
Volume 8, Issue 1, January – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JAN874 www.ijisrt.com 656

Knowledge Graph Creation based on Ontology

from Source-Code: The Case of C#

Seid Mehammed, Sebahadin Nasir

Department of Computer Science, Woldia University

Abstract:- The software's core data and business logic

are believed to be contained in the source code.

Therefore, the necessity for a semantically soundly

linked and structured code data management system is

a major challenge in the field of software engineering.

This paper investigates a domain ontology-based

automatic knowledge graph creation method for C#

source code. The semantic web, open-source developers,

knowledge management, expert systems, and online

communities are just a few of the fields where software

engineers may now understand and analyze code in a

semantic manner. By layering conditional random

fields on top of a trained Bi-LSTM network, candidate

terms for concepts or entities were extracted.The

models were automatically trained on a labeled data

corpus while also being manually defined. To improve

the classification of terms in a particular source code,

BI-LSTM and CRF are integrated. Other

characteristics to be extracted from the source code

were defined in addition to the basic CRF features,

which helped the model understand the categorization

constraints. Then, the Bi-LSTM model was utilized to

extract relations (taxonomic and non-taxonomic). Max

pooling has been used to integrate the links between

concepts at the word and code levels.

Studies demonstrating the applicability and

practicality of the proposed approach make use of the

SNIPS-NLU library, a C# library for natural language

processing. The evaluation process made use of both

expert evaluation and the gold standard ontology that

was established by experts. According to an expert

analysis of the experiment's results, this approach

generated an average f-measure and relevance of 77.04

and 81.275, respectively. By extracting elements and

relations from C# and other programming languages

that are similar, recurrent neural networks appear to

be efficient and promising.

Keywords:- Knowledge graph, ontology,, knowledge base.

I. INTRODUCTION

An ontology is a formal explicit specification of

shared conceptualization of a domain, where formal

specialization denotes machine-readability with

computational semantics, explicit denotes unambiguous

terminology definitions, and shared denotes that it is
generally accepted understanding and conceptualization,

implying conceptual model of a domain. [1].

Ontology learning, which is also referred to as

ontology extraction, ontology generation, or ontology

acquisition, is the automatic or semi-automatic creation of

ontologies that entails extracting the terms from a corpus of

natural language text that correspond to the domain and the

connections between the concepts those terms represent,
then encoding them with an ontology language for easy

retrieval.

Any piece of software must have its source code. The
source code contains all errors that arise during software

testing or execution. As a result, source code ontologies

represent the program source code in terms of the software

objects it contains, including modules, packages, functions,

namespaces, variables, and database objects. Building an

ontology for software source code manually takes a lot of

time and effort because there is so much source code

available in a software. Consequently, the domain is crucial

for automatic ontology learning [1, 4, 5].

Additionally, a dynamic resource in software projects

is the source code. The ontology must develop and be

updated as the code is modified. The ontology of a

knowledge graph [6] can be expanded and altered as new

data is received. It is a visual, intelligent, and dynamic

representation of knowledge. Knowledge graphs are the

best tool for working with a dynamic dataset because they
may capture a variety of meta-data annotations, such as

provenance or versioning information. As a result, it can be

used to represent the source code ontology, a changing

resource.

II. RELATED WORK

A. Introduction

Ontologies have been present in research for decades,

serving as a back bone for semantic web and semantic

representation. However, interest in ontologies was lost, as

machine learning became the hot research area taking focus

of researchers. However, in the past decade, ontologies and

semantic data came back into the spotlight. Realizing that

knowledge management, data integration, data publishing,

smart data access and analytics are impossible without the

smart knowledge representation, different researchers made

their intention on the area. In this Chapter, we will try to
present some of the works in ontology learning starting

from those dealing with text data to source code.

http://www.ijisrt.com/

Volume 8, Issue 1, January – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JAN874 www.ijisrt.com 657

B. Ontologylearning from text source

A large collection of methods for ontology learning
from text have developed over recent years by proceedings

of various workshops in semantic web area.

 Amharic Ontology Learner(AOL)

AOL [32] is a learning system that converts plain

text written in Amharic into a domain ontology

automatically. The automatic idea extraction from an

Amharic text document, relationship mining (among

concepts), and formal representation of those

concepts on an ontology are all being done for the

first time in this research project. In order to create

an ontology that can represent a given domain, the

Amharic Ontology Learner takes a set of Amharic
documents that are focused on that topic as input.

They used TF-IDF based method for single

word concept extraction and C-Value for multi-word
concepts. Then agglomerative hierarchical clustering

and verbal expressions were used for the extraction

of taxonomic and non-taxonomic relations

respectively. The researchers used Parts of Speech

Tagged multi-domain news document of WALTA

information center. They have achieved 70%,

70.20% and 51.7% of precision in concept,

taxonomic relations and non-taxonomic relations

extraction respectively.

However, these ontology-learning approaches

are inadequate to deal with ontology learning from

source code. This is because of the following

challenges in learning domain ontology from source

code as mentioned in Bontcheva et al. [2]. Each

programming language and software project tends to

have naming conventions and these need to be
considered. The second problem is that the ontology

learning methods need to distinguish between terms

specific for the programming language being used

and the application-specific terms. And many of the

extracted terms can refer to the same concept.

Hence, researches have been conducted in providing

best method for building ontology from software

source code.

C. Ontology Learning from code

 Java Ontologies

An efficient method for automatic generation or

extraction of ontology from software source code

has been a critical issue. Genapathy and Sagayaraj

[5] proposed a method to automatically create

ontology by extracting metadata from the Java
source code. They used Qdox to extract metadata

from the source code. The metadata is an

information about the package, classes, methods and

interfaces in the file. After extracting the metadata,

the frame work stores the meta-data in to OWL

using Jena API. Then the entire project folder stored

in the HDFS, is linked to the method signature in the

OWL ontology for retrieval purpose. By generating

ontology for source code, it will be effective to make

software source code available for semantic webs,

reuse code, and extract components of the software.

Rather than using different APIs in extracting

ontology even for metadata it will be effective using
machine learning to discover relations and rules.

K. Bontcheva and S. Marta [2] also developed

ontology learning (extraction or generation) from

software artifacts which is from multisource
including source code. Simple terms are extracted

from the source code and then used as a starting

point for identifying compound terms in the user

documentation. They combined terms from source

code and other sources to learn concepts or domain

terminologies. They have experimented with term

extraction from 536 Java source files in GATE

Version 3.1. They found only 218 terms have

frequency more than 1 out 576 total terms extracted.

Then these terms were combined with terms from

forum posts producing 153 multiword terms. Totally
they found 286 frequent terms out of 719. Evaluated

by a domain expert this resulted in precision of

73.4%. They have achieved only two tasks of

ontology learning namely term extraction and

concept identification. Their work fails to create

concept hierarchy or taxonomic relations and non-

taxonomic relations among concepts. It also fails to

deal with the dynamic nature of source codes, which

needs ontology versioning and evolution.

F. JiomekongAzanzi& C. Gaoussou [8]

proposed a method to extract knowledge from the

source code for ontology enrichment. Their method

is based on Hidden Markov Models (HMMs). This

work was aimed to extract terms from source code

which can be annotated as different components of

ontology automatically. From the source code, they
have extracted 808, 55111, 3522, 263 candidate

terms to be concepts, properties, axioms and rules

respectively. The relational terms they have

extracted are only hierarchical which are

programmer defined. Even though they have

presented the knowledge extracted is complete, it

was by comparing the number of terms they have

extracted with those extracted from database and

meta model; this shows their work lacks a good

evaluation method. This work can be as a good input

for ontology learning which simplifies the first and
important step namely domain term extraction.

As we can see from [1, 2, 5, 8], ontology

learning from software source code is not fully

covered through researches. Different frameworks
and architectures were proposed for ontology

learning from textual data while learning from code

has no general architecture. Therefore, this work is

aimed to develop an ontology learning method from

software source code in which the generated

ontology can fully represent the source code in a

given project, and also to automate all the tasks in

ontology learning using deep learning neural

networks. Knowledge graph construction for code

based on the domain ontology is also to be addressed

by this research work.

http://www.ijisrt.com/

Volume 8, Issue 1, January – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JAN874 www.ijisrt.com 658

D. Knowledge Graph Creation

Knowledge graph has been the hottest research area

since Google released its first knowledge graph as part of

the search engine in 2012 [23].

Martinez-Rodriguez et al. in [33] proposed Open-IE

based approach for knowledge graph construction from

text. This method is based on a combination of Natural

Language Processing (NLP) and Information Extraction

(IE) operations in order to transform an input text into RDF

triples. This paper presents basic techniques and methods
used in knowledge graph construction. They classified the

process into EEL (entity extraction and linking) and REL

(relation extraction and linking) plus property

identification. By integrating different approaches of entity

and relation extraction, the researchers tried to fill the gap

in KG (Knowledge Graph) construction. By implementing

in Java, they have achieved a precision of 0.81 in entity

extraction and 0.63 in relation extraction.

E. Summary

Different approaches have been developed for

extracting ontology from textual and source code data.

While very important for understanding the methods and

techniques in the field of ontology, methods used for

ontology learning from text data such as Natural Language

processing and Linguistic based approaches are not
applicable when it comes to source code because of the

nature of code as presented in the work of [2]. Therefore,

researchers have been attempting to develop an approach

for learning ontology from source code.

After extracting ontology from a given domain, there is

a need for integrating a new arriving data into the ontology

and this was done by re-extracting the ontology. Extracting

ontology becomes a redundant work then. Therefore, we

need a flexible and graphical representation of the ontology
where the newly arriving data can simply be integrated into

the knowledge base. Hence, this study is mainly to design a

general approach for knowledge graph construction based

on ontology from C# source code.

To the best of researcher’s knowledge, this is the first

work to explore the advantage of using knowledge graph

for code analysis and representation. In this paper we will

extract RDF triples from C# source code and visualize the

knowledge graph using forced graph.

III. ONTOLOGY LEARNER AND KNOWLEDGE

GRAPH CREATION

A. Introduction
To handle their code as data in the semantic web,

software engineers require a standard method to extract

ontology and build knowledge graph from their source

code. Thus, by detailing various components and pertinent

approaches, this part describes the suggested basic

architecture for automatic ontology extraction from source

code and knowledge network generation.

B. System Architecture

The source code ontology learner creates an ontology

that contains the pertinent concepts of the domain and their

relationships by accepting source code files as input. The

knowledge graph is then created using the data that was

taken from the structured ontology. The general

architecture of our suggested method is depicted in Figure

1. The three primary stages of our approach's overall
architecture are code preprocessing, learning domain

ontologies, and building code knowledge graphs. The

sections that follow cover each component in detail.

Fig. 1: General Architecture of Proposed System

 Data preprocessing and parser

http://www.ijisrt.com/

Volume 8, Issue 1, January – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JAN874 www.ijisrt.com 659

Data was gathered using a C# open source Snips-

NLU code that was downloaded from GitHub. There
are numerous more files in software projects that are

not part of the source code but do include

information on the project or code, such as

documentations, readme files, and debates.

Consequently, in this phase, markdown (.md) files,

YAML files, text files, and copies from other

projects are all eliminated and just source code files

are provided for the following step. This is because

ontology learning from text data sources is a topic of

extensive investigation. The following parts describe

language detection and code validation, the

subsequent preprocessing stages. Data was gathered
using a C# open source Snips-NLU code that was

downloaded from GitHub. There are numerous more

files in software projects that are not part of the

source code but do include information on the

project or code, such as documentations, readme

files, and debates. Consequently, in this phase,

markdown (.md) files, YAML files, text files, and

copies from other projects are all eliminated and just

source code files are provided for the following step.

This is because ontology learning from text data

sources is a topic of extensive investigation. The
following parts describe language detection and code

validation, the subsequent preprocessing stages.

 Code validation

Prior to using the parser to extract the candidate
phrases, this sub-task is equally crucial. This is

due to the fact that using the pre-defined parsers in

this work requires a valid and syntactically

accurate code. The grammar of any programming

language's source code is checked using a

straightforward technique that is tailored to each

programming language. Giving the parser just

legitimate code files will assist to reduce errors

during the parsing stage. While others do not,

some computer languages provide parser libraries

that do. These libraries can detect errors in a code
during parsing.

 Code Parser

Parsing a code into its abstract syntax tree (AST)

and expressing it in a Json format comes before
extracting keywords or words that are potential

candidates for concepts. Similar to syntax trees

used by linguists for human languages, an abstract

syntax tree represents each syntactical component

of a programming language. We are unable to

tokenize source code using linguistic filtering,

natural language processing tools, or other

techniques, as we do with human language.

AST focuses on the rules rather than

elements like braces or semicolons that terminate

statements in some languages. Since AST module

provide only the relevant words for analyzing the

code, we don’t need any method to get rid of those

bulky irrelevant punctuations. This makes it better

than defining regular expressions for getting rid of

these kind of code elements.
 HTML / XML open/close tags

 Open/close braces {/} in programming

languages

 Open/close parentheses in arithmetical

expressions

 To parse these types of patterns, we need

something more powerful like parser (AST).

Hence, AST library is used to parse the code file into

a tree of nodes for different programming languages in this

work. Each node of the tree stands for a statement

occurring in the code. Sample AST parser libraries for

some programming languages. languages which do not

have libraries for parsing can be parsed using user defined

codes by using built in AST parsing libraries (like AST for

C#).

 Domain Ontology Extraction

Domain ontology extraction as mentioned in above

chapters is automatic extraction of the elements of

ontology for a specific domain. Hence, this module
is concerned about extracting all the elements of

ontology from source code files. This module

includes task like term extraction, concept learning

and relation extraction. The relation can be classified

as taxonomic and non-taxonomic among entities.

Methods and techniques, we have used for each sub

tasks in ontology learning are discussed in the

following sections.

IV. TERM EXTRACTION

A crucial stage in ontology learning is term

extraction, which will be dealt with in this lesson. To mine

semantically significant aspects of a domain, such as

entities, is the process of term extraction, or information

extraction (e.g., concepts and instances). This process is

managed using NER (Named entity recognition), which is

based on linguistic or statistical methodologies, for natural

languages like English. In order to extract instances of

concepts or entities from source code, NER approaches

must take into account the characteristics of natural
language.

Therefore, this module involves the identification of

proper terms in code, and the classification of these terms

into a set of predefined classes of code elements define in
the work of [21] like class definition, function definition,

expression, library, identifier, argument, attribute, etc. In

many studies, it has been depicted that CRF on the top of

Bi-LSTM is a successful method for extracting entities

from unstructured and structured data sources. Therefore,

we use Bi-LSTM + CRF in this research for term

extraction.

Since the programmer writes code sequentially, we

consider labeling terms in a source code file as sequence

labeling. Programmer types the statements step by step

sequentially, which indicates that given observations or

input labels are interdependent. For example, let’s take the

statement Result = x+y/2 in C# language: in this statement

http://www.ijisrt.com/

Volume 8, Issue 1, January – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JAN874 www.ijisrt.com 660

the value of variable result depends on the calculated result

from the right-side operation. If the previous observation is
a term class, it is obvious in many languages that the next

observation or term is the name of class. If the previous

observed label is def it’s obvious in C# that the next

observation will be the name of function.

A. Model

For this work, a supervised Bi-LSTM + CRF model is

used to extract concepts from a given corpus. The model

was trained with pre-labeled corpus. After parsing code in

to ast, training corpus was prepared by labeling the terms

with corresponding classes. Basic class labels are based on

the general ontology classes in [21] adopted to include C#

object classes. Our dataset is prepared in the format of

Kaggleentity_annotated dataset [33] which has column

Code-Index, word. The model consists of four layers

namely, word embedding layer, Bi-LSTM Layer, CRF

layer and output layer as shown in Figure 2.

B. Embedding layer

Many ML models including Keras Bi-LSTM require

that the input data be integer encoded, so that each word is

represented by a unique integer. This data preparation step
is performed using the Tokenizer API also provided with

Keras. It is basically a dictionary lookup that takes integers

as input and returns the associated vectors. It takes three

parameters:

 Input_dim: Size of the vocabulary in the text data

 Output_dim: Dimensionality of the embedding

 Input_length: Length of input sequence

We used Keras embedding layer for word embedding in

our case.

Fig. 2: Bi-LSTM+CRF Model

C. BI-LSTM Layer
The second component of our model is BI-LSTM and it

is used to produce vector representation for our words. It

takes each word in a sentence (code file in our case) as an

input and produce a vector representation of each word in

both directions (i.e.; forward and backward) where, forward

direction access past information and backward direction

access future. The bi-directional network is needed because

the future words are not fully utilized when predicting label

in the middle of a code. Since we are considering code file

as a sentence, we need long term memory in both directions

depending on the behavior of programming language.

The outputs of BI-LSTM are scores of each label for
a given word/term.

D. CRF Layer

CRF layer is an optimization on top of BI-LSTM layer.

CRF layer adds constraints to the predicted label during
model training and this constraint could be used for

validating the label.

The overall workflow of term extraction is shown in

Figure 3.4. Our model is a combination of embedding, bi-
lstm, and crf layers and it finally classifies terms in to their

corresponding class.

Fig. 3: Overall workflow of term extraction process

http://www.ijisrt.com/

Volume 8, Issue 1, January – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JAN874 www.ijisrt.com 661

V. EXTRACTION OF CONCEPTS

The purpose of this module is to identify concepts of

a given source code data. The main step in ontology

learning is extracting concepts from a given corpus and

many researches have been conducted on this area.

Our concept extraction process is based on the class

tags provided as the general ontology structure in the work

of [21] and TF-IDF. These class labels are used to group

entities according to their classes. By making AST parser

to label tokens as type, value and children labels, we can
use the type class elements of a code to label terms. This

makes term-concept mapping simple.

VI. RELATION EXTRACTION

The next task in ontology takes us to taxonomic and

non-taxonomic relation extraction. It is a very important

task in ontology construction. Taxonomic relations mostly

indicate “is-a”, “sub-class-of”, “has-type” and other
relations among the concepts. If two classes ’A’ and ’B’

are candidate terms to be concepts and class “B” inherits

“A”, then, one can define a taxonomic relation between the

classes ’B’ and ’A’. Andboth classes are sub classes of the
entity “class” in the ontology.

This module is responsible for automatically

extracting relations. We choose Bi-LSTM model as this

type of Recurrent Neural Network has proven itself to be
well suited to tasks where remembering long-term

dependencies is crucial. It is very important to keep track

of the past terms and structures to detect long-distance

relation patterns in a code. Figure 4 shows workflow of

relation extraction process.

We adopted Bi-LSTM in [14] to extract both

taxonomic and non-taxonomic relations in our research.

We have implemented this module first by taking list of

concepts and converting it into indexed word vector by

using Keras embedding layer. Then Bi-LSTM is used to

extract relations based on word/term level features and

max-pooling is used to merge the sentence level relations

with word level relations.

Fig. 4: Relation Extraction workflow

A. Knowledge graph storage, Access and visualization

We used SPARQL, an RDF query language—that is, a

semantic query language for databases—able to retrieve
and manipulate data stored in Resource Description

Framework (RDF) format to access a knowledge graph.

VOWL plugin for protégé is used to display, analyze, and

visualize

B. RDF graphs

RDF graphs are handled using rdflib (a C# library used

to manipulate rdf files). It has facilities to copy subgraphs

from one graph to another, making it possible to assemble

local graphs that contain facts relevant to a particular

decision, work on them intimately, and then store results in

a permanent triple store.

VII. EXPERIMENTS

A. Introduction

In this Chapter, we will present the experiments

conducted on Snips NLU platform developed in C#. Our

algorithms have been coded in C# and we extracted the

candidate terms to be concepts and relations. In the

following sections, we will first present Snips NLU

platform, the experiments of the approach on Snips NLU

source code, the results and evaluation of knowledge

extracted from the source code of this platform and, finally,

we will present the results and evaluation of our approach.

 Evaluation

Ontology learning techniques are evaluated in two

ways; automatically by using gold standard and

manually by experts. We used both evaluation by
experts and gold standard method to evaluate our

ontology learning techniques. The gold standard

ontology was developed from Snips-NLU project

and validated by experts. We will use this ontology

for evaluating our proposed approach in the

following paragraphs.

 Expert Evaluation

We requested two experts in the area of semantic

web and ontology to check the ontology extracted

carefully before evaluating. In order to resolve miss

understanding during evaluation we have prepared a

description the description of basic criteria of

evaluating ontology. From the expert’s evaluation,

we have got the following result shown in Table 1.

http://www.ijisrt.com/

Volume 8, Issue 1, January – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JAN874 www.ijisrt.com 662

Table 1: Expert evaluation results

The above evaluation result shows that our approach

is efficient in all the tasks based on subjective expert

evaluation. The system has average relevance of 81.275%
from expert evaluation.

 Gold standard evaluation

The other method we have used is gold standard

evaluation which is done by using pre developed
ontology of the project based on evaluation metrics,

standard recall (R), precision (P) and F-measure (F).

Precision

𝑇𝑇

Recall=

F-measure= 2×(

TP (True Positive): a positive instance that is also predicted

to be positive.

FP (False Positive): a negative instance that is predicted to

be positive.

FN (False Negative): a positive instance that is predicted to

be negative.

Based on the above metrics, Figure 4.3 summarizes

the evaluation result of the four phases in our approach.

Fig. 5: Ontology learner performance measurement

From this evaluation results, we can conclude that the

use of bi-directional RNN network (BiLSTM and CRF) for

extraction of ontology is effective and promising. Our

approach has yielded average f-measure of 77.04 as shown

in Figure 5. Our extracted ontology consists all the

elements in the gold standard ontology and many new

elements were found.

VIII. CONCLUSION

This study's objective was to suggest a method for

learning ontologies from source code that combined

statistical CRF and Bi-LSTM recurrent neural networks.

Additionally, this study set out to propose a framework for

building knowledge graphs based on ontologies. In order to

comprehend the approaches, procedures, and tools used in

the creation of knowledge graphs and ontology learning,

we have read a variety of scholarly works in the area. The

lack of a clear and effective framework for ontology

learning from source code and the gap in the semantic

management of code as data served as the inspiration for

this study.The majority of similar studies relied on Java

source code, and Cflexibility #'s was overlooked in the

semantic web. While significant, some related research

focus on the generic ontological structure for object-

oriented languages, while others depend on the nature of

the programming language. So, based on the statistical and

deep learning methods combined, we suggested a method

for learning ontologies and building knowledge graphs.

The suggested method was tested using the C#

programming language and the SnipsNLU natural language

understanding package. A manually created CRF model

was used to extract concepts and entities from the system,

and a Bi-LSTM network was used to extract properties and

relationships. The proposed approach showed 77.04% of f-
measure during evaluation using the gold standard

ontology. This indicates that the proposed approach is

promising and can be refined and used to extract additional

items from C# code. We employed expert evaluation to

Experiments Relevant % Irrelevant %

Candidate terms 77 23

Concepts 89.52 10.48

Taxonomic relations 82.58 17.42

Non-Taxonomic relations 76 24

http://www.ijisrt.com/

Volume 8, Issue 1, January – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23JAN874 www.ijisrt.com 663

determine the applicability of our extracted ontology

elements because the gold standard evaluation is based on a
manually produced ontology. As a result, our method had

an average relevance of 81.275%.

REFERENCES

[1.] K. &. S. M. Bontcheva, " Learning ontologies from

software artifacts: Exploring and combining multiple

sources.," 2006.

[2.] Atzeni, Mattia&Atzori, Maurizio, "Codeontology:

RDF-ization of source code," 2017.
[3.] Singhal, Amit, "Introducing the Knowledge Graph:

Things, Not Strings," May 16, 2012.

[4.] https://www.Opensource.com, "12 challenges for

open source projects".

[5.] JiomekongAzanzi, Fidel &Camara, Gaoussou.,

"Knowledge Extraction from Source Code Based on

Hidden Markov Model: Application to EPICAM.,"

10.1109/AICCSA.2017.99., pp. 1478-1485, 2017.

[6.] Antonio Moreno Ribas (URV) and Ulises Cortés,

"Domain Ontology Learning from the Web,"

Tarragona, ,2007..
[7.] P. Cimiano, "Ontology Learning and Population

from Text: Algorithms,Evaluation and

Applications," Secaucus, NJ, USA: Springer-

VerlagNewYork, 2006.

[8.] P. Buitelaar, P. Cimiano, and B. Magnini., "

Ontology learning from text: Methods, applications

and evaluation.," in IOS Press, 2005.

[9.] L. Zhou, "Ontology learning: state of the art and

open issues," in Springer Science+Business Media,

2007, .

[10.] T. O. Ayodele, "Types of Machine Learning

Algorithms," New Advances in Machine
Learning,,2010.

[11.] S. S. S. a. S. Ben-David, Understanding Machine

Learning:From Theory to Algorithms, Cambridge :

Cambridge University Press, 2014.

[12.] Charles Sutton and Andrew McCallum, ""An

Introduction to Conditional Random Fields","

Foundations and Trends® in Machine

Learning:,vol. 4, pp. 267-373.

[13.] Witten, I. H. (Ian H.), Data mining: practical

machine learning tools and techniques, 2010. [19]

Li Deng & Yang Liu, "Deep Learning in Natural
Language Processing," ISBN 978-981-105209-5,

Singaphore, 2018.

[14.] D. Z. &. D. Wang, "Relation Classification via

Recurrent Neural Network," Tsinghua National Lab

for Information Science and Technology, 2015.

[15.] H. Paulheim., "Knowledge Graph Refinement: A

Surveyof Approaches and Evaluation Methods.,"

Semantic WebJournal, vol. 1, p. 20, 2016..

[16.] , DuanHong, LiuYao&QinZhiguang., "Knowledge

Graph Construction

[17.] Techniques[J]," Journal of Computer Research and

Development, vol. 3, pp. 582-600, 2016.
[18.] K. Woldemariyam, "Generic Semantic Annotation

Framework with Integrated," Addis Ababa

University, Addis Ababa, 2017.

[19.] C. Quirk and H. Poon,, "Distant supervision for

relation extraction," arXiv preprint
arXiv:1609.04873, 2016.

[20.] BirhanuMengiste and FekadeGetahun, "Amharic

Ontology Learner," Addis Ababa University, Addis

Ababa, 2013.

http://www.ijisrt.com/

	F-measure= 2×(

