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l. INTRODUCTION

In 1940, Ulam [1] suggested the stability problem of
functional equations concerning the stability of group
homeomorphism as follows:

Let (G, 0) be a group and let (H,x, d) be a metric group
with the metric d(.,.). Given € > 0, does there exista § =
6(e) > 0 such that if a mapping F:G — H satisfies the
inequality:

df(x oy) f) = f(¥)) <6

for all x,y € G. Then a homomorphism F:G - H
exists d(f (x), F(x)) for all x € G?

In 1941, Hyers [2] give the first (partial) affirmative
answer to the question of Ulam for Banach spaces.
Thereafter, we call type the Hyers — Ulam stability.

The result of Hyers was generalized by Aoki [6] for
approximate additive mappings and by Th.m. Rassias [7] for
an approximate linear mapping following the difference
Cauchy equation

lf(x+y)—f(x)—fO)Il to be controlled by
e(llxll? + llyl”)

The functional equation

f+y)+flx—y)=2f(x)+f) o))

Is related to symmetric bi-additive function and called
a quadratic functional and every solution of the quadratic (1)
is said to be quadratic mapping. Skof [20] proved the
Hyers— Ulam stability of the quadratic functional equation

).
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The theory of linear 2-normed spaces was first
developed by Gahler[8] in the mid 1960’s, while That of 2-
Banach spaces was studied later by Gahler [9] and White
[10].

The functional equation

f+y+2)+f0)+f0)+f(2)
=fx+N+fG+D+fx+2 (2

Be another quadratic mapping, by Skof [20] proved the
Hyers— Ulam stability of quadratic functional equation (2).
Jung [5] proved the Hyers— Ulam stability of quadratic
functional equation (2) in the Banach space with respect to
some conditions.

In 1978, Rassias[7] extended the Hyers- Ulam stability
by considering variable. In 1994, it also has been
generalized to function case by Gavruta [18].

Hensel[21] has introduced a normed space which does
not have the Archimedean property, Rassias[22] proved the
generalized Hyers- Ulam stability of the additive functional
equation and the quadratic functional equation in non-
Archimedean spaces.

Hyers’s method used in [2], which is often called the
direct method, has been applied for studying the stability of
various functional equations but this method sometimes
does not work [30]. Nevertheless, there are also other
approaches proving the Hyers-Ulam stability, for example:
the method of invariant means [32], the method of based on
sandwich theorems [31], the method using the concept of
shadowing [33] and the fixed-point method.

In this paper, we will use the fixed-point method which
is the second most popular technique of proving the stability
of quadratic functional equation in (2) in a non-
Archimedean 2-Banach spaces under the approximately
even (or odd) conditions and some asymptotic behaviors of
quadratic and additive mappings shall be investigated and
generalized the stability of the same functional equation in a
non-Archimedean 2-Banach spaces.
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1. PRELIMINARIES

In this section we introduce some notions which we be
used in the sequel.

» Definition 2.1. [24] Let K be a field. A non-Archimedean
absolute value (or valuation) on a filed K is a function
[.|: K — R such that for any a. b € K, we have,

(i) lal = 0 and equality holds if and only if a = 0,
(i) lab| = |allb]
(iii) la + bl < max{lal, |bl}

Condition (iii) is called the strong triangle inequality.
By (ii), we have |-1|=1]= 1.

Thus, by induction, it follows from (iii) that |n| < 1, for
each integer n. we always assume in addition that |.| is non-
trivial, that is, there is an a, € K such tat |a,| # 0,1

» Definition 2.2. [24] Let X be a vector space over a non-
Archimedean field K. A function ||.|| : X - R is called a
non-Archimedean norm if it satisfies the following
properties:

(a) |lx|l = 0 ifand only if x =0,
®) llrx|l = || llxI|

©) llx + Il = max{llxll, lly I}

forall x,y eXandr eK.
If [|lx]| is called a non-Archimedean norm on X and the
pair (X, |. 1) is called a non-Archimedean normed space

> Definition 2.3. [22] Let (X, |l.|l) a non-Archimedean
normed space and {xn} a sequence in X. Then {xn} is
said to be convergent in (X, || ||) if there exists an x € X
such that ,{ilﬁlo”x" — x|l = 0. In case, x is called the limit

of the sequence {x,}, and one denotes it by

lim,,_,, X, = x. A sequence {x,} is said to a Cauchy in (X,
[I.1]) if for all p €N.

» Remark 2.4. [22] By (c) in Definition (2.2),

I, — xpll < max{||xj+1 - xj” |m<j
<n- 1} (n>m) ®)

A sequence {x,} is Cauchy in (X, |I. ) if and only if
{x,+1 — x,} converges to zero in a non-Archimedean
normed space (X, |l.1l). By a complete non-Archimedean
normed space, we mean one in which every Cauchy
sequence is convergent.

» Definition 2.5. [26] Let X be a set. A function d: X X
X — [0,00] is called a generalized metric on X if d
satisfies the following:

() d(x,y) =0ifonly and only x =y,
(i) d(x,y) = d(y,x) forallx,y €X,
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(i) d(x, y) <d(x, y) + d(y,x) forall x, y,z € X.

Then (X,d) is called a generalized metric space, (X,d)
is called complete if every d- Cauchy sequence in X is d-
convergent.

Note that the distance between two points in a
generalized metric space is permitted to be infinity.

> Example 2.6. [26] Let X :=C(R) “the space of the
continuous functions on R” and let d:X? — [0, ]

given by d(x, y) = sup;er|x(t) — y(t)|

Then the pair (X,d) is a generalized complete metric
space.

» Definition 2.7. [27] Let (X,d) be a generalized complete
metric space, a mapping J : X — X satisfies a Lipschitz
condition with a constant L > 0 "Lipschitz constant” if

d().J(y)) < Ld(x, y) (4)

for all x,y € X. If L < 1, then J is called a strictly
contractive operator.

We remark that only difference between the
generalized metric and the usual metric is that the range of
former is permitted to include the infinity.

By these notions, B. Margolis and J. Diaz gave one of
the fundamental results of the fixed-point theory. For the
proof, we refer to [26].

» Theorem 2.8. [26] Let (X, d) be a generalized complete
metric space and J: X — X be strictly contractive
mapping with the Lipschitz constant L. Then for each
given element x € X, either

d(,nx,]n+1x) = o0

for all non-negative integers n or there exists a positive
integer n, such that;

D d(rx, ") < oo,
foralln = n,

(ii) the sequence J™x converges to a fixed point y* of J,

(iit) y* is the unique fixed point of J in the set
Y={yeX:d(J™(x),y) <o}

() d(y,y") < = d( (), )

forally eY.

> Definition 2.9. [22] Let X be a real linear space over
non-Archimedean field K with dim X > 1 and let
|, y|l: X x X - [0,00[ be a function satisfying the
following properties:
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(N Al)|lx,yll=0 if and only if x and y are linearly
dependent,

(N A2) [le, yll = lly, =l

(N A3) [loc 2, yll = [e|ll, ¥l
(AAY) ||z, (y + 2|l < max{llx, yll, |lx, I}

for all x,y,z € X and a € R. Then the function (|
.,.1) is called a non-Archimedean 2- norm on X and the
pair

X, II.,.1D) is called a non-Archimedean 2-normed
space.

» Lemma 2.10. [22] Let (X, Il.,. ) be a non-Archimedean
2-normed space. If x € X and ll x,y ll= 0 forall y €
X,thenx = 0.

» Definition 2.11. [22] A sequence {x,} in a non-
Archimedean 2-normed space (X,I.,.ll) is called a
Cauchy sequence if

” Xn — XY ”= 0
forally eX

» Definition 2.12. [23] A sequence {xpn} in a non-

Archimedean 2-normed space (X,/../) is called a
Cauchy sequence if

lx, —x,yll=0

for all y € X If {x,,} converges to x, write xn — x as
n — oo and call x the limit of {x,}. In this case, we also
write

limx, =«

n—-oo

Let {x,} be a sequence in a non-Archimedean 2-
normed space (X, |I.,.|) It follows from (N A4) that

I = 5eyll < max{lyss — 5yl lm < j <n—1} 0
> m)

for all y € X and so a sequence {x,} is a Cauchy
sequence in (X, ||.,.]l) if and only if {x,,, — x,} converges
to zeroin (X, |I.,. 1)

A non-Archimedean 2-normed space (X, |I.,.[l) is
called a non-Archimedean 2-Banach space if every Cauchy
sequence in (X, ||.,.l) is convergent.

» Lemma 2.13. [23] For a convergent sequence {xn} a
non-Archimedean 2-normed space (X, |I.,.]l)

lim llxc,, y 1l = ||,{lj§0 xn'y”
forall y eX.

> Lemma 2.14. [23] Let (X, |I.,.]]) be a non-Archimedean

International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

2-normed space. Then
llx, zIl = Iy, zIl < llx — y,zll

for all x, y,z eX.

» Definition 2.15. [22] A non-Archimedean 2-Banach
space X is called a normed non-Archimedean 2- Banach
space if X is a 2-Banach space with norm.

1. MAIN RESULTS

Hereafter, we will assume that X be a linear vector
space over a non-Archimedean field K with a valuation |.|
and Y a non-Archimedean 2- Banach spaces with dimY > 1.
For convenience we use following abbreviation for a given
mapping f: X— Y

Df(x,y,2):=f(x +y + 2) + f(x) + f(y) + fz) — fix
+y)—fix+z) - fly +12) ®)

for all x, y,z eX.

If for some @: X3 XY - [0,0], a mapping f: X — Y
satisfies || Df(x,y,z2),ull < @(x,y,zu)forallx,y,z € X
andallu €Y, then f is called a ¢ -approximately quadratic
function.

» Theorem 3.1. [28] Let f - X — Y be mapping satisfies the
following inequality:

Ifx +y+2) +1(x) + ) + /=) — fix +y) = fiy +2) — fle

+ X),ull < p(x, y,,2,U)

for all x,y,z €X, U €Y, with f{0) = 0, where ¢ : X3 x ¥ —
[0,0) is arbitrary mapping. Then,

2"+ 1 2"+ 1
—_ n - _on
”f(x) AR e AT x)’””
<
i+1_ 3 3 3 i+1 . . .
max{{|2 1 (p(le, —2ix, ZLX,U)}, {|2 +1| <p(2‘x, 2ix, —2ix, u)} .

|2|2i+3
0<i<n-1}

|2|2i+3

forallx €X,allu eYandn eN.

> Lemma 3.2. Lety: X — [0,00) be a function, the set
M ={g:X - Y |g(0) = 0} and define

d(g,h) =infla >0: |lgCx) — h(0),ull <
oc ()} (g.h €M)

VX € X, Yu € Y. Then d is generalized metric on M.

Proof. Let g,h,k € M and o« ,cc,> 0 such that d(g,h) <
o¢, and d(h, k) <oc,. Then by the definition

lg(x) = hCo),ull <o¢; P(x) and  JlA(x) — k() ull <
o, P(x) for each x €X, and all u €Y, it follows that

lg(x) — k(), ull < llg(x) — h(x), ull + [[h(x) — k(x), ull
<oy P(x) <oy P(x) = (¢ +0<,)P(x)
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Therefore d(g,h) < (x; +%,). This proves the
triangle inequality for d. The rest of proof is similar to the
proof of main result of [34].

In the following theorem, Hyers-Ulam stability of
equation (2) is proved under approximately even condition
in a non-Archimedean 2-Banach spaces.

» Theorem 33. Let f:X —Y bea g-approximately
quadratic function with f(0) = 0 such that for all x, y,z €
Xandallu €Y,

Ifx) — f(—x),ull <3(x)

(6)
where § : X — [0,00). Let 0 < L <1 be a constant such that,
1212027 'x,27 Yy, 271z,u) < Lo(x,y, 2z, u) (7)

for each x, y,z € X, and all u €Y. Then there exists a
unique quadratic mapping Q: X — Y such that

L
lf(x) — Q) ull < mw(x, X, %, 1) ©)

for all x eX and all u €Y, where
Y(x,x,x,u)
max]——o( ) o )
= a a TA12 . I_ ) ) )_ ) )_ )
mXHlX|2|3§0 X xxu|2|3(pxx xu‘(g)
Proof. Let f:X — Y be a ¢ -approximately quadratic

function satisfies the inequality (6) and f(0)=0, then for all x
eX,andallu €Y, we have forn eN

2" —1 2" —1
Wf(Z"x) —Wf(—Z”x),u”
_l2r—1| n
|2|2n+1 ”f(z )
= f(=2"x), ull
2" — 1]

S Hianet NS @(2"x)
(10)

for all x EX,u €Yandn €N,

[ - g r@.4
- ”f(x) o f @)+ 2;2,:1 F@)
L F @) + o f(-2)
D 2
. .

1 2 1
= |rw - rer e + S -2
"t
— o5 f(2"x) + Wf(znx)
- ZZT;T_Hlf(—Z”x), uw
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2"+ 1 2n—-1
= ”f(x) ~ it fQ@2rx) + Wf(—Z"x)

1 2"+ 1
+ <—27f(2"x) +Wf(2”x)

~ S f-20),u)

2"+1 n 2" -1 n
< max{||f@) - S f@0)+ S 20|
2" -1 2" —

1
W}C(an) - Wf(—Z"x),u”}
by(10) and Theorem (3.1), the right side satisfies

|2i+1 _ 1|
|2|2i+3

, n -1l
H0sisn—1p ey 6(2)

|2i+

|2

< max {max { o(=2ix,—2x, 22, 1),

(1)

foralln € N. In particular,

IIf (x) — 272 2x), ul|l < Y(x, x,x,1) Vx
EX,Vu ey,

Y is defined by (9) (12)

So [l4f (x) — f(2x), ull < 1212y (x, x, 2, 1)
<Y(x,x x,u) Vx
EXVuUEY (13)

Replacing x by 21x in (13), it follows that for each
x € Xandall € Y,

14f(x) —4f (27 ), ull < Y27 %, 27 %, 271, 1) (14)

Let us consider the set
F={g9:X - Y| g(0) =0} (15)

and introduce a generalized metric on F as following:
d(g, h) = inf{x> 0: ||g(x) — h(x),ull <
< P(x,x, 2,1)} Vx
EXandalluey (16)

where, as usual inf ¢ = +4oco . Its easy to show that
(F, d) is complete (see for example ([29]).

Now, we con3|der the linear mappingJ : F — Fsuch
that J(h) = 4h(2 x) we assert that J is strictly contractive
on F.

Given g,h € F, and let «€ [0,00) be an arbitrary
constant with d(g, h) <o (x, x, x, u) that

lg(x) —h(x),ull << (x,x,x,u)
by (7)
/(@) (x) —J(W) (), ull = l14g(27 %) — 4h (27 x),ull <
o [2]2P(271%),271x, 27 %) < L
o P (x, x, x,u)
for all x e X. It follows that

(x eX,u€y), then

d(J(g),J (W) < Ld(g,h) (g heF)
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Hence d is strictly contractive mapping with Lipschitz
constant, L. By (14) we have, for each x eXandu €Y

T ) = fC),ull = 114f (27 x) — £(x), ull
< Y2 1x271x,271x,u)

lzlzl[)(x X, %, U)

This means that d(J(f), f) < #

By Theorem (2.8) there exists a mapping Q: X — Y
satisfies the following:

(1) Q isfixed point of J, and Q is a unique fixed point
of J in the set

J={g €F:d(g,J(f)) < oo}

That Q is a unique mapping such that there exists a €
[0, 00) satisfying

If(x) — Q) ull < ap(x,x,x,u)

forallx eXandallu €Y.

(2 lim J*f(x) = lim 22" f(27"x) = Q(x) (for
n—oo n—oo
allx eXandallu €Y).
Therefore for all x,y,z eXandu €Y,

lQ(x+y+2)+Q(x) +Q(Y) + Q(2) —Q(x+y) — Q(x
+2)— QW +2),ull
= iilgoIZIZ" lfC™@x+y+2)+f2"(x))

+ @O + 27 (2)
—fQ7x+y) —fQRT(x+2)
—fR™(y+2),ull

< lim 2|2 @(27"x, 27y, 27"z, u) a7
n-oo

it easy to show that by induction

2|2 (27"x, 27"y, 27"z, u) < L*(x,y,z,u) ,

so the right side of (17)< lim L" ¢(x,y,z,u) =
n—oo
0 (sinceL < 1)

By lemma (2.10) this show that Q is quadratic .

3) d(f, Q) < = d(£,J()). This implies d(f, Q) <
L

1 —_—
L7212 7 J212- |2|2.L

Thus IIf(0) = QC0), ull < =z (%, x,w). Then
we have the inequality (8).

Hence the proof of the theorem is end.

Similarly, as the proof theorem (3.3), the Hyers-Ulam

stability of equation (2) is proved under approximately odd
condition in a non-Archimedean 2-Banach spaces.
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» Theorem 3.4. Let f:X — Y be a@-approximately
quadratic function with £(0) = 0 such that for all x,y,z €
X and all

uey,

If ) + f(=x),ull < 6(x) (18)
where § : X — [0,00). Let 0 <L <1 be a constant such that,
121" (27 %, 27"y, 27 z,w) < Lp(x, y,z,u) (19)

for each x,y € X. Then there exists a unique quadratic
mapping Q: X — Y such that

IfC) = Q) ull < P(x, x,x,u) (20)

L
2] = |2].L
for all x eX and all u €Y, where

PY(x, x,x,u)
1 3] 21
= max{max{mqi(—x, XX, u)@(ﬂ(x, x,x,u)}, (21)
Proof. Let f: X = Y be a p-approximately quadratic

function with £(0) = 0 satisfies the inequality (18), So for
allx eX,and u €Y, we have forn €N

2n — 2n —
22n+1 f(znx) + o 22n+1 f( an)”
|2" — 1|
S izt |2[2n+t iz ¥(2"x) (22)

forallx eX,u €Yandn €N,

[ — 5.
||f(x) e f@)

2"
t oot 22n+1 f( an)
—_2n — n_

+ Q-2 1 (Z"x),uu

22n+1 f 22n+1 f

2"+ 1 2" —1
< max{”f(x) - W f@2rx) + Wf(—znx)” ,
2n + -1
22n+1 f(2 )+ ot 22n+1 f(=2 x),u”}

By (22) and Theorem (3.1), the right side satisfies

2
|

|2|21+3
12" — 1]

:0<i<n-— } T ¢(2"x)}

for all n €N. In particular,
IfGo) =27 f(20), ull <
W(x, x, x,u) (xeX,ue
Y), isdefined by (21) (24)

2041 — 1| . o
< max {max {— (=2, —2'x,2'x, 1),

(23)

this follows that
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12f(x) = F2x),ull < 12](x, x, x,u)
<Ylx,x,xu) (xeXu (25)
€Y)

Replacing x by 271x in (25), it follows that for each x
eXandallu €Y,

If(x) —2f 27 %), ull < (27 1x,27 1%, 27 x,u) (26)

Similarly, as proof of the theorem (3.3) we can
consider the set F is defined by (15) and introduce d is a
generalized metric on F which defined by (16). It clearly
(F, d) is complete.

Now we consider the linear mapping J : F — F such
that J(h) = 2h(271x) Similarly, as proof of the theorem
(3.3) of J is strictly contractive on F. By (26) we have, for
allx eXandallu €Y

U = FC),ull = 1I2f (27 %) — f(x), ull
< YP(271x,271x, 27 x,u)

L
<—yxxxu
A& )

This means that d(J(f), f) < é By Theorem (2.8)

there exists a mapping Q : X — Y satisfies the following:

(1) Q is fixed point of J, and Q is a unique fixed point
of J in the set

Jd={g9 € F:d(g,J(f)) < o}

That Q is a unique mapping such that there exists a €
[0, 00) satisfying

If(x) — Qx),ull < a(x,x,x,u)

forallx eXandallu €Y.

(2) lim J*f(x) = lim 22" f(27"x) = Q(x) (for
n—oo n—oo
allx eXandallu €Y).
Therefore for all x,y,z eXandu €Y,

lRx+y+2)+Q(x) + QM+ Q) —Q(x+y) —Qx
+2) = Q(y +2),ull

= lm 2" [If Q" (x +y +2)) + f27 () + f(27" (1))
+f@T@) - fRT(x+y)
—fQTMx+2) - R + 2)),ull

< lim 2| @(27"x, 27"y, 27"z, u) (27)
n-—-oo

it easy to show that by induction

[2|"@(27"x, 27"y, 27"z, u) < L"@(x,y,2,u)
so the right side of (27)

< lim L™ ¢(x,y,z,u) =0 (since L < 1)
n—-oo
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By lemma (2.10) this show that Q is quadratic.

@) d(,Q <= d(£,J(N). This implies d(f,Q) <

1 L

1-L7 12|~ [2]-I2].L

L
12]-2].L

Thus |If (x) — Q(x), ull <
we have the inequality (20).

Y(x,x,x,u). Then

Hence the proof of the theorem is end.
» Theorem 3.5. Letf:X — Y be a@-approximately

quadratic function with £(0) = 0 such that for all x, vy,
zeXandallu €Y,

IFG) = f(=0),ull < 6(x) (28)
where § : X — [0,00). Let 0 <L <1 be a constant such that,
121729 (2x, 2y, 2z,u) < Lo(x,y,2,u) (29)

for each x,y,z € X. Then there exists a unique quadratic
mapping Q : X — Y such that

1
IfG) = QG ull < 7= % (e x,%,u) (30)
forallx eXandallu €Y, where

Y(x, x,x,u)

1
= max{maX{W @(—x, —x, x, u),qu(x, x,—x,u)}, (1)

Proof. Let f: X =Y be a p-approximately quadratic
function satisfies the inequality (28) and f(0) = 0, then for
all

x €X,and u €Y . As theorem (3.3) we have for all n €N,

If (x) —272f(2x), ull
< Ylx,x,x,u)
EY),

(xeX,u (32)

and we consider the set F is defined by (15) and
introduce a generalized metric d is defined by (16) on F. Its
clearly (F,d) is complete.

Now, we consider the linear mapping J : F — F such that
J(h) = 272h(2x). we assert that J is strictly contractive on
F.

Given g,h € F, and let a € [0,)be an arbitrary
constant with d(g, h) < ay(x, x, x, u)that

lg(x) — h(x),ull < ap(x,x,x,u) (x €EX,u€Y),

then by (29) we have
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1 1
1P — FG),ull = ”Zg(Zx) —Zh(Zx),u”

< al2|7?y(2x, 2x, 2x,u)
< Lay(x,x,x,u)

forall x € X and all u € Y . It follows that

d(J(g),J()) < Ld(g,h) (g.heF)

Hence d is strictly contractive mapping with Lipschitz
constant, L. By (32) we have, foreachx € Xandu € Y

1
1006 = £, ull = |7 7@ - 0.
<Pl x x,u)
This means that d(J(f),f) <1 < . By Theorem
(2.8) there exists a mapping Q: X — Y satisfies the

following:

(1) Q is fixed point of J, and Q is a unique fixed point
of J in the set

J={g €F:d(g,J(f)) < o}

That Q is a unique mapping such that there exists a €
[0, 00) satisfying

If(x) — Q) ull < ayp(x,x,x,u)
forallx eXandallu €Y.

(2 lim J*f(x) = lim 272" f(2"x) = Q(x) (for
n—oo n—oo
allx eXandallu €Y).
Therefore for all x,y,z eXandu €Y,

lRGx+y+2)+Q(x) +Q() + Q) —Q(x+y) - Qx
+2) = Q(y +2),ull

= lim 27" [I[f 2" (x +y +2)) + f(2"x) + f(2")

+f(@"2) - f2"(x +y))
—fQM"x+2) - f2"(» + 2),ull

< 7li_r}r010|2|‘2" @(2™x, 2"y, 2"z, u) (33)
t easy to show that by induction
[2]72"@(2"x, 2™y, 2"z, u) < L*o(x,y,z,u)
so the right side of (33)

< lim L™ ¢(x,y,z,u) =0 (since L < 1)
n-—-oo
By lemma (2.10) this show that Q is quadratic.

(®) d(f,Q) < =d(f.J(F)).
This implies
1
aif,Q) < -1
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Thus ||f (x) — Q(x),ull < ﬁl,b(x, x,x,u) for all x €
X and all u € Y. Then we have the inequality (30).
Hence the proof of the theorem is end.
» Theorem 3.6. Let f: X — Y bea @-approximately

quadratic function with £(0) = 0 such that for all x,y,z €
X andallu €Y,

If G+ f(=x),ull < 6(x) (34)

where § : X - [0,00). Let 0 < L < 1 be a constant
such that,

12]72¢(2x,2y,2z,u) < Lo(x,y,2z,u) (35)

for each x,y,z € X, and all u €Y. Then there exists a
unique quadratic mapping Q : X — Y such that

1
IfG) = QG ull < 7= % (e x,%,u) (36)
forall x eXandallu €Y, where

Y(x, x,x,u)
1 K]
= max{maX{W @(—x, —x, x, 1), W ¢ (x, x,—x, )}, (37)

Proof. Similarly, as proof the last theorem we can
proof this theorem with consider the linear mapping J : F —
F which is strictly contractive on F such that J(h) =

~h(2x), by (24)

10AG) - £l =[5 £ - oo
< Y(x, x,x,u)

This means that d(J(f), f) < 1. The rest of proof as proof
of theorem (3.5).

V. APPLICATIONS

As example o ¢(x,y,z w)f in Theorems (3.3),(3.5),
we can take @(x,y,z,u4) = 0(llxllP + [lylI” + [lz|") ||l
for all x,y,z and all «« € Y and some positive real number 6.
Then we have the following corollaries:

> Corollary 4.1. Let 0, o, p be positive real numbers such
that p < 2, and let f : X — Y is mapping satisfying

If(x+y+2)+fx)+fQ)—flx+y)

—fx+2)—f(y+2),ull
< O(Ulxll? + llylIP + lzIP)lleell,  (38)

If ) = f(=0),ull <6 (39)

for all x,y,z € X and all u € Y . Then there exists a unique
quadratic mapping Q: X — Y satisfying

.djisrt.com 101


http://www.ijisrt.com/

Volume 8, Issue 1, January — 2023

If@) - 0@l € omrbxr) (@)

[2

where,

3]
w(x,x,x,u)=max{|2|3t9llxll lll, = |2|3 } (41)

Proof. Let f : X — Y be mapping satisfying (38), (39). Put
x =y =z = 0in(38). This implies f(0) = 0.

Now let o (x,y,z,u) = 0(llxlIP + llylI” + [lz[|P)ll«]| for all
u€evYandallx,y, z € X, so

21227 x, 271y, 27 z,u)
=[2120(l[127 x|” + [[271y]IP
+ 1272 z|IP) [[ecll = 12]27P (x, 2, 2, 1)

since p < 2 we have L = |2]?7? < 1 and by Theorem (3.3)

there exists a unique quadratic mappingQ : X - Y
such that

lf (x) —Q(x),ull < mlp(x, X, X,U) =

1
o ¥ (%% % 1)

for and all u € Y and all x,y,z € X where ¢ is defined by
(41).

» Corollary 4.2. Let 8,8, p be positive real numbers such
that p> 2, and let f : X = Y is mapping satisfying

lf(x+y+2)+fx)+fQ)—flx+y)

—fx+2)—fly+2),ull
< Olxl® + llyll? + llzIP)llell,  (42)

If G —f (=x0),ull <6 (43)

for all x,y,z € X and all u € Y . Then there exists a unique
quadratic mapping Q: X — Y satisfying

1
If () — @), ull < -z Y& x 5w (44)

where,

E]
Y(x,x,x,u) —max{|2|39llxll lleell, 53 |2|3 } (45)
Proof. Let f: X — Y be mapping satisfying (42),(43). its
clearly f(0) =

Now let ¢ (x,y,z,u) = 8(llxlI” + llylI” + llzI[P) || for all
u€eYandallx,y,z € X, so

12|22, 2y,22,u)
= 121720122 + 12y 1P + [12zP) ||l

= [2[P2¢p(x, x,x, 1)

since p > 2 we have L = |2|P~2 < 1 and by Theorem (3.5)
there exists a unique quadratic mappingQ : X » Y
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If(x) — Q) ull <

Y(x,x,x,u) (45).

1
1-|2|P—2

forallu e Y and all x,y, z € X, where ¢ is defined by

> Corollary 4.3. Let 0,6,p be positive real numbers such
that p < 2, and let f : X — Y is mapping satisfying

lf(x+y+2)+f)+fQ)—flx+y)
—flx+2)—f(y+2),ull
< OUlzNP + llylP + lzP)lwll,  (46)

If ) = f (=0),ull <6 (47)

for all x,y,z € X and all u € Y . Then there exists a unique
quadratic mapping Q: X — Y satisfying

12|77

If () — Q(x), ull < 2ra

Wl[)(x, X, x,u) (48)

where,

13] 1
Yx,x,x,u) = max{|2|30IIxII lleell, == |2|3 (49)

Proof. Similarly as proof of corollary (4.1) Let f : X = Y be
mapping satisfying (46), (47). and by theorem

(3.4) with p < 2 and a constant L = |2|>"P < 1 we have
(48), where y is defined by (49).

> Corollary 4.4. Let 0,0,p be positive real numbers such
thatp > 2, and let f : X — Y is mapping satisfying

Ifx+y+2)+f@)+fQ)—fx+y)
—flx+2) - fly+2),ull
< O(lxl? + llyllP + lIzlIP)lell,  (50)

If G+ f (=0),ull <6 (51)

for all x,y,z € X and all u € Y . Then there exists a unique
quadratic mapping Q: X — Y satisfying

1
If () — @), ull < T-ppzv®@xxw (52)

where,

P(x,x, x,u) =max{||23||39||x|| lull, =7 |2|3 } (83)

Proof. Similarly as proof of the previous corollaries and by
theorem (3.6) with p > 2 and constant Lipschitz
L =12|P~2 < 1 we have (52), ¥ is defined by (53).

As another example of ¢(x,y,z u) in theorems (3.3),(3.4),
(3.5) and theorem(3.6), we can take
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o(x,y,z,u) = 0(llxlPllylIPllzIP)llull for all x,y,z €X
and allu € Y and some positive real numbers p, g, r, 8. Then
we have the following corollaries:

» Corollary 4.5. Let p,q,r,0 and 0 be positive real numbers
such that p + q +r =2, f: X — Y is a mapping
satisfying

lf(x+y+2)+fx)+fO)+f(2) - flx+y)

—fx+2)—fly+2)ul
< Ol=l® + llyll” + llzIP)lleell,  (54)

IfC) = f(=0)ull <6 (55)

for all u € Y and all x,y,z € X. Then there exists a unique
quadratic mapping Q: X — Y satisfying

If () — QCx), ull
{th(x,x,x,u), ptq+r>2
1
2 —zp [zppram V00w, patr<2

where,
Yx,x,x,u) =
1 1
max {Wﬁllxllp””,W&} forallx € X (56)
andallu €Y

Proof. Let f : X — Y satisfies (54) and (55). ¢ (x,y,z,u) =
o(llxlIPllylIPllzI") [l for all x,y,z € X, allu € Y

and p+q+r #2, (p,g,r and 6 be positive real
numbers).

Then we have,

©(2x,2y,2z,u) = 2P0 (||x/1Ply 1Pzl el
= [2[P*1* T p(x,y, z,u)
= [2]22|P*a+T 20 (x, y, z,u).

Hence if p + q + r > 2, by theorem(3.5) and let L =
[2]P*+a+7=2 < 1 there exists a unique quadratic mapping
Q:X-Y

satisfyingllf () — Q(x), ull < {rramms W(x, x, x, wfor
allx,y,z € Xandallu € Y.

Where ¢ (x, x, x,u) = max :{#lellpﬂlﬂ,#g}_

Nowifp + q +r < 2, forallx,y,z € Xandu € Y
o(x,y,z,u) = [2|~P+a+ o (2x, 2y, 2z, u)
= |2|72|2|?7P~9""p(2x, 2y, 2z, u).
Thus by Theorem(3.3) there
exists a unique quadratic mapping Q : X — Y such that

1
If () = Q@) ull < e Y (0 X X 0,
forall x € X and all u € Y, where y is defined by (56).
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> Corollary 4.6. Let p, g, 1, & and 6 be positive real
numbers with p+q+r#2. Suppose that f :X—Y is a
mapping satisfying

lf(x+y+2)+fx)+fQ)+f(2) - flx+y)

—fx+2)+f(y+2),ul
< O(l=lP + llylIP + izl el (57)

If G+ f (=0),ull <6 (58)

for all u € Y and all x,y,z € X. Then there exists a unique
quadratic mapping Q: X — Y satisfying

I1f () = Q) ul

Ww(x,x,x,u), b igir>2
<! 1

k |2| - |2| |2|2_P—q—r l/)(x;x;x,u), p + q +r<?
where,

l/)(x;x;x,u)

= max {ie”x”mqw La}

12° gFE (59)

forallx eXandallu €Y

Proof. Similarly as proof of corollary (4.5). Ifp+q+71 >
2, by Theorem (3.6), we have

I @) = Q@) ull < mrms Y@ X, X, W,

forall x € X and all u € Y, where v is defined by (59).

Thusif p + q +r < 2, by Theorem (3.4) we have
|212-P—4-T

If () = @), ull < g Y (6 X, w),

for all x € X and all u € Y, where i is defined by (59).

Now, we will study the stability of the following
functional equation with several variable on a non-
Archimedean 2-Banach spaces as following:

forany k > 3.

By Janfada [14] we can see that the quadratic function f :
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X - Y defined by f(x)= x2 and any additive mapping not
only satisfies the following equation functional:

fx+y+2)+f)+f)+f(2)
=flx+y)+f+2)
+f(x+2) (61)

but also,

De(xq, .., x) =0 (62)

Forallxj € X,i=1,2,..,k.

In following we prove the generalized Hyers-Ulam-Rassias
stability of (62) will be proved in non-Archimedean 2-
normed spaces by using Theorems (3.3),(3.4),(3.5) and
(3.6).

» Theorem 4.7. Let X and Y be common domain and range
of the f 's in the functional equations (61) and (62). Then
the functional equation (62) is equivalent to (61).

Proof. See [14]

» Corollary 4.8. Let ke Nandk = 3. Assume that

mapping f:ka Y - Y such that f(0) =0 and f
satisfies the following inequalities:

f(i xi> (k= Z)Ef(xi)
i=1 i=1
—Zk: Zk: f(xi+xj),u

i=1 j=1,j>i
S B(xq, X2, ey Xg, U) (63)
If () = f(=2),ull <6Cx) (64)

Where ¢ : X*xY —>[0,0) and §:X - [0,00) are
mapping such that for all x;, x,, x5, ...,x; € Xand Vu € Y.
Fork e NNO <L <1

1212027 %, 27 %y, 27k, oo, 27 2y, 1)
S LO(xq, x5, X3, e, Xg, U) (65)

for all x, x4, x5, x5, ..., X, € X and Vu € Y . Then there exists
a unique quadratic mapping Q : X — Y such that

If () — (), ull < mw(x, X, X, ) (66)

forallx € Xandallu € Y, where

Y(x, x,x,u)

{{max d(—x,—x,x,0,..,0,u),

3 5
12[3
1
t (x,x,—x,0,..,0,u)}, 2R 6(2x) ) (67)

12[3
= max

forallx eXandallu €Y
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Proof. Let f: Xk xy >y be mapping satisfies (63),
f(0)=0 and by setting(xq, x5, X3, oo, X, U) =
(x4,%5,x3,0,0, ...,0,u) in (63), we obtain,
If (g + x5 + x3) + f(xy) + f(x) + f(x3)

— flxy +2x3) — fxy +x3)

— f O+ x3),ull

S @(xltxZJ x3: OJOJ "'JOJ u) (68)
for all x;,x,,x; € X,and allu €Y.
Now by Considering
(p(xl' xZ' x3l u) = (D(xlt x2; X3, 0!0! !O! u)v

we obtain

@27 %y, 271x5, 27 5, u)
= @27 x;,271x,,271x5,0,0, ...,0,u)
< (%4, %5,x3,0,0,...,0,u)
= LO(xy, X, X3,u)
for all x,,x,,x; € X,and allu €Y.
By theorem (3.3) we have (66) with v is defined by (67).
» Corollary 4.9. Letk € Nandk = 3. Assume that

mapping f : xkxy >y such that f(0)=0 and f
satisfies the following inequalities:

xl + - Z)Zﬂx)

Z Z (xL +x1)

i=1j=1,j>i
< B(xy, X, e, Xg, U) (69)
If () + f(=2),ull < 8(x) (70)

Where ¢ :X*¥xY —[0,00) and &:X - [0,00) are
mapping such that for all x;, x5, x3, ...,x;, € Xand Vu € Y.
Fork e N 0O <L<1

1212027 %y, 27 %y, 27 %5, o, 2710, 1)

(71)
S LO(xq, X5, X3, e, Xg, U)

for all x;, x5, x3,...,x, € X and Vu € Y . Then there exists a
unique quadratic mapping Q@ : X — Y such that

If () = Q0 ull < Zr—77 | CTRCTAAGEEAD) (72)

2| - |2|L

forallx € Xandallu € Y, where
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Y(x, x,x,u)

{max — 0(—x,—x,x,0,..,0,

|2|3 ), \}

= max
{ ?(x, x,—x,0,..,0, u)},%S(Zx)) (73)

2l
forallx eXandallu €Y.

Proof. Similarly as proof
Theorem(3.4) we have (72).

corollary(4.8) and by

» Corollary 4.10. Letk € Nandk = 3. Assume that
mapping f : Xk xy Y such that f(0)=0 and f
satisfies the following inequalities:

(i >+(k—2)2f(x)
—Z Z flxi+x)u 74)

=1 j=1,j>i
< O(xq, X, oo Xg, U

If () — f(=2),ull < 6(x) (75)

Where ¢ :X¥xY —[0,00) and &:X — [0,00) are
mapping such that for all x;, x,, x5, ...,x; € Xand Vu € Y.
Fork e NNO <L <1

12]720(2x4, 25, 2X3, .., 2%, U)

S LO(xq, x5, X3, e, Xg, U) (76)

for all x;,x,, x5, ...,x;, € X and Vu € Y . Then there exists a
unique quadratic mapping Q : X — Y such that

£ — Q) ull < e, ) (77)

forallx € Xandallu € Y, where

Y(x, x,x,u)

{max —=0(—x, —x,x,0,..,0,u) )

1
|2[3 }

= max
{ ?(x,x,—x,0,..,0,u)}, |2|36(2x)) (78)

VT2
forallx eXandallu €Y

Proof. Similarly as proof corollary (4.8) and by Theorem
(3.5) we have (77).

» Corollary 4.11, Letk € Nandk = 3. Assume that

mapping f : Xk xy >y such that f(0)=0 and f
satisfies the following inequalities:
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Hf(i’ﬁ)"‘(k—z)zk:f(xi)
_i i f(xl-+x])u

i=1 j=1,j>i (79)
< O(Xq,Xg, ey Xp, U)
lf (x) + f(=2),ull <8(x) (80)

Where ¢ : X¥ xY - [0,0)
mapping such that for all x, x;, x5, x5, ...,
Vu€ey.

and &:X—[0,00) are
X, € X and

Fork e NO <L <1
121720 (2x,, 2x,, 2X3, ...

for all x;,x,, x5, ...,x; € X and Vu € Y . Then there exists a
unigue quadratic mapping Q : X — Y such that

If(x) — Q) ull < %ll)(x, X, x, 1) (82)

forallx € Xandallu € Y, where

Y(x, x,x,u)
( {max|21|3®( —x,—x,%,0,..,0,u) )
=max{ 3 0,..,0 1 6(2 }
k,W(D(x,x, -x,0,.., ,u)},m ( x)) @)

forallx eXandallu €Y
Proof. Similarly as proof corollary (4.8) and by
Theorem(3.6) we have (82).

V. CONCLUSION

A study of the stability properties of a type of quadratic
equation in non-Archimedean 2-Banach spaces by fixed
point method has been done. The stability quadratic
functional equation with n-variable has been proved on the
same space. It would be interesting also to study slimier
properties for n-normed spaces.
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