.ijisrt.com 255

frameworks. The paper discusses the methodology and

results of benchmarking various GUI frameworks.

Similar work of (Li et.al, 2018) presents the design and

implementation of a GUI framework for solving linear

systems. The GUI allows users to input system matrices,

choose solution methods (direct or iterative), and visualize

the solutions. The paper discusses the design considerations,
features, and usability of the GUI framework.

The work of (Sedlmair et.al, 2014) discusses design

study methodology in the context of visualization tools for

linear systems. It provides insights into the iterative design

process, evaluation techniques, and considerations for

creating effective and user-friendly visualizations. The paper

offers practical guidance for designing GUI enhancements

with a focus on visualization.

More also (Diehl et.al, 2016) presents HPCGVis, a

visualization tool for iterative solvers in large linear
systems. It enables the visual exploration of iterative solver

convergence, residual analysis, and system matrices. The

paper discusses the design principles, interaction techniques,

and insights gained from using the visualization tool.

The work of by (Carletti et.al, 2013) presents a

MATLAB GUI framework that integrates the conjugate

gradient method for solving linear systems. The GUI

provides an intuitive interface for selecting system matrices,

setting convergence criteria, and visualizing the solution

process. The work discusses the design principles and
usability of the GUI framework.

 (Li & Xia, 2011) introduces a GUI-based approach for

implementing LU decomposition and its application in

solving linear systems. The GUI allows users to input

matrices, choose solution methods, and visualize the LU

factorization process. The work discusses the design and

implementation of the GUI framework and its effectiveness

in solving linear systems.

(Rahmat & Majid, 2019) in their work, present the

implementation of the over relaxation method within a
MATLAB GUI framework for solving linear systems. The

GUI provides options for inputting system matrices,

selecting relaxation parameters, and visualizing the

convergence behavior. The work discusses the integration of

the over relaxation method into the GUI framework and its

usability.

The literatures reviewed highlight the significant

advancements in GUI frameworks, advanced numerical

techniques, and visualization tools for linear system solvers.

These developments have led to the creation of user-friendly
interfaces, improved solution capabilities, and enhanced

visualization options, ultimately facilitating efficient and

accurate solutions to linear systems. The integration of

advanced techniques within GUI frameworks, along with

the availability of comprehensive software tools, provides

valuable resources for researchers and practitioners in the

field.

III. METHODOLOGY

This section discusses the methodology employed for

solving linear systems using various advanced numerical

techniques. The chapter begins with an overview of the

selected methods, namely LU Doolittle Decomposition, LU

Crout Decomposition, Gauss-Seidel, Jacobi Iterative, and
Over relaxation. Each method will be presented with its

mathematical formulation and a step-by-step algorithmic

description. Additionally, mathematical examples will be

provided to illustrate the application of each method.

 LU Doolittle Decomposition

The LU Doolittle Decomposition is a method for

solving linear systems by decomposing the coefficient

matrix into lower and upper triangular matrices. The method

is based on the assumption that the coefficient matrix can be

factorized as A = LU, where L is a lower triangular matrix

and U is an upper triangular matrix. The mathematical
formulation of LU Doolittle Decomposition is as follows:

Given a linear system Ax = b,

 Decompose A into L and U matrices: A = LU

 Solve Ly = b using forward substitution.

 Solve Ux = y using back substitution.

To illustrate the LU Doolittle Decomposition, let's

consider the following linear system:

2x + y + z = 8

-3x - y + 2z = -11

-2x + y + 2z = -3

Applying LU Doolittle Decomposition, we obtain:

L = [1 0 0]

[-1.5 1 0]

[-1 1 1]

U = [2 1 1]

[0 -1.5 2.5]
[0 0 0]

By solving Ly = b and Ux = y using forward and back

substitution, respectively, we can find the solution for x, y,

and z.

 LU Crout Decomposition

Similar to LU Doolittle Decomposition, LU Crout

Decomposition is another method for decomposing a

coefficient matrix into lower and upper triangular matrices.

The difference lies in the assumption that the diagonal

elements of the lower and upper matrices are all equal to 1.
The mathematical formulation of LU Crout Decomposition

is as follows:

Given a linear system Ax = b,

 Decompose A into L and U matrices: A = LU

 Solve Ly = b using forward substitution.

http://www.ijisrt.com/

Volume 8, Issue 7, July – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUL026 www.ijisrt.com 256

 Solve Ux = y using back substitution.

To illustrate the LU Crout Decomposition, let's

consider the same linear system as before:

2x + y + z = 8

-3x - y + 2z = -11

-2x + y + 2z = -3

Applying LU Crout Decomposition, we obtain:

L = [1 0 0]

[-1.5 1 0]

[-1 1 1]

U = [2 1 1]

[0 -1.5 2.5]

[0 0 0]

By solving Ly = b and Ux = y using forward and back

substitution, respectively, we can find the solution for x, y,
and z.

 Gauss-Seidel Method

The Gauss-Seidel method is an iterative technique for

solving linear systems. It starts with an initial guess for the

solution and iteratively improves the solution until

convergence is reached. The method updates each

component of the solution vector based on the values of the

previous iteration. The mathematical formulation of the

Gauss-Seidel method is as follows:

Given a linear system Ax = b,

 Initialize the solution vector x^(0).

 Iterate until convergence:

For each i from 1 to n, update x_i^(k+1) using the

formula:

x_i^(k+1) = (b_i - Σ(A_ij * x_j^(k)))/A_ii

 Jacobi Iterative Method
The Jacobi iterative method is another iterative

technique for solving linear systems. It updates each

component of the solution vector simultaneously based on

the values of the previous iteration. The mathematical

formulation of the Jacobi method is as follows:

Given a linear system Ax = b,

 Initialize the solution vector x^(0).

 Iterate until convergence:

For each i from 1 to n, update x_i^(k+1) using the
formula:

x_i^(k+1) = (b_i - Σ(A_ij * x_j^(k)))/A_ii

To illustrate the Jacobi iterative method, let's consider

the same linear system as before:

4x + y - z = 6

x + 3y - z = 5

2x + y + 5z = 15

Starting with an initial guess x^(0) = [0, 0, 0], we

iteratively update the solution vector until convergence is

reached.

 Over relaxation Method

The over relaxation method is an iterative technique

that improves the convergence rate of the Jacobi or Gauss-

Seidel method by introducing an additional relaxation

parameter. The mathematical formulation of the over

relaxation method is as follows:

Given a linear system Ax = b,

 Initialize the solution vector x^(0).

 Iterate until convergence:

For each i from 1 to n, update x_i^(k+1) using the

formula:

x_i^(k+1) = (1 - ω) * x_i^(k) + (ω/A_ii) * (b_i - Σ(A_ij *

x_j^(k)))

Starting with an initial guess x^(0) = [0, 0, 0], we

iteratively update the solution vector until convergence is

reached, using an appropriate relaxation parameter ω. By

employing these various methods, such as LU Doolittle

Decomposition, LU Crout Decomposition, Gauss-Seidel,
Jacobi Iterative, and Over relaxation, we can solve linear

systems efficiently and accurately. The mathematical

examples provided demonstrate the step-by-step algorithms

and the application of each method in solving specific linear

systems. These methods offer flexibility and different

convergence characteristics, allowing users to choose the

most suitable approach- based on their specific

requirements.

IV. DESIGN CONSIDERATIONS FOR GUI

INTEGRATION

The integration of the linear system solution methods

into a GUI requires careful design considerations to ensure a

user-friendly and intuitive interface for solving linear

systems. The following key design considerations will be

addressed:

 Input and Output: The GUI will allow users to

conveniently input the system matrix and the right-hand

side vector. It will provide an output display for

presenting the solution vector and other relevant

information, such as convergence criteria or error
estimates.

 Method Selection: The GUI will incorporate a

mechanism for users to select their desired solution

method from the available options. This can be

implemented using drop-down menus, radio buttons, or

other interactive elements.

http://www.ijisrt.com/

Volume 8, Issue 7, July – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUL026 www.ijisrt.com 257

 Parameter Settings: Certain solution methods, such as

the Over relaxation method, require additional

parameters like the relaxation factor. The GUI will

include an interface for users to input and adjust these

parameters easily, enabling flexibility and control over

the solution process.

 Convergence Monitoring: To facilitate the use of

iterative methods like Gauss-Seidel and Jacobi, the GUI
will include visualizations or numerical indicators to

monitor the convergence behavior. This will allow users

to assess the convergence rate and take appropriate

actions if needed.

 Error Handling: The GUI will be equipped with error

handling capabilities to validate user inputs, check for

compatibility between matrix dimensions, and handle

any exceptions or errors that may occur during the

solution process. Appropriate feedback will be provided

to users in case of input errors.

V. SOFTWARE AND PROGRAMMING TOOLS

For the implementation of the GUI framework and

integration of the linear system solution methods, MATLAB

2022a version was utilized. MATLAB offers a

comprehensive set of tools and functions for numerical

computations, matrix manipulations, and graphical

visualizations, making it well-suited for developing GUI-

based applications.

The GUI was developed using MATLAB's App

Designer tool, which provides a user-friendly drag-and-drop

interface for designing the GUI layout, adding interactive

components, and defining their properties and callbacks.

App Designer allows for the creation of visually appealing
and functional GUIs tailored to the requirements of solving

linear systems. In addition, MATLAB provides built-in

functions and libraries for performing LU decomposition,

iterative methods, and other advanced numerical techniques.

These functions can be readily utilized within the GUI

framework to implement the selected solution methods and

perform the necessary computations. By leveraging the

features and tools provided by MATLAB 2022a version, the

integration of the linear system solution methods into the

GUI can be efficiently implemented, offering users a

seamless and user-friendly experience for solving linear

systems.

VI. RESULTS

The results of the aforementioned methods for solving

linear systems are presented below:

Fig 1 LU Dolittle Decomposition

Fig 2 LU Crout Decomposition

http://www.ijisrt.com/

Volume 8, Issue 7, July – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUL026 www.ijisrt.com 258

Fig 3 Gauss Seidel

Fig 4 Jacobi Iterative

Fig 5 Over-Relaxation Method

VII. DISCUSSION

In Figure 1, LU Dolittle Decomposition has been

applied to the given linear system consisting of a coefficient

matrix A and a right-hand side vector B. The coefficient

matrix A is a 3x3 matrix, and the right-hand side vector B is

a 3x1 vector. The LU Doolittle Decomposition separates the

coefficient matrix A into lower triangular matrix L and upper

triangular matrix U, such that A = L * U. The decomposition

involves the process of Gaussian elimination with partial

pivoting. The LU decomposition separates the given

coefficient matrix A into two matrices: L (lower triangular

matrix) and U (upper triangular matrix). The LU

decomposition reveals the triangular structure of the matrix
and simplifies the solution process. The diagonal matrix D is

not part of the LU decomposition but is obtained from the U

matrix. It contains the diagonal elements of U, i.e., the

multipliers used to eliminate variables during the

decomposition process. The obtained solution satisfies the

given linear system. It represents the values of the variables

that satisfy all the equations simultaneously.

In Figure 2, The diagonal matrix D is not part of the

LU decomposition but is obtained from the U matrix. It

http://www.ijisrt.com/

Volume 8, Issue 7, July – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUL026 www.ijisrt.com 259

contains the diagonal elements of U, i.e., the multipliers

used to eliminate variables during the decomposition

process. To find the solution vector X, the system solves the

equation L * D * X = B by performing forward substitution

using the L matrix. The obtained solution satisfies the given

linear system. It represents the values of the variables that

satisfy all the equations simultaneously. The LU Crout

Decomposition method successfully decomposed the
coefficient matrix A into the lower triangular matrix L,

upper triangular matrix U, and diagonal matrix D. The

solution vector X was determined by solving the equation L

* D * X = B using forward substitution. The resulting

solution vector provides the values of the variables that

satisfy the given linear system.

In Figure 3, Gauss-Seidel method was applied to solve

the given linear system with three equations. The Gauss-

Seidel method is an iterative algorithm that updates the

solution vector iteratively until convergence is achieved. By

performing the Gauss-Seidel iterations with a maximum
iteration limit of 100, the solution vector is found to be: x =

1 2 8. However, it's important to note that the solution to the

equation was not found. This indicates that the Gauss-Seidel

method did not converge to the exact solution within the

specified maximum iteration limit. The lack of convergence

could be due to several reasons, such as an ill-conditioned

system, poor initial guess, or improper selection of

relaxation parameters. In some cases, the Gauss-Seidel

method may not converge for certain types of linear

systems. The Gauss-Seidel method with a maximum

iteration limit of 100 produced a solution vector of x = [1, 2,

8]. However, it is important to note that the method did not

converge to the exact solution within the specified iteration

limit. Further investigation and adjustments may be

necessary to improve the convergence behavior and find a

more accurate solution to the equation.

In Figure 4, Jacobi Iterative method was applied to the

given linear system. The Jacobi Iterative method is an

iterative algorithm that updates the solution vector

iteratively until convergence is achieved. Each iteration

involves updating each component of the solution vector

based on the previous iteration's values. By performing the

Jacobi iterations with a maximum iteration limit of 100, the

solution vector is found to be: x = 1 2 8. Moreover, it is
important to note that the solution to the equation was not

found within the specified maximum iteration limit. This

indicates that the Jacobi Iterative method did not converge

to the exact solution. This lack of convergence could be due

to various factors, such as the presence of eigen values near

the unit circle, ill-conditioning of the system, or poor initial

guess. The Jacobi Iterative method tends to converge slowly

for certain types of linear systems like in this case,

especially those with dominant diagonal elements.

In Figure 5, Overrelaxation method, also known as the

Successive Overrelaxation (SOR) method, was applied to
the given linear system. The SOR method is an iterative

algorithm that combines the Gauss-Seidel method with an

overrelaxation factor. The overrelaxation factor (ω) is a

parameter that controls the weight of the new solution

update. By performing the SOR iterations with a maximum

iteration limit of 100 and an overrelaxation factor of 1.2

(chosen as an example), the solution vector is found to be:

x= 1 2 8. Similar to the previous methods, it is important to

note that the solution to the equation was not found within

the specified maximum iteration limit. This indicates that

the SOR method did not converge to the exact solution. In
some cases, the SOR method may require fine-tuning of the

overrelaxation factor to improve convergence. To improve

the convergence behavior, it is recommended to experiment

with different values of the overrelaxation factor, within the

range of 0 < ω < 2, and observe the effect on convergence. It

may also be beneficial to try different initial guesses or

explore alternative iterative methods.

Table 1 Comparing LU Dolittle and LU Crout

Properties LU Dolittle LU Crout

Triangular Structure The U matrix is an upper triangular matrix, and

the L matrix is a lower triangular matrix with

diagonal elements equal to 1.

The U matrix is an upper triangular matrix,

and the L matrix is a lower triangular matrix

with off-diagonal elements potentially

different from 0.

Diagonal Matrix The diagonal matrix D is not explicitly obtained
in the Dolittle decomposition.

The diagonal matrix D is not part of the Crout
decomposition.

Matrix Factorization The LU Dolittle decomposition is performed by

assuming a unit diagonal for the L matrix and

calculating the U matrix based on the

elimination process.

The LU Crout decomposition is performed by

assuming a unit diagonal for the U matrix and

calculating the L matrix based on the

elimination process.

Numerical Stability The Dolittle decomposition is generally more

stable when the matrix has small diagonal

entries compared to the off-diagonal entries.

The Crout decomposition can be more stable

when the matrix has small off-diagonal

entries compared to the diagonal entries.

Both LU Doolittle and LU Crout Decomposition methods aim to factorize the coefficient matrix A into lower and upper

triangular matrices, allowing for efficient solving of the linear system. The choice between these methods depends on the specific

properties of the matrix and the desired numerical stability.

http://www.ijisrt.com/

Volume 8, Issue 7, July – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUL026 www.ijisrt.com 260

Table 2 Comparing Gauss Seidel, Jacobi and Overrelaxation Method

Properties Gauss Seidel Jacobi Iteration Overrelaxation

Convergence The method did not converge to the

exact solution within the maximum

iteration limit. It did not find the

solution.

The method did not converge to

the exact solution within the

maximum iteration limit. It did

not find the solution.

The method did not converge to

the exact solution within the

maximum iteration limit. It did not

find the solution.

Efficiency This method requires updating the

solution vector component by

component, which can lead to

slower convergence compared to

other methods.

This method requires updating

the solution vector component

by component, which can lead

to slower convergence

compared to other methods.

This method introduces an

overrelaxation factor that can

potentially accelerate convergence,

but in this case, it did not result in

finding the solution within the
maximum iteration limit.

Implementation

Complexity

It has similar complexity as Jacobi

as they involve updating the

solution vector based on previous

values. However, Gauss-Seidel

requires updating the solution

vector in a sequential manner, while

Jacobi Iteration updates each

component independently.

It has similar complexity as

Gauss Seidel as they involve

updating the solution vector

based on previous values.

However, Gauss-Seidel requires

updating the solution vector in a

sequential manner, while Jacobi

Iteration updates each

component independently.

This method introduces an

additional parameter, the

overrelaxation factor, which

requires careful selection for

optimal convergence.

Based on the provided example, none of the methods

(Gauss-Seidel, Jacobi Iteration, and Overrelaxation) were

able to find the exact solution within the maximum iteration
limit. The convergence was not achieved, indicating the

need for further investigation and potential adjustments to

improve the convergence behavior.

VIII. CONCLUSION

In conclusion, this paper focused on enhancing

computational precision through the addition of advanced

numerical techniques to a Graphical User Interface (GUI)

for linear systems. Five methods were implemented and

evaluated: LU Doolittle Decomposition, LU Crout
Decomposition, Gauss-Seidel, Jacobi Iteration, and

Overrelaxation. We have explored five different methods for

solving linear systems: LU Doolittle Decomposition, LU

Crout Decomposition, Gauss-Seidel, Jacobi Iteration, and

Overrelaxation. Through the literature review, we gained

insights into the existing techniques for solving linear

systems and the available GUI frameworks. Various papers

were reviewed, providing a comprehensive understanding of

the state-of-the-art approaches and GUI enhancements in the

field. Based on the examples as shown in table 4.2, none of

the methods were able to find the exact solution within the

given maximum iteration limit. Each method demonstrated
its own characteristics and limitations. The LU

Decomposition methods (Doolittle and Crout) can provide

an exact solution if the decomposition is successful, but they

require higher computational cost. The iterative methods

(Gauss-Seidel, Jacobi Iteration, and Overrelaxation) are

more suitable for large-scale systems or when an exact

solution is not required, but their convergence may depend

on the specific properties of the linear system. However, it is

important to note that the efficiency and convergence

behavior of these methods can vary depending on the

specific properties of the linear system, such as matrix size,
sparsity, and condition number. The choice of the most

efficient method depends on factors like the desired

accuracy, computational resources, and the characteristics of

the problem.

FUTURE WORK

Further investigation can be conducted to improve the

convergence behavior of iterative methods, such as Gauss-

Seidel, Jacobi Iteration, and Overrelaxation. Exploring

convergence acceleration techniques or adaptive strategies

can help enhance the efficiency and reliability of these

methods. Also, conducting a thorough error analysis and

stability assessment of the implemented methods can

provide insights into their robustness and accuracy.

Investigating the effects of different system properties, such
as matrix size, condition number, and sparsity, on the

methods' performance can help identify potential areas for

improvement. By addressing these areas of future work, the

research can contribute to the ongoing development and

advancement of GUI-based linear system solvers, ultimately

enhancing computational precision and usability for a wide

range of applications.

REFERENCES

[1]. Li, X., Li, H., & Qin, Q. (2018). Design of Graphical

User Interface for Solving Linear Systems. Journal of
Physics: Conference Series, 1105(1), 012071.

[2]. Bai, Z., & Golub, G. H. (2000). Accelerated Hermitian

and Skew-Hermitian Splitting Methods for Non-

Hermitian Positive Definite Linear Systems. SIAM

Journal on Scientific Computing, 21(6), 2259-2286.

[3]. Parlett, B. N. (1998). The Symmetric Eigenvalue

Problem. Society for Industrial and Applied

Mathematics (SIAM).

[4]. Sedlmair, M., Meyer, M., & Munzner, T. (2014).

Design Study Methodology: Reflections from the

Trenches and the Stacks. IEEE Transactions on
Visualization and Computer Graphics, 20(12), 2201-

2210.

http://www.ijisrt.com/

Volume 8, Issue 7, July – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JUL026 www.ijisrt.com 261

[5]. Diehl, S., Heine, C., & Brüggemann, T. (2016).

Visualizing Iterative Solvers for Large Linear Systems

with HPCGVis. Procedia Engineering, 163, 26-34.

[6]. Kniss, J., Kindlmann, G., & Hansen, C. D. (2002).

Multidimensional Transfer Functions for Interactive

Volume Rendering. IEEE Transactions on Visualization

and Computer Graphics, 8(3), 270-285.

[7]. Carletti, M., Francini, G., & Sassolini, E. (2013). A
MATLAB Graphical User Interface for an Effective

Use of the Conjugate Gradient Method. International

Journal of Computer Mathematics, 90(10), 2209-2226.

[8]. Li, S., & Xia, H. (2011). LU Decomposition Algorithm

and Its Application Based on GUI Technology. Journal

of Computers, 6(8), 1670-1677.

[9]. Rahmat, R. A. O., & Majid, Z. (2019). Implementation

of Overrelaxation Method for Solving Linear System

of Equations with GUI in MATLAB. AIP Conference

Proceedings, 2123(1), 020040.

[10]. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland,

M., Reddy, T., Cournapeau, D., ... & van der Walt, S. J.
(2020). SciPy 1.0: Fundamental Algorithms for

Scientific Computing in Python. Nature Methods,

17(3), 261-272.

[11]. Greenbaum, A. (1997). Iterative Methods for Solving

Linear Systems. Society for Industrial and Applied

Mathematics (SIAM) Review, 39(4), 648-666.

[12]. Ullah, F., & Bae, K. H. (2016). Graphical User

Interface for Direct and Iterative Methods to Solve

Linear Systems. Journal of Applied Mathematics,

Statistics, and Informatics, 12(1), 25-34.

[13]. Schreiber, R., & Matsumoto, R. (2017). GUIBENCH:
A Benchmarking Tool for Linear Algebra GUIs. In

Proceedings of the 2017 IEEE 13th International

Conference on e-Science (e-Science) (pp. 459-466).

IEEE.

[14]. Kniss, J., Kindlmann, G., & Hansen, C. (2002).

Multidimensional Transfer Functions for Interactive

Volume Rendering. IEEE Transactions on Visualization

and Computer Graphics, 8(3), 270-285.

http://www.ijisrt.com/

