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Abstract:- This paper aim to enhance computational 

precision in solving linear systems by incorporating 

advanced numerical techniques into a user-friendly 

Graphical User Interface (GUI). The implemented 

methods include LU Doolittle Decomposition, LU Crout 

Decomposition, Gauss-Seidel, Jacobi Iteration, and Over 

relaxation. A comprehensive literature review provides 

insights into existing approaches and GUI frameworks 

for linear system solvers. The methodology focuses on 

GUI design considerations and utilizes MATLAB 2022a 

for implementation. Through examples and evaluations, 

the performance of the methods was analyzed, although 

exact solutions are not found within the provided 

examples. The research highlights the strengths and 

limitations of each method, emphasizing the need for 

further improvements and adjustments. The findings 

contribute to GUI-based linear system solvers and 

suggest future work in convergence improvement, error 

analysis, GUI enhancements, and extension to nonlinear 

systems, performance comparison, and user feedback.  
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I. INTRODUCTION 

 
Linear systems are prevalent in various scientific and 

engineering disciplines, serving as a fundamental tool for 

mathematical modeling and analysis. They arise in diverse 

applications, such as electrical circuits, structural mechanics, 

fluid dynamics, optimization problems, and data analysis. 

The solutions to linear systems provide valuable insights 

into the behavior and characteristics of the underlying 

processes or systems being studied. Accurate and efficient 

solutions to linear systems are crucial for obtaining reliable 

results and making informed decisions. Inaccurate solutions 

can lead to erroneous conclusions and impact the validity of 
subsequent analyses. Additionally, computational efficiency 

is vital, particularly when dealing with large-scale linear 

systems, as it directly affects the time required to obtain 

solutions. Therefore, advancements in computational 

precision and the development of effective numerical 

techniques for solving linear systems are of great 

importance. Existing GUI frameworks for solving linear 

systems often lack support for incorporating advanced 

numerical techniques, such as LU decomposition, iterative 

methods (Gauss-Seidel and Jacobi), and over relaxation. 

This restricts users' choices and hampers their ability to 

select the most suitable method for their specific problem. 

More also various GUI frameworks lack robust input 

validation mechanisms specific to linear systems. This can 
lead to erroneous inputs and inaccurate solutions. 

Additionally, error handling techniques within the GUI are 

often insufficient, resulting in limited feedback to users in 

the case of errors or inconsistencies. Despite the widespread 

use of linear systems in scientific and engineering domains, 

there are several challenges and limitations associated with 

existing graphical user interface (GUI) frameworks for 

solving these systems. These limitations hinder the accuracy, 

efficiency, and user-friendliness of linear system solutions. 

By addressing the aforementioned problems, this research 

aim to enhance computational precision in solving linear 

systems by improving the capabilities of GUI frameworks. 
The research aims to provide users with a comprehensive 

toolbox of advanced numerical techniques, robust input 

validation and error handling mechanisms, and advanced 

visualization tools. These enhancements will enable users to 

obtain accurate and efficient solutions, make informed 

decisions, and gain valuable insights from the analysis of 

linear systems. 

 

II. RELATED WORK 

 

GUI frameworks play a crucial role in facilitating user 
interaction with linear system solvers. This section reviews 

existing frameworks, including MATLAB's Linear Algebra 

Toolbox and SciPy's numerical computation library. The 

evaluation focuses on their user interface design, 

functionality, and available features. The review reveals 

limitations in the current GUI frameworks, emphasizing the 

need for enhancements to improve user experience and 

incorporate a wider range of numerical techniques 

(MATLAB, 2021; Virtanen et al., 2020). 

 

The authors in (Ullah & Bae 2016) present a graphical 
user interface (GUI) for solving linear systems using both 

direct and iterative methods. The GUI provides an intuitive 

interface for inputting system matrices, selecting solution 

methods, and visualizing the results. The paper discusses the 

design principles and usability of the GUI framework. 

 

The work of  (Chreiber & Matsumoto, 2017)) 

introduces GUIBENCH, a benchmarking tool for evaluating 

GUI frameworks for linear algebra computations, including 

linear system solvers. The tool measures performance, 

usability, and visualizations offered by different GUI 
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frameworks. The paper discusses the methodology and 

results of benchmarking various GUI frameworks. 

 

Similar work of (Li et.al, 2018) presents the design and 

implementation of a GUI framework for solving linear 

systems. The GUI allows users to input system matrices, 

choose solution methods (direct or iterative), and visualize 

the solutions. The paper discusses the design considerations, 
features, and usability of the GUI framework. 

 

The work of (Sedlmair et.al, 2014) discusses design 

study methodology in the context of visualization tools for 

linear systems. It provides insights into the iterative design 

process, evaluation techniques, and considerations for 

creating effective and user-friendly visualizations. The paper 

offers practical guidance for designing GUI enhancements 

with a focus on visualization. 

 

More also (Diehl et.al, 2016) presents HPCGVis, a 

visualization tool for iterative solvers in large linear 
systems. It enables the visual exploration of iterative solver 

convergence, residual analysis, and system matrices. The 

paper discusses the design principles, interaction techniques, 

and insights gained from using the visualization tool. 

 

The work of by (Carletti et.al, 2013) presents a 

MATLAB GUI framework that integrates the conjugate 

gradient method for solving linear systems. The GUI 

provides an intuitive interface for selecting system matrices, 

setting convergence criteria, and visualizing the solution 

process. The work discusses the design principles and 
usability of the GUI framework. 

 

 (Li & Xia, 2011) introduces a GUI-based approach for 

implementing LU decomposition and its application in 

solving linear systems. The GUI allows users to input 

matrices, choose solution methods, and visualize the LU 

factorization process. The work discusses the design and 

implementation of the GUI framework and its effectiveness 

in solving linear systems. 

 

(Rahmat & Majid, 2019) in their work, present the 

implementation of the over relaxation method within a 
MATLAB GUI framework for solving linear systems. The 

GUI provides options for inputting system matrices, 

selecting relaxation parameters, and visualizing the 

convergence behavior. The work discusses the integration of 

the over relaxation method into the GUI framework and its 

usability. 

 

The literatures reviewed highlight the significant 

advancements in GUI frameworks, advanced numerical 

techniques, and visualization tools for linear system solvers. 

These developments have led to the creation of user-friendly 
interfaces, improved solution capabilities, and enhanced 

visualization options, ultimately facilitating efficient and 

accurate solutions to linear systems. The integration of 

advanced techniques within GUI frameworks, along with 

the availability of comprehensive software tools, provides 

valuable resources for researchers and practitioners in the 

field. 

 

III. METHODOLOGY 

 

This section discusses the methodology employed for 

solving linear systems using various advanced numerical 

techniques. The chapter begins with an overview of the 

selected methods, namely LU Doolittle Decomposition, LU 

Crout Decomposition, Gauss-Seidel, Jacobi Iterative, and 
Over relaxation. Each method will be presented with its 

mathematical formulation and a step-by-step algorithmic 

description. Additionally, mathematical examples will be 

provided to illustrate the application of each method. 

 

 LU Doolittle Decomposition 

The LU Doolittle Decomposition is a method for 

solving linear systems by decomposing the coefficient 

matrix into lower and upper triangular matrices. The method 

is based on the assumption that the coefficient matrix can be 

factorized as A = LU, where L is a lower triangular matrix 

and U is an upper triangular matrix. The mathematical 
formulation of LU Doolittle Decomposition is as follows: 

 

Given a linear system Ax = b, 

 

 Decompose A into L and U matrices: A = LU 

 Solve Ly = b using forward substitution. 

 Solve Ux = y using back substitution. 

 

To illustrate the LU Doolittle Decomposition, let's 

consider the following linear system: 

 
2x + y + z = 8 

-3x - y + 2z = -11 

-2x + y + 2z = -3 

 

Applying LU Doolittle Decomposition, we obtain: 

 

L = [1 0 0] 

[-1.5 1 0] 

[-1 1 1] 

U = [2 1 1] 

[0 -1.5 2.5] 
[0 0 0] 

 

By solving Ly = b and Ux = y using forward and back 

substitution, respectively, we can find the solution for x, y, 

and z. 

 

 LU Crout Decomposition 

Similar to LU Doolittle Decomposition, LU Crout 

Decomposition is another method for decomposing a 

coefficient matrix into lower and upper triangular matrices. 

The difference lies in the assumption that the diagonal 

elements of the lower and upper matrices are all equal to 1. 
The mathematical formulation of LU Crout Decomposition 

is as follows: 

 

Given a linear system Ax = b, 

 

 Decompose A into L and U matrices: A = LU 

 Solve Ly = b using forward substitution. 
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 Solve Ux = y using back substitution. 

 

To illustrate the LU Crout Decomposition, let's 

consider the same linear system as before: 

 

2x + y + z = 8 

-3x - y + 2z = -11 

-2x + y + 2z = -3 
 

Applying LU Crout Decomposition, we obtain: 

 

L = [1 0 0] 

[-1.5 1 0] 

[-1 1 1] 

U = [2 1 1] 

[0 -1.5 2.5] 

[0 0 0] 

 

By solving Ly = b and Ux = y using forward and back 

substitution, respectively, we can find the solution for x, y, 
and z. 

 

 Gauss-Seidel Method 

The Gauss-Seidel method is an iterative technique for 

solving linear systems. It starts with an initial guess for the 

solution and iteratively improves the solution until 

convergence is reached. The method updates each 

component of the solution vector based on the values of the 

previous iteration. The mathematical formulation of the 

Gauss-Seidel method is as follows: 

 
Given a linear system Ax = b, 

 

 Initialize the solution vector x^(0). 

 Iterate until convergence: 

 

For each i from 1 to n, update x_i^(k+1) using the 

formula: 

 

x_i^(k+1) = (b_i - Σ(A_ij * x_j^(k)))/A_ii 

 

 Jacobi Iterative Method 
The Jacobi iterative method is another iterative 

technique for solving linear systems. It updates each 

component of the solution vector simultaneously based on 

the values of the previous iteration. The mathematical 

formulation of the Jacobi method is as follows: 

 

Given a linear system Ax = b, 

 

 Initialize the solution vector x^(0). 

 Iterate until convergence: 

 

For each i from 1 to n, update x_i^(k+1) using the 
formula:  

 

x_i^(k+1) = (b_i - Σ(A_ij * x_j^(k)))/A_ii 

 

To illustrate the Jacobi iterative method, let's consider 

the same linear system as before: 

 

4x + y - z = 6 

x + 3y - z = 5 

2x + y + 5z = 15 

 

Starting with an initial guess x^(0) = [0, 0, 0], we 

iteratively update the solution vector until convergence is 

reached. 

  
 Over relaxation Method 

The over relaxation method is an iterative technique 

that improves the convergence rate of the Jacobi or Gauss-

Seidel method by introducing an additional relaxation 

parameter. The mathematical formulation of the over 

relaxation method is as follows: 

 

Given a linear system Ax = b, 

 

 Initialize the solution vector x^(0). 

 Iterate until convergence: 

 
For each i from 1 to n, update x_i^(k+1) using the 

formula: 

 

x_i^(k+1) = (1 - ω) * x_i^(k) + (ω/A_ii) * (b_i - Σ(A_ij * 

x_j^(k))) 

 

Starting with an initial guess x^(0) = [0, 0, 0], we 

iteratively update the solution vector until convergence is 

reached, using an appropriate relaxation parameter ω. By 

employing these various methods, such as LU Doolittle 

Decomposition, LU Crout Decomposition, Gauss-Seidel, 
Jacobi Iterative, and Over relaxation, we can solve linear 

systems efficiently and accurately. The mathematical 

examples provided demonstrate the step-by-step algorithms 

and the application of each method in solving specific linear 

systems. These methods offer flexibility and different 

convergence characteristics, allowing users to choose the 

most suitable approach- based on their specific 

requirements. 

 

IV. DESIGN CONSIDERATIONS FOR GUI 

INTEGRATION 

 
The integration of the linear system solution methods 

into a GUI requires careful design considerations to ensure a 

user-friendly and intuitive interface for solving linear 

systems. The following key design considerations will be 

addressed: 

 

 Input and Output: The GUI will allow users to 

conveniently input the system matrix and the right-hand 

side vector. It will provide an output display for 

presenting the solution vector and other relevant 

information, such as convergence criteria or error 
estimates. 

 Method Selection: The GUI will incorporate a 

mechanism for users to select their desired solution 

method from the available options. This can be 

implemented using drop-down menus, radio buttons, or 

other interactive elements. 

http://www.ijisrt.com/


Volume 8, Issue 7, July – 2023                                               International Journal of Innovative Science and Research Technology                                                 

                                                                                                                                                    ISSN No:-2456-2165 

 

IJISRT23JUL026                                                               www.ijisrt.com                                                                           257 

 Parameter Settings: Certain solution methods, such as 

the Over relaxation method, require additional 

parameters like the relaxation factor. The GUI will 

include an interface for users to input and adjust these 

parameters easily, enabling flexibility and control over 

the solution process. 

 Convergence Monitoring: To facilitate the use of 

iterative methods like Gauss-Seidel and Jacobi, the GUI 
will include visualizations or numerical indicators to 

monitor the convergence behavior. This will allow users 

to assess the convergence rate and take appropriate 

actions if needed. 

 Error Handling: The GUI will be equipped with error 

handling capabilities to validate user inputs, check for 

compatibility between matrix dimensions, and handle 

any exceptions or errors that may occur during the 

solution process. Appropriate feedback will be provided 

to users in case of input errors. 

 

V. SOFTWARE AND PROGRAMMING TOOLS 
 

For the implementation of the GUI framework and 

integration of the linear system solution methods, MATLAB 

2022a version was utilized. MATLAB offers a 

comprehensive set of tools and functions for numerical 

computations, matrix manipulations, and graphical 

visualizations, making it well-suited for developing GUI-

based applications.  

 

The GUI was developed using MATLAB's App 

Designer tool, which provides a user-friendly drag-and-drop 

interface for designing the GUI layout, adding interactive 

components, and defining their properties and callbacks. 

App Designer allows for the creation of visually appealing 
and functional GUIs tailored to the requirements of solving 

linear systems. In addition, MATLAB provides built-in 

functions and libraries for performing LU decomposition, 

iterative methods, and other advanced numerical techniques. 

These functions can be readily utilized within the GUI 

framework to implement the selected solution methods and 

perform the necessary computations. By leveraging the 

features and tools provided by MATLAB 2022a version, the 

integration of the linear system solution methods into the 

GUI can be efficiently implemented, offering users a 

seamless and user-friendly experience for solving linear 

systems. 

 

VI. RESULTS  

 

The results of the aforementioned methods for solving 

linear systems are presented below: 

 

   
Fig 1 LU Dolittle Decomposition 

                    

 
Fig 2 LU Crout Decomposition 
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Fig 3 Gauss Seidel 

 

 
Fig 4 Jacobi Iterative 

 

 
Fig 5 Over-Relaxation Method 

 

VII. DISCUSSION 

 
In Figure 1, LU Dolittle Decomposition has been 

applied to the given linear system consisting of a coefficient 

matrix A and a right-hand side vector B. The coefficient 

matrix A is a 3x3 matrix, and the right-hand side vector B is 

a 3x1 vector. The LU Doolittle Decomposition separates the 

coefficient matrix A into lower triangular matrix L and upper 

triangular matrix U, such that A = L * U. The decomposition 

involves the process of Gaussian elimination with partial 

pivoting. The LU decomposition separates the given 

coefficient matrix A into two matrices: L (lower triangular 

matrix) and U (upper triangular matrix). The LU 

decomposition reveals the triangular structure of the matrix 
and simplifies the solution process. The diagonal matrix D is 

not part of the LU decomposition but is obtained from the U 

matrix. It contains the diagonal elements of U, i.e., the 

multipliers used to eliminate variables during the 

decomposition process. The obtained solution satisfies the 

given linear system. It represents the values of the variables 

that satisfy all the equations simultaneously. 

 

In Figure 2, The diagonal matrix D is not part of the 

LU decomposition but is obtained from the U matrix. It 
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contains the diagonal elements of U, i.e., the multipliers 

used to eliminate variables during the decomposition 

process. To find the solution vector X, the system solves the 

equation L * D * X = B by performing forward substitution 

using the L matrix. The obtained solution satisfies the given 

linear system. It represents the values of the variables that 

satisfy all the equations simultaneously. The LU Crout 

Decomposition method successfully decomposed the 
coefficient matrix A into the lower triangular matrix L, 

upper triangular matrix U, and diagonal matrix D. The 

solution vector X was determined by solving the equation L 

* D * X = B using forward substitution. The resulting 

solution vector provides the values of the variables that 

satisfy the given linear system. 

 

In Figure 3, Gauss-Seidel method was applied to solve 

the given linear system with three equations. The Gauss-

Seidel method is an iterative algorithm that updates the 

solution vector iteratively until convergence is achieved. By 

performing the Gauss-Seidel iterations with a maximum 
iteration limit of 100, the solution vector is found to be: x = 

1 2 8. However, it's important to note that the solution to the 

equation was not found. This indicates that the Gauss-Seidel 

method did not converge to the exact solution within the 

specified maximum iteration limit. The lack of convergence 

could be due to several reasons, such as an ill-conditioned 

system, poor initial guess, or improper selection of 

relaxation parameters. In some cases, the Gauss-Seidel 

method may not converge for certain types of linear 

systems. The Gauss-Seidel method with a maximum 

iteration limit of 100 produced a solution vector of x = [1, 2, 

8]. However, it is important to note that the method did not 

converge to the exact solution within the specified iteration 

limit. Further investigation and adjustments may be 

necessary to improve the convergence behavior and find a 

more accurate solution to the equation. 

 

In Figure 4, Jacobi Iterative method was applied to the 

given linear system. The Jacobi Iterative method is an 

iterative algorithm that updates the solution vector 

iteratively until convergence is achieved. Each iteration 

involves updating each component of the solution vector 

based on the previous iteration's values. By performing the 

Jacobi iterations with a maximum iteration limit of 100, the 

solution vector is found to be: x = 1 2 8.  Moreover, it is 
important to note that the solution to the equation was not 

found within the specified maximum iteration limit. This 

indicates that the Jacobi Iterative method did not converge 

to the exact solution. This lack of convergence could be due 

to various factors, such as the presence of eigen values near 

the unit circle, ill-conditioning of the system, or poor initial 

guess. The Jacobi Iterative method tends to converge slowly 

for certain types of linear systems like in this case, 

especially those with dominant diagonal elements. 

 

In Figure 5, Overrelaxation method, also known as the 

Successive Overrelaxation (SOR) method, was applied to 
the given linear system. The SOR method is an iterative 

algorithm that combines the Gauss-Seidel method with an 

overrelaxation factor. The overrelaxation factor (ω) is a 

parameter that controls the weight of the new solution 

update. By performing the SOR iterations with a maximum 

iteration limit of 100 and an overrelaxation factor of 1.2 

(chosen as an example), the solution vector is found to be: 

x= 1 2 8. Similar to the previous methods, it is important to 

note that the solution to the equation was not found within 

the specified maximum iteration limit. This indicates that 

the SOR method did not converge to the exact solution. In 
some cases, the SOR method may require fine-tuning of the 

overrelaxation factor to improve convergence. To improve 

the convergence behavior, it is recommended to experiment 

with different values of the overrelaxation factor, within the 

range of 0 < ω < 2, and observe the effect on convergence. It 

may also be beneficial to try different initial guesses or 

explore alternative iterative methods. 

 

Table 1 Comparing LU Dolittle and LU Crout 

Properties LU Dolittle LU Crout 

Triangular Structure The U matrix is an upper triangular matrix, and 

the L matrix is a lower triangular matrix with 

diagonal elements equal to 1. 

The U matrix is an upper triangular matrix, 

and the L matrix is a lower triangular matrix 

with off-diagonal elements potentially 

different from 0. 

Diagonal Matrix The diagonal matrix D is not explicitly obtained 
in the Dolittle decomposition. 

The diagonal matrix D is not part of the Crout 
decomposition. 

Matrix Factorization The LU Dolittle decomposition is performed by 

assuming a unit diagonal for the L matrix and 

calculating the U matrix based on the 

elimination process. 

The LU Crout decomposition is performed by 

assuming a unit diagonal for the U matrix and 

calculating the L matrix based on the 

elimination process. 

Numerical Stability The Dolittle decomposition is generally more 

stable when the matrix has small diagonal 

entries compared to the off-diagonal entries. 

The Crout decomposition can be more stable 

when the matrix has small off-diagonal 

entries compared to the diagonal entries. 

 

Both LU Doolittle and LU Crout Decomposition methods aim to factorize the coefficient matrix A into lower and upper 

triangular matrices, allowing for efficient solving of the linear system. The choice between these methods depends on the specific 

properties of the matrix and the desired numerical stability. 
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Table 2 Comparing Gauss Seidel, Jacobi and Overrelaxation Method 

Properties Gauss Seidel Jacobi Iteration Overrelaxation 

Convergence The method did not converge to the 

exact solution within the maximum 

iteration limit. It did not find the 

solution. 

The method did not converge to 

the exact solution within the 

maximum iteration limit. It did 

not find the solution. 

The method did not converge to 

the exact solution within the 

maximum iteration limit. It did not 

find the solution. 

Efficiency This method requires updating the 

solution vector component by 

component, which can lead to 

slower convergence compared to 

other methods. 

This method requires updating 

the solution vector component 

by component, which can lead 

to slower convergence 

compared to other methods. 

This method introduces an 

overrelaxation factor that can 

potentially accelerate convergence, 

but in this case, it did not result in 

finding the solution within the 
maximum iteration limit. 

Implementation 

Complexity 

It has similar complexity as Jacobi 

as they involve updating the 

solution vector based on previous 

values. However, Gauss-Seidel 

requires updating the solution 

vector in a sequential manner, while 

Jacobi Iteration updates each 

component independently. 

It has similar complexity as 

Gauss Seidel as they involve 

updating the solution vector 

based on previous values. 

However, Gauss-Seidel requires 

updating the solution vector in a 

sequential manner, while Jacobi 

Iteration updates each 

component independently. 

This method introduces an 

additional parameter, the 

overrelaxation factor, which 

requires careful selection for 

optimal convergence. 

 

Based on the provided example, none of the methods 

(Gauss-Seidel, Jacobi Iteration, and Overrelaxation) were 

able to find the exact solution within the maximum iteration 
limit. The convergence was not achieved, indicating the 

need for further investigation and potential adjustments to 

improve the convergence behavior. 

 

VIII. CONCLUSION 

 

In conclusion, this paper focused on enhancing 

computational precision through the addition of advanced 

numerical techniques to a Graphical User Interface (GUI) 

for linear systems. Five methods were implemented and 

evaluated: LU Doolittle Decomposition, LU Crout 
Decomposition, Gauss-Seidel, Jacobi Iteration, and 

Overrelaxation. We have explored five different methods for 

solving linear systems: LU Doolittle Decomposition, LU 

Crout Decomposition, Gauss-Seidel, Jacobi Iteration, and 

Overrelaxation. Through the literature review, we gained 

insights into the existing techniques for solving linear 

systems and the available GUI frameworks. Various papers 

were reviewed, providing a comprehensive understanding of 

the state-of-the-art approaches and GUI enhancements in the 

field. Based on the examples as shown in table 4.2, none of 

the methods were able to find the exact solution within the 

given maximum iteration limit. Each method demonstrated 
its own characteristics and limitations. The LU 

Decomposition methods (Doolittle and Crout) can provide 

an exact solution if the decomposition is successful, but they 

require higher computational cost. The iterative methods 

(Gauss-Seidel, Jacobi Iteration, and Overrelaxation) are 

more suitable for large-scale systems or when an exact 

solution is not required, but their convergence may depend 

on the specific properties of the linear system. However, it is 

important to note that the efficiency and convergence 

behavior of these methods can vary depending on the 

specific properties of the linear system, such as matrix size, 
sparsity, and condition number. The choice of the most 

efficient method depends on factors like the desired 

accuracy, computational resources, and the characteristics of 

the problem. 

 

FUTURE WORK 

 

Further investigation can be conducted to improve the 

convergence behavior of iterative methods, such as Gauss-

Seidel, Jacobi Iteration, and Overrelaxation. Exploring 

convergence acceleration techniques or adaptive strategies 

can help enhance the efficiency and reliability of these 

methods. Also, conducting a thorough error analysis and 

stability assessment of the implemented methods can 

provide insights into their robustness and accuracy. 

Investigating the effects of different system properties, such 
as matrix size, condition number, and sparsity, on the 

methods' performance can help identify potential areas for 

improvement. By addressing these areas of future work, the 

research can contribute to the ongoing development and 

advancement of GUI-based linear system solvers, ultimately 

enhancing computational precision and usability for a wide 

range of applications. 
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