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Abstract:- The software's core data and business logic 

are believed to be contained in the source code. 

Therefore, the necessity for a semantically soundly 

linked and structured code data management system is 

a major challenge in the field of software engineering. 

This paper investigates a domain ontology-based 

automatic knowledge graph creation method for C# 

source code. The semantic web, open-source developers, 

knowledge management, expert systems, and online 

communities are just a few of the fields where software 

engineers may now understand and analyze code in a 

semantic manner. By layering conditional random 

fields on top of a trained Bi-LSTM network, candidate 

terms for concepts or entities were extracted.The 

models were automatically trained on a labeled data 

corpus while also being manually defined. To improve 

the classification of terms in a particular source code, 

BI-LSTM and CRF are integrated. Other 

characteristics to be extracted from the source code 

were defined in addition to the basic CRF features, 

which helped the model understand the categorization 

constraints. Then, the Bi-LSTM model was utilized to 

extract relations (taxonomic and non-taxonomic). Max 

pooling has been used to integrate the links between 

concepts at the word and code levels. 
 

Studies demonstrating the applicability and 

practicality of the proposed approach make use of the 

SNIPS-NLU library, a C# library for natural language 

processing. The evaluation process made use of both 

expert evaluation and the gold standard ontology that 

was established by experts. According to an expert 

analysis of the experiment's results, this approach 

generated an average f-measure and relevance of 77.04 

and 81.275, respectively. By extracting elements and 

relations from C# and other programming languages 

that are similar, recurrent neural networks appear to 

be efficient and promising. 
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I. INTRODUCTION 
 

An ontology is a formal explicit specification of 

shared conceptualization of a domain, where formal 

specialization denotes machine-readability with 

computational semantics, explicit denotes unambiguous 

terminology definitions, and shared denotes that it is 
generally accepted understanding and conceptualization, 

implying conceptual model of a domain. [1].  
 

 

 

Ontology learning, which is also referred to as 

ontology extraction, ontology generation, or ontology 

acquisition, is the automatic or semi-automatic creation of 

ontologies that entails extracting the terms from a corpus of 

natural language text that correspond to the domain and the 

connections between the concepts those terms represent, 
then encoding them with an ontology language for easy 

retrieval. 
 

Any piece of software must have its source code. The 
source code contains all errors that arise during software 

testing or execution. As a result, source code ontologies 

represent the program source code in terms of the software 

objects it contains, including modules, packages, functions, 

namespaces, variables, and database objects. Building an 

ontology for software source code manually takes a lot of 

time and effort because there is so much source code 

available in a software. Consequently, the domain is crucial 

for automatic ontology learning [1, 4, 5].  
 

Additionally, a dynamic resource in software projects 

is the source code. The ontology must develop and be 

updated as the code is modified. The ontology of a 

knowledge graph [6] can be expanded and altered as new 

data is received. It is a visual, intelligent, and dynamic 

representation of knowledge. Knowledge graphs are the 

best tool for working with a dynamic dataset because they 
may capture a variety of meta-data annotations, such as 

provenance or versioning information. As a result, it can be 

used to represent the source code ontology, a changing 

resource. 
 

II. RELATED WORK 
 

A. Introduction 

Ontologies have been present in research for decades, 

serving as a back bone for semantic web and semantic 

representation. However, interest in ontologies was lost, as 

machine learning became the hot research area taking focus 

of researchers. However, in the past decade, ontologies and 

semantic data came back into the spotlight. Realizing that 

knowledge management, data integration, data publishing, 

smart data access and analytics are impossible without the 

smart knowledge representation, different researchers made 

their intention on the area. In this Chapter, we will try to 
present some of the works in ontology learning starting 

from those dealing with text data to source code. 
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B. Ontologylearning from text source 

A large collection of methods for ontology learning 
from text have developed over recent years by proceedings 

of various workshops in semantic web area.  

 Amharic Ontology Learner(AOL) 

AOL [32] is a learning system that converts plain 

text written in Amharic into a domain ontology 

automatically. The automatic idea extraction from an 

Amharic text document, relationship mining (among 

concepts), and formal representation of those 

concepts on an ontology are all being done for the 

first time in this research project. In order to create 

an ontology that can represent a given domain, the 

Amharic Ontology Learner takes a set of Amharic 
documents that are focused on that topic as input. 
 

They used TF-IDF based method for single 

word concept extraction and C-Value for multi-word 
concepts. Then agglomerative hierarchical clustering 

and verbal expressions were used for the extraction 

of taxonomic and non-taxonomic relations 

respectively. The researchers used Parts of Speech 

Tagged multi-domain news document of WALTA 

information center. They have achieved 70%, 

70.20% and 51.7% of precision in concept, 

taxonomic relations and non-taxonomic relations 

extraction respectively.   
 

However, these ontology-learning approaches 

are inadequate to deal with ontology learning from 

source code. This is because of the following 

challenges in learning domain ontology from source 

code as mentioned in Bontcheva et al. [2]. Each 

programming language and software project tends to 

have naming conventions and these need to be 
considered. The second problem is that the ontology 

learning methods need to distinguish between terms 

specific for the programming language being used 

and the application-specific terms. And many of the 

extracted terms can refer to the same concept. 

Hence, researches have been conducted in providing 

best method for building ontology from software 

source code.  
 

C. Ontology Learning from  code 

 Java Ontologies  

An efficient method for automatic generation or 

extraction of ontology from software source code 

has been a critical issue. Genapathy and Sagayaraj 

[5] proposed a method to automatically create 

ontology by extracting metadata from the Java 
source code. They used Qdox to extract metadata 

from the source code. The metadata is an 

information about the package, classes, methods and 

interfaces in the file. After extracting the metadata, 

the frame work stores the meta-data in to OWL 

using Jena API. Then the entire project folder stored 

in the HDFS, is linked to the method signature in the 

OWL ontology for retrieval purpose. By generating 

ontology for source code, it will be effective to make 

software source code available for semantic webs, 

reuse code, and extract components of the software. 

Rather than using different APIs in extracting 

ontology even for metadata it will be effective using 
machine learning to discover relations and rules. 
 

K. Bontcheva and S. Marta [2] also developed 

ontology learning (extraction or generation) from 

software artifacts which is from multisource 
including source code. Simple terms are extracted 

from the source code and then used as a starting 

point for identifying compound terms in the user 

documentation. They combined terms from source 

code and other sources to learn concepts or domain 

terminologies. They have experimented with term 

extraction from 536 Java source files in GATE 

Version 3.1. They found only 218 terms have 

frequency more than 1 out 576 total terms extracted. 

Then these terms were combined with terms from 

forum posts producing 153 multiword terms. Totally 
they found 286 frequent terms out of 719. Evaluated 

by a domain expert this resulted in precision of 

73.4%. They have achieved only two tasks of 

ontology learning namely term extraction and 

concept identification. Their work fails to create 

concept hierarchy or taxonomic relations and non-

taxonomic relations among concepts. It also fails to 

deal with the dynamic nature of source codes, which 

needs ontology versioning and evolution.  
 

F. JiomekongAzanzi& C. Gaoussou [8] 

proposed a method to extract knowledge from the 

source code for ontology enrichment. Their method 

is based on Hidden Markov Models (HMMs). This 

work was aimed to extract terms from source code 

which can be annotated as different components of 

ontology automatically. From the source code, they 
have extracted 808, 55111, 3522, 263 candidate 

terms to be concepts, properties, axioms and rules 

respectively. The relational terms they have 

extracted are only hierarchical which are 

programmer defined. Even though they have 

presented the knowledge extracted is complete, it 

was by comparing the number of terms they have 

extracted with those extracted from database and 

meta model; this shows their work lacks a good 

evaluation method. This work can be as a good input 

for ontology learning which simplifies the first and 
important step namely domain term extraction.  

 

As we can see from [1, 2, 5, 8], ontology 

learning from software source code is not fully 

covered through researches. Different frameworks 
and architectures were proposed for ontology 

learning from textual data while learning from code 

has no general architecture. Therefore, this work is 

aimed to develop an ontology learning method from 

software source code in which the generated 

ontology can fully represent the source code in a 

given project, and also to automate all the tasks in 

ontology learning using deep learning neural 

networks. Knowledge graph construction for code 

based on the domain ontology is also to be addressed 

by this research work. 
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D. Knowledge Graph Creation 

Knowledge graph has been the hottest research area 

since Google released its first knowledge graph as part of 

the search engine in 2012 [23].  
 

Martinez-Rodriguez et al. in [33] proposed Open-IE 

based approach for knowledge graph construction from 

text. This method is based on a combination of Natural 

Language Processing (NLP) and Information Extraction 

(IE) operations in order to transform an input text into RDF 

triples. This paper presents basic techniques and methods 
used in knowledge graph construction. They classified the 

process into EEL (entity extraction and linking) and REL 

(relation extraction and linking) plus property 

identification. By integrating different approaches of entity 

and relation extraction, the researchers tried to fill the gap 

in KG (Knowledge Graph) construction. By implementing 

in Java, they have achieved a precision of 0.81 in entity 

extraction and 0.63 in relation extraction.   
 

E. Summary  

Different approaches have been developed for 

extracting ontology from textual and source code data. 

While very important for understanding the methods and 

techniques in the field of ontology, methods used for 

ontology learning from text data such as Natural Language 

processing and Linguistic based approaches are not 
applicable when it comes to source code because of the 

nature of code as presented in the work of [2]. Therefore, 

researchers have been attempting to develop an approach 

for learning ontology from source code.  
 

After extracting ontology from a given domain, there is 

a need for integrating a new arriving data into the ontology 

and this was done by re-extracting the ontology. Extracting 

ontology becomes a redundant work then. Therefore, we 

need a flexible and graphical representation of the ontology 
where the newly arriving data can simply be integrated into 

the knowledge base. Hence, this study is mainly to design a 

general approach for knowledge graph construction based 

on ontology from C# source code.  
 

To the best of researcher’s knowledge, this is the first 

work to explore the advantage of using knowledge graph 

for code analysis and representation. In this paper we will 

extract RDF triples from C# source code and visualize the 

knowledge graph using forced graph.   
 

III. ONTOLOGY LEARNER AND KNOWLEDGE 

GRAPH CREATION 
 

A. Introduction 
To handle their code as data in the semantic web, 

software engineers require a standard method to extract 

ontology and build knowledge graph from their source 

code. Thus, by detailing various components and pertinent 

approaches, this part describes the suggested basic 

architecture for automatic ontology extraction from source 

code and knowledge network generation. 
 

B. System Architecture 

The source code ontology learner creates an ontology 

that contains the pertinent concepts of the domain and their 

relationships by accepting source code files as input. The 

knowledge graph is then created using the data that was 

taken from the structured ontology. The general 

architecture of our suggested method is depicted in Figure 

1. The three primary stages of our approach's overall 
architecture are code preprocessing, learning domain 

ontologies, and building code knowledge graphs. The 

sections that follow cover each component in detail. 

 

Fig. 1: General Architecture of Proposed System 
 

 

 

 Data preprocessing and parser  
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Data was gathered using a C# open source Snips-

NLU code that was downloaded from GitHub. There 
are numerous more files in software projects that are 

not part of the source code but do include 

information on the project or code, such as 

documentations, readme files, and debates. 

Consequently, in this phase, markdown (.md) files, 

YAML files, text files, and copies from other 

projects are all eliminated and just source code files 

are provided for the following step. This is because 

ontology learning from text data sources is a topic of 

extensive investigation. The following parts describe 

language detection and code validation, the 

subsequent preprocessing stages. Data was gathered 
using a C# open source Snips-NLU code that was 

downloaded from GitHub. There are numerous more 

files in software projects that are not part of the 

source code but do include information on the 

project or code, such as documentations, readme 

files, and debates. Consequently, in this phase, 

markdown (.md) files, YAML files, text files, and 

copies from other projects are all eliminated and just 

source code files are provided for the following step. 

This is because ontology learning from text data 

sources is a topic of extensive investigation. The 
following parts describe language detection and code 

validation, the subsequent preprocessing stages. 
 

 Code validation  

Prior to using the parser to extract the candidate 
phrases, this sub-task is equally crucial. This is 

due to the fact that using the pre-defined parsers in 

this work requires a valid and syntactically 

accurate code. The grammar of any programming 

language's source code is checked using a 

straightforward technique that is tailored to each 

programming language. Giving the parser just 

legitimate code files will assist to reduce errors 

during the parsing stage. While others do not, 

some computer languages provide parser libraries 

that do. These libraries can detect errors in a code 
during parsing. 
 

 Code Parser  

Parsing a code into its abstract syntax tree (AST) 

and expressing it in a Json format comes before 
extracting keywords or words that are potential 

candidates for concepts. Similar to syntax trees 

used by linguists for human languages, an abstract 

syntax tree represents each syntactical component 

of a programming language. We are unable to 

tokenize source code using linguistic filtering, 

natural language processing tools, or other 

techniques, as we do with human language. 
 

AST focuses on the rules rather than 

elements like braces or semicolons that terminate 

statements in some languages. Since AST module 

provide only the relevant words for analyzing the 

code, we don’t need any method to get rid of those 

bulky irrelevant punctuations. This makes it better 

than defining regular expressions for getting rid of 

these kind of code elements.  
 HTML / XML open/close tags  

 Open/close braces {/} in programming 

languages  

 Open/close parentheses in arithmetical 

expressions  

 To parse these types of patterns, we need 

something more powerful like parser (AST).  
 

Hence, AST library is used to parse the code file into 

a tree of nodes for different programming languages in this 

work. Each node of the tree stands for a statement 

occurring in the code. Sample AST parser libraries for 

some programming languages. languages which do not 

have libraries for parsing can be parsed using user defined 

codes by using built in AST parsing libraries (like AST for 

C#).  
 

 Domain Ontology Extraction  

Domain ontology extraction as mentioned in above 

chapters is automatic extraction of the elements of 

ontology for a specific domain. Hence, this module 
is concerned about extracting all the elements of 

ontology from source code files. This module 

includes task like term extraction, concept learning 

and relation extraction. The relation can be classified 

as taxonomic and non-taxonomic among entities. 

Methods and techniques, we have used for each sub 

tasks in ontology learning are discussed in the 

following sections.  
 

IV. TERM EXTRACTION 
 

A crucial stage in ontology learning is term 

extraction, which will be dealt with in this lesson. To mine 

semantically significant aspects of a domain, such as 

entities, is the process of term extraction, or information 

extraction (e.g., concepts and instances). This process is 

managed using NER (Named entity recognition), which is 

based on linguistic or statistical methodologies, for natural 

languages like English. In order to extract instances of 

concepts or entities from source code, NER approaches 

must take into account the characteristics of natural 
language. 

 

Therefore, this module involves the identification of 

proper terms in code, and the classification of these terms 

into a set of predefined classes of code elements define in 
the work of [21] like class definition, function definition, 

expression, library, identifier, argument, attribute, etc. In 

many studies, it has been depicted that CRF on the top of 

Bi-LSTM is a successful method for extracting entities 

from unstructured and structured data sources. Therefore, 

we use Bi-LSTM + CRF in this research for term 

extraction.  
 

Since the programmer writes code sequentially, we 

consider labeling terms in a source code file as sequence 

labeling. Programmer types the statements step by step 

sequentially, which indicates that given observations or 

input labels are interdependent. For example, let’s take the 

statement Result = x+y/2 in C# language: in this statement 
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the value of variable result depends on the calculated result 

from the right-side operation. If the previous observation is 
a term class, it is obvious in many languages that the next 

observation or term is the name of class. If the previous 

observed label is def it’s obvious in C# that the next 

observation will be the name of function. 
 

A. Model   

For this work, a supervised Bi-LSTM + CRF model is 

used to extract concepts from a given corpus. The model 

was trained with pre-labeled corpus. After parsing code in 

to ast, training corpus was prepared by labeling the terms 

with corresponding classes. Basic class labels are based on 

the general ontology classes in [21] adopted to include C# 

object classes. Our dataset is prepared in the format of 

Kaggleentity_annotated dataset [33] which has column 

Code-Index, word. The model consists of four layers 

namely, word embedding layer, Bi-LSTM Layer, CRF 

layer and output layer as shown in Figure 2.  
 

B. Embedding layer  

Many ML models including Keras Bi-LSTM require 

that the input data be integer encoded, so that each word is 

represented by a unique integer. This data preparation step 
is performed using the Tokenizer API also provided with 

Keras. It is basically a dictionary lookup that takes integers 

as input and returns the associated vectors. It takes three 

parameters:  

 Input_dim: Size of the vocabulary in the text data   

 Output_dim: Dimensionality of the embedding 

 Input_length:  Length of input sequence   
 

We used Keras embedding layer for word embedding in 

our case.   
 

 
Fig. 2: Bi-LSTM+CRF Model 

 

C. BI-LSTM Layer  
The second component of our model is BI-LSTM and it 

is used to produce vector representation for our words. It 

takes each word in a sentence (code file in our case) as an 

input and produce a vector representation of each word in 

both directions (i.e.; forward and backward) where, forward 

direction access past information and backward direction 

access future. The bi-directional network is needed because 

the future words are not fully utilized when predicting label 

in the middle of a code. Since we are considering code file 

as a sentence, we need long term memory in both directions 

depending on the behavior of programming language.   
 

The outputs of BI-LSTM are scores of each label for 
a given word/term.  

 

D. CRF Layer  

CRF layer is an optimization on top of BI-LSTM layer. 

CRF layer adds constraints to the predicted label during 
model training and this constraint could be used for 

validating the label.  
 

The overall workflow of term extraction is shown in 

Figure 3.4. Our model is a combination of embedding, bi-
lstm, and crf layers and it finally classifies terms in to their 

corresponding class.  

 

 
Fig. 3: Overall workflow of term extraction process 
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V. EXTRACTION OF CONCEPTS 
 

The purpose of this module is to identify concepts of 

a given source code data. The main step in ontology 

learning is extracting concepts from a given corpus and 

many researches have been conducted on this area.  
 

Our concept extraction process is based on the class 

tags provided as the general ontology structure in the work 

of [21] and TF-IDF. These class labels are used to group 

entities according to their classes. By making AST parser 

to label tokens as type, value and children labels, we can 
use the type class elements of a code to label terms. This 

makes term-concept mapping simple. 
 

VI. RELATION EXTRACTION 
 

The next task in ontology takes us to taxonomic and 

non-taxonomic relation extraction. It is a very important 

task in ontology construction. Taxonomic relations mostly 

indicate “is-a”, “sub-class-of”, “has-type” and other 
relations among the concepts. If two classes ’A’ and ’B’ 

are candidate terms to be concepts and class “B” inherits 

“A”, then, one can define a taxonomic relation between the 

classes ’B’ and ’A’. Andboth classes are sub classes of the 
entity “class” in the ontology.   

 

This module is responsible for automatically 

extracting relations. We choose Bi-LSTM model as this 

type of Recurrent Neural Network has proven itself to be 
well suited to tasks where remembering long-term 

dependencies is crucial. It is very important to keep track 

of the past terms and structures to detect long-distance 

relation patterns in a code. Figure 4 shows workflow of 

relation extraction process.  
 

We adopted Bi-LSTM in [14] to extract both 

taxonomic and non-taxonomic relations in our research. 

We have implemented this module first by taking list of 

concepts and converting it into indexed word vector by 

using Keras embedding layer. Then Bi-LSTM is used to 

extract relations based on word/term level features and 

max-pooling is used to merge the sentence level relations 

with word level relations.  

 

Fig. 4: Relation Extraction workflow  

 

A. Knowledge graph storage, Access and visualization  

We used SPARQL, an RDF query language—that is, a 

semantic query language for databases—able to retrieve 
and manipulate data stored in Resource Description 

Framework (RDF) format to access a knowledge graph. 

VOWL plugin for protégé is used to display, analyze, and 

visualize  
 

B. RDF graphs 

RDF graphs are handled using rdflib (a C# library used 

to manipulate rdf files). It has facilities to copy subgraphs 

from one graph to another, making it possible to assemble 

local graphs that contain facts relevant to a particular 

decision, work on them intimately, and then store results in 

a permanent triple store.  
 

VII. EXPERIMENTS 
 

A. Introduction 

In this Chapter, we will present the experiments 

conducted on Snips NLU platform developed in C#. Our 

algorithms have been coded in C# and we extracted the 

candidate terms to be concepts and relations. In the 

following sections, we will first present Snips NLU 

platform, the experiments of the approach on Snips NLU 

source code, the results and evaluation of knowledge 

extracted from the source code of this platform and, finally, 

we will present the results and evaluation of our approach.   
 

 Evaluation  

Ontology learning techniques are evaluated in two 

ways; automatically by using gold standard and 

manually by experts. We used both evaluation by 
experts and gold standard method to evaluate our 

ontology learning techniques. The gold standard 

ontology was developed from Snips-NLU project 

and validated by experts. We will use this ontology 

for evaluating our proposed approach in the 

following paragraphs.  
 

 Expert Evaluation  

We requested two experts in the area of semantic 

web and ontology to check the ontology extracted 

carefully before evaluating. In order to resolve miss 

understanding during evaluation we have prepared a 

description the description of basic criteria of 

evaluating ontology. From the expert’s evaluation, 

we have got the following result shown in Table 1.  
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Table 1: Expert evaluation results 

 

The above evaluation result shows that our approach 

is efficient in all the tasks based on subjective expert 

evaluation. The system has average relevance of 81.275% 
from expert evaluation.   
 

 Gold standard evaluation  

The other method we have used is gold standard 

evaluation which is done by using pre developed 
ontology of the project based on evaluation metrics, 

standard recall (R), precision (P) and F-measure (F).  
 

Precision  

𝑇𝑇

Recall=  

F-measure= 2×(  
 

TP (True Positive): a positive instance that is also predicted 

to be positive.   
 

FP (False Positive): a negative instance that is predicted to 

be positive.   
 

FN (False Negative): a positive instance that is predicted to 

be negative.  
 

Based on the above metrics, Figure 4.3 summarizes 

the evaluation result of the four phases in our approach.   

Fig. 5: Ontology learner performance measurement 
 

From this evaluation results, we can conclude that the 

use of bi-directional RNN network (BiLSTM and CRF) for 

extraction of ontology is effective and promising. Our 

approach has yielded average f-measure of 77.04 as shown 

in Figure 5. Our extracted ontology consists all the 

elements in the gold standard ontology and many new 

elements were found.   
 

VIII. CONCLUSION 
 

This study's objective was to suggest a method for 

learning ontologies from source code that combined 

statistical CRF and Bi-LSTM recurrent neural networks. 

Additionally, this study set out to propose a framework for 

building knowledge graphs based on ontologies. In order to 

comprehend the approaches, procedures, and tools used in 

the creation of knowledge graphs and ontology learning, 

we have read a variety of scholarly works in the area. The 

lack of a clear and effective framework for ontology 

learning from source code and the gap in the semantic 

management of code as data served as the inspiration for 

this study.The majority of similar studies relied on Java 

source code, and Cflexibility #'s was overlooked in the 

semantic web. While significant, some related research 

focus on the generic ontological structure for object-

oriented languages, while others depend on the nature of 

the programming language. So, based on the statistical and 

deep learning methods combined, we suggested a method 

for learning ontologies and building knowledge graphs. 
 

The suggested method was tested using the C# 

programming language and the SnipsNLU natural language 

understanding package. A manually created CRF model 

was used to extract concepts and entities from the system, 

and a Bi-LSTM network was used to extract properties and 

relationships. The proposed approach showed 77.04% of f-
measure during evaluation using the gold standard 

ontology. This indicates that the proposed approach is 

promising and can be refined and used to extract additional 

items from C# code. We employed expert evaluation to 

Experiments Relevant % Irrelevant % 

Candidate terms  77 23  

Concepts  89.52  10.48  

Taxonomic relations  82.58 17.42 

Non-Taxonomic relations  76  24 
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determine the applicability of our extracted ontology 

elements because the gold standard evaluation is based on a 
manually produced ontology. As a result, our method had 

an average relevance of 81.275%. 
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