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I. INTRODUCTION 
 

In 1940, Ulam [1] suggested the stability problem of 

functional equations concerning the stability of group 

homeomorphism as follows: 

 

Let (𝐺, 𝑜) be a group and let (𝐻,⋆, 𝑑) be a metric group 

with the metric 𝑑(. , . ). Given 𝜖 >  0, does there exist 𝑎 𝛿 =
𝛿(𝜖) > 0 such that if a mapping 𝐹: 𝐺 → 𝐻 satisfies the 

inequality: 
 

𝑑(𝑓(𝑥 ∘ 𝑦), 𝑓(𝑥) ∗ 𝑓(𝑦)) < 𝛿 

 

for all 𝑥, 𝑦 ∈  𝐺. Then a homomorphism 𝐹: 𝐺 → 𝐻 

exists 𝑑(𝑓(𝑥), 𝐹(𝑥)) for all 𝑥 ∈ 𝐺? 

 

In 1941, Hyers [2] give the first (partial) affirmative 

answer to the question of Ulam for Banach spaces. 

Thereafter, we call type the Hyers – Ulam stability. 

 
The result of Hyers was generalized by Aoki [6] for 

approximate additive mappings and by Th.m. Rassias [7] for 

an approximate linear mapping following the difference 

Cauchy equation 

 
‖𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦)‖ to be controlled by 

𝜖(‖𝑥‖𝑝 + ‖𝑦‖𝑝) 
 

The functional equation 

𝑓(𝑥 + 𝑦)+ 𝑓(𝑥 − 𝑦) = 2𝑓(𝑥) + 𝑓(𝑦) (1) 

 

Is related to symmetric bi-additive function and called 

a quadratic functional and every solution of the quadratic (1) 

is said to be quadratic mapping. Skof [20] proved the 

Hyers– Ulam stability of the quadratic functional equation 

(1). 

 

The theory of linear 2-normed spaces was first 

developed by Gahler[8] in the mid 1960’s, while That of 2-
Banach spaces was studied later by Gahler [9] and White 

[10]. 

 

The functional equation 

 

𝑓(𝑥 + 𝑦 + 𝑧) + 𝑓(𝑥) + 𝑓(𝑦) + 𝑓(𝑧)
= 𝑓(𝑥 + 𝑦) + 𝑓(𝑦 + 𝑧) + 𝑓(𝑥 + 𝑧) 

 

(2) 

 

Be another quadratic mapping, by Skof [20] proved the 

Hyers– Ulam stability of quadratic functional equation (2). 
Jung [5] proved the Hyers– Ulam stability of quadratic 

functional equation (2) in the Banach space with respect to 

some conditions. 

 

In 1978, Rassias[7] extended the Hyers- Ulam stability 

by considering variable. In 1994, it also has been 

generalized to function case by Gavruta [18]. 

 

Hensel[21] has introduced a normed space which does 

not have the Archimedean property, Rassias[22] proved the 

generalized Hyers- Ulam stability of the additive functional 

equation and the quadratic functional equation in non-
Archimedean spaces. 

 

Hyers’s method used in [2], which is often called the 

direct method, has been applied for studying the stability of 

various functional equations but this method sometimes 

does not work [30]. Nevertheless, there are also other 

approaches proving the Hyers-Ulam stability, for example: 

the method of invariant means [32], the method of based on 

sandwich theorems [31], the method using the concept of 

shadowing [33] and the fixed-point method. 

 
In this paper, we will use the fixed-point method which 

is the second most popular technique of proving the stability 

of quadratic functional equation in (2) in a non-

Archimedean 2-Banach spaces under the approximately 

even (or odd) conditions and some asymptotic behaviors of 

quadratic and additive mappings shall be investigated and 

generalized the stability of the same functional equation in a 

non-Archimedean 2-Banach spaces. 
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II. PRELIMINARIES 

 

In this section we introduce some notions which we be 

used in the sequel. 

 

 Definition 2.1. [24] Let 𝕂 be a field. A non-Archimedean 

absolute value (or valuation) on a filed 𝕂 is a function 
|. |: 𝕂 ⟶ ℝ such that for any 𝑎. 𝑏 ∈ 𝕂, we have, 

      (𝑖) |𝑎| ≥ 0 and equality holds if and only if 𝑎 = 0, 
     (𝑖𝑖) |𝑎𝑏| = |𝑎||𝑏| 
     (𝑖𝑖𝑖) |𝑎 + 𝑏| ≤ 𝑚𝑎𝑥{|𝑎|, |𝑏|} 
 

Condition (𝑖𝑖𝑖) is called the strong triangle inequality. 

By (𝑖𝑖), we have |−1| = |1| = 1. 
 

Thus, by induction, it follows from (𝑖𝑖𝑖) that |n| ≤ 1, for 

each integer n. we always assume in addition that |.| is non-

trivial, that is, there is an 𝑎0 ∈ 𝕂 such tat |𝑎0| ≠ 0,1 

 

 Definition 2.2. [24] Let X be a vector space over a non-

Archimedean field K. A function ‖. ‖ ∶ 𝑋 → 𝑅 is called a 

non-Archimedean norm if it satisfies the following 

properties: 
 

(𝑎) ‖𝑥‖ = 0 if and only if x = 0, 

 

(b) ‖𝑟𝑥‖ = |𝑟| ‖𝑥‖ 

 

(c) ‖𝑥 + 𝑦‖ = 𝑚𝑎𝑥{‖𝑥‖, ‖𝑦‖}  
 

for all x,𝑦 ∈ X and r ∈ K. 

If ‖𝑥‖ is called a non-Archimedean norm on X and the 

pair (X, ‖. ‖) is called a non-Archimedean normed space 

 

 Definition 2.3. [22] Let (X, ‖. ‖) a non-Archimedean 

normed space and {xn} a sequence in X. Then {xn} is 

said to be convergent in (X, ‖. ‖) if there exists an x ∈ X 

such that 𝑙𝑖𝑚
𝑛→∞

‖𝑥𝑛 − 𝑥‖ = 0. In case, x is called the limit 

of the sequence {𝑥𝑛}, and one denotes it by 

 

lim𝑛→∞ 𝑥𝑛 = 𝑥 .  A sequence {𝑥𝑛} is said to a Cauchy in (X, 
‖. ‖) if for all p ∈ N. 

 

 Remark 2.4. [22] By (c) in Definition (2.2), 

 

‖𝑥𝑛 − 𝑥𝑚‖ ≤ 𝑚𝑎𝑥{‖𝑥𝑗+1 − 𝑥𝑗‖ | 𝑚 ≤ 𝑗

≤ 𝑛 − 1}                       (𝑛 > 𝑚) 

 
(3) 

 

A sequence {𝑥𝑛} is Cauchy in (X, ‖. ‖) if and only if 

{𝑥𝑛+1 − 𝑥𝑛} converges to zero in a non-Archimedean 

normed space (X, ‖. ‖). By a complete non-Archimedean 

normed space, we mean one in which every Cauchy 

sequence is convergent. 
 

 Definition 2.5. [26] Let X be a set. A function 𝑑: 𝑋 ×
𝑋 → [0,∞] is called a generalized metric on X if d 

satisfies the following: 

 

    (i) d(x, 𝑦) = 0 if only and only x = 𝑦, 

   (ii) d(x,𝑦) = d(𝑦,x)  for all x, 𝑦 ∈ X, 

  (iii) d(x, 𝑦) ≤ d(x, 𝑦) + d(𝑦,x)  for all x, 𝑦,z ∈ X. 

 

Then (X,d) is called a generalized metric space, (X,d) 

is called complete if every d- Cauchy sequence in X is d- 

convergent. 

 

Note that the distance between two points in a 

generalized metric space is permitted to be infinity. 
 

 Example 2.6. [26] Let 𝑋 ∶= 𝐶(ℝ) ”the space of the 

continuous functions on ℝ” and let 𝑑: 𝑋2 → [0,∞]  
given by d(x, 𝑦) = sup𝑡∈ℝ|𝑥(𝑡) − 𝑦(𝑡)| 
 

Then the pair (X,d) is a generalized complete metric 

space. 

 

 Definition 2.7. [27] Let (X,d) be a generalized complete 

metric space, a mapping J : X → X satisfies a Lipschitz 

condition with a constant L > 0 ”Lipschitz constant” if 
 

d(J(x),J(𝑦)) ≤ Ld(x, 𝑦) (4) 

 

for all x,y ∈ X. If L < 1, then J is called a strictly 

contractive operator. 

 

We remark that only difference between the 

generalized metric and the usual metric is that the range of 

former is permitted to include the infinity. 

 

By these notions, B. Margolis and J. Diaz gave one of 

the fundamental results of the fixed-point theory. For the 
proof, we refer to [26]. 

 

 Theorem 2.8. [26] Let (X, d) be a generalized complete 

metric space and 𝐽 ∶ 𝑋 → 𝑋  be strictly contractive 

mapping with the Lipschitz constant L. Then for each 

given element 𝓍 ∈ 𝑋, either 

 

𝑑(𝐽𝑛𝓍 , 𝐽𝑛+1𝓍) = ∞ 
 

for all non-negative integers n or there exists a positive 

integer n0 such that; 

 

     (𝑖) 𝑑(𝐽𝑛𝓍 , 𝐽𝑛+1𝓍) < ∞,   

 

for all 𝑛 ≥ 𝑛0 
 

     (𝑖𝑖) the sequence 𝐽𝑛𝓍  converges to a fixed point 𝑦∗  of J, 

      (𝑖𝑖𝑖) 𝑦∗  is the unique fixed point of J in the set 

 𝑌 = {𝑦 ∈ 𝑋 ∶ 𝑑(𝐽𝑛0(𝓍), 𝑦) < ∞} 

      (𝑖𝑣) 𝑑(𝑦, 𝑦∗) ≤
1

1−𝐿
𝑑(𝐽(𝑦), 𝑦)    

 

   for all 𝑦 ∈ 𝑌. 

 

 Definition 2.9. [22] Let X be a real linear space over 

non-Archimedean field K with dim X > 1 and let 
‖𝓍, 𝑦‖:𝑋 × 𝑋 → [0,∞[  be a function satisfying the 

following properties: 

 

 

http://www.ijisrt.com/


Volume 8, Issue 1, January – 2023                International Journal of Innovative Science and Research Technology                                                 

                                                      ISSN No:-2456-2165 

 

IJISRT23JAN224                                                            www.ijisrt.com                                                                            97 

 
 
 

(N A1)‖𝓍, 𝑦‖ = 0  if and only if x and y are linearly 

dependent, 

 

(N A2) ‖𝓍, 𝑦‖ = ‖𝑦, 𝓍‖ 
 

(N A3) ‖∝ 𝓍, 𝑦‖ = |∝|‖𝓍, 𝑦‖ 

 (A A4) ‖𝓍, (𝑦 + 𝑧)‖ ≤ 𝑚𝑎𝑥{‖𝓍, 𝑦‖,‖𝓍, 𝑧‖} 
 

for all 𝓍, 𝑦, 𝑧 ∈ 𝑋  and 𝛼 ∈  𝑅. Then the function (∥
. , . ∥) is called a non-Archimedean 2- norm on X and the 

pair 

 (𝑋, ∥. , . ∥) is called a non-Archimedean 2-normed 

space. 

 

 Lemma 2.10. [22] Let (𝑋, ∥. , . ∥) be a non-Archimedean 

2-normed space. If 𝑥 ∈  𝑋 and ∥ 𝑥, 𝑦 ∥ =  0 for all 𝑦 ∈
𝑋, then 𝑥 =  0. 

 

 Definition 2.11. [22] A sequence {𝓍𝑛} in a non-

Archimedean 2-normed space (𝑋, ∥. , . ∥) is called a 

Cauchy sequence if 

 

∥ 𝓍𝑛  −  𝓍𝑚 , 𝑦 ∥ =  0 
 

for all y ∈ X 

 

 Definition 2.12. [23] A sequence {xn} in a non-

Archimedean 2-normed space (X,∥.,.∥) is called a 

Cauchy sequence if 

 

∥ 𝓍𝑛  −  𝑥, 𝑦 ∥ =  0 
 

for all y ∈ X If {𝓍𝑛} converges to x, write 𝑥𝑛 →  𝑥 as 

𝑛 →  ∞ and call x the limit of {𝓍𝑛}. In this case, we also 
write  

 

lim
𝑛→∞

𝓍𝑛 = 𝓍 

 

Let {𝑥𝑛} be a sequence in a non-Archimedean 2-

normed space (X, ‖. , . ‖) It follows from (N A4) that 

 

‖𝑥𝑛 − 𝑥𝑚,𝑦‖ ≤ 𝑚𝑎𝑥{‖𝑥𝑗+1 − 𝑥𝑗,𝑦‖ | 𝑚 ≤ 𝑗 ≤ 𝑛 − 1} (𝑛

> 𝑚) 
 

for all 𝑦 ∈ 𝑋 and so a sequence {𝑥𝑛} is a Cauchy 

sequence in (X, ‖. , . ‖) if and only if {𝑥𝑛+1 − 𝑥𝑛} converges 

to zero in (X, ‖. , . ‖) 

A non-Archimedean 2-normed space (X, ‖. , . ‖) is 
called a non-Archimedean 2-Banach space if every Cauchy 

sequence in (X, ‖. , . ‖) is convergent. 

 

 Lemma 2.13. [23] For a convergent sequence {xn} a 

non-Archimedean 2-normed space (X, ‖. , . ‖)  

 

lim
𝑛→∞

‖𝑥𝑛 , 𝑦‖ = ‖ lim
𝑛→∞

𝑥𝑛 , 𝑦‖ 

 

for all 𝑦 ∈ X. 
 

 Lemma 2.14. [23] Let (X, ‖. , . ‖) be a non-Archimedean 

2-normed space. Then 
‖𝑥, 𝑧‖ − ‖𝑦, 𝑧‖ ≤ ‖𝑥 − 𝑦, 𝑧‖ 

 

for all x, 𝑦,z ∈ X. 

 

 Definition 2.15. [22] A non-Archimedean 2-Banach 

space X is called a normed non-Archimedean 2- Banach 
space if X is a 2-Banach space with norm. 

 

III. MAIN RESULTS 

 

Hereafter, we will assume that X be a linear vector 

space over a non-Archimedean field K with a valuation |.| 

and Y a non-Archimedean 2- Banach spaces with dimY > 1. 

For convenience we use following abbreviation for a given 

mapping  f : X → Y 

 

𝐷𝑓(x, 𝑦,z):= f(x + 𝑦 + z) + f(x) + f(𝑦) + f(z) − f(x 

+ 𝑦) − f(x + z) − f(𝑦 + z) 

 
(5) 

 

for all x, 𝑦,z ∈ X. 

 

If for some 𝜑:𝑋3 × 𝑌 → [0,∞], a mapping f : X → Y 

satisfies ∥ 𝐷𝑓(𝑥, 𝑦, 𝑧), 𝑢 ∥ ≤  𝜑(𝑥, 𝑦, 𝑧, 𝑢) for all 𝑥, 𝑦, 𝑧 ∈  𝑋 

and all u ∈ Y , then f is called a 𝜑 -approximately quadratic 

function. 

 

 Theorem 3.1. [28] Let f : X → Y be mapping satisfies the 
following inequality: 

 

∥f(x + y + z) + f(x) + f(𝑦) + f(z) − f(x + 𝑦) − f(𝑦 + z) − f(z 

+ x),u∥ ≤ 𝜑(x, 𝑦,,z,u)                                                                 

 

for all x,𝑦,z ∈ X , u ∈ Y , with f(0) = 0, where φ : X3 × Y → 

[0,∞) is arbitrary mapping. Then, 

‖𝑓(𝑥) −
2𝑛 + 1

22𝑛 + 1
𝑓(2𝑛𝑥) +

2𝑛 + 1

22𝑛 + 1
𝑓(−2𝑛𝑥), 𝑢‖ 

                                         ≤

max {{
|2𝑖+1−1|

|2|2𝑖+3
𝜑(2𝑖𝑥,−2𝑖𝑥, 2𝑖𝑥, 𝑢)}, {

|2𝑖+1+1|

|2|2𝑖+3
𝜑(2𝑖𝑥, 2𝑖𝑥,−2𝑖𝑥, 𝑢)} ∶

0 ≤ 𝑖 ≤ 𝑛 − 1}    
  

for all x ∈ X, all u ∈ Y and n ∈ N. 

 

 Lemma 3.2. 𝐿𝑒𝑡 𝜓: 𝑋 → [0,∞) be a function, the set 

ℳ = {𝑔: 𝑋 → 𝑌 |𝑔(0) = 0} and define 
 

𝑑(𝑔, ℎ) = inf{𝛼 > 0 ∶  ‖𝑔(𝑥) − ℎ(𝑥), 𝑢‖ ≤
∝ 𝜓(𝑥)}          (𝑔, ℎ ∈ ℳ) 

   

∀x ∈ X, ∀u ∈ Y. Then d is generalized metric on ℳ. 

 

Proof. Let 𝑔, ℎ, 𝑘 ∈ ℳ and ∝1, ∝2> 0 such that 𝑑(𝑔, ℎ) <
∝1 and 𝑑(ℎ, 𝑘) <∝2. Then by the definition 

 ‖𝑔(𝑥) − ℎ(𝑥), 𝑢‖ ≤∝1 𝜓(𝑥) and ‖ℎ(𝑥) − 𝑘(𝑥), 𝑢‖ ≤
∝2 𝜓(𝑥)  for each x ∈ X, and all u ∈ Y, it follows that 

 
‖𝑔(𝑥) − 𝑘(𝑥), 𝑢‖ ≤ ‖𝑔(𝑥) − ℎ(𝑥), 𝑢‖ + ‖ℎ(𝑥) − 𝑘(𝑥), 𝑢‖ 

≤∝1 𝜓(𝑥) ≤∝2 𝜓(𝑥) = (∝1+∝2)𝜓(𝑥) 
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Therefore 𝑑(𝑔, ℎ) ≤ (∝1 +∝2). This proves the 

triangle inequality for d. The rest of proof is similar to the 

proof of main result of [34]. 

 

In the following theorem, Hyers-Ulam stability of 

equation (2) is proved under approximately even condition 

in a non-Archimedean 2-Banach spaces. 

 

 Theorem 3.3. Let 𝑓: 𝑋 → 𝑌 𝑏𝑒 𝑎 𝜑-approximately 

quadratic function with f(0) = 0 such that for all x, 𝑦,z ∈ 

X and all u ∈ Y, 

∥f(x) − f(−x),u∥ ≤ δ(x) 
 

(6) 

 

where 𝛿 ∶ 𝑋 → [0,∞). Let 0 < L < 1 be a constant such that, 

|2|2𝜑(2−1𝑥, 2−1𝑦, 2−1𝑧, 𝑢) ≤ 𝐿𝜑(𝑥, 𝑦, 𝑧, 𝑢) (7) 

 

for each x, 𝑦,z ∈ X, and all u ∈ Y. Then there exists a 

unique quadratic mapping Q: X → Y such that 

 

‖𝑓(𝑥) − 𝑄(𝑥), 𝑢‖ ≤
𝐿

|2|2 − |2|2. 𝐿
𝜓(𝑥, 𝑥, 𝑥, 𝑢) (8) 

 

for all x ∈ X and all u ∈ Y, where 

𝜓(𝑥, 𝑥, 𝑥, 𝑢)

= max {max{
1

|2|3
𝜑(−𝑥,−𝑥, 𝑥, 𝑢),

|3|

|2|3
𝜑(𝑥, 𝑥,−𝑥, 𝑢)} ,

1

|2|3
δ(2𝑥)} 

 
 

(9) 

 

Proof. Let 𝑓: 𝑋 → 𝑌 𝑏𝑒 𝑎 𝜑 -approximately quadratic 

function satisfies the inequality (6) and f(0)=0, then for all x 

∈ X, and all u ∈ Y , we have for n ∈ N 

‖
2𝑛 − 1

22𝑛+1
𝑓(2𝑛𝑥) −

2𝑛 − 1

22𝑛+1
𝑓(−2𝑛𝑥), 𝑢‖

=
|2𝑛 − 1|

|2|2𝑛+1
 ‖𝑓(2𝑛𝑥)

− 𝑓(−2𝑛𝑥), 𝑢‖ 

                                              ≤
|2𝑛 − 1|

|2|2𝑛+1
𝜑(2𝑛𝑥) 

 

 

 

 

 

 

 

 
 

 

(10) 

 

for all x ∈ X, u ∈ Y and n ∈ N, 

‖𝑓(𝓍) −
1

22𝑛
𝑓(2𝑛𝓍),𝓊‖  

= ‖𝑓(𝓍) −
1

22𝑛
𝑓(2𝑛𝓍) +

2𝑛 + 1

22𝑛+1
𝑓(2𝑛𝓍)

−
2𝑛 + 1

22𝑛+1
𝑓(2𝑛𝓍) +

2𝑛 − 1

22𝑛+1
𝑓(−2𝑛𝓍)

−
2𝑛 − 1

22𝑛+1
𝑓(−2𝑛𝓍),𝓊‖ 

 

= ‖𝑓(𝓍) −
2𝑛 + 1

22𝑛+1
 𝑓(2𝑛𝓍) +

2𝑛 − 1

22𝑛+1
𝑓(−2𝑛𝓍)

−
1

22𝑛
𝑓(2𝑛𝓍) +

2𝑛 + 1

22𝑛+1
𝑓(2𝑛𝓍)

−
2𝑛 − 1

22𝑛+1
𝑓(−2𝑛𝓍),𝓊‖ 

= ‖𝑓(𝓍) −
2𝑛 + 1

22𝑛+1
 𝑓(2𝑛𝓍)+

2𝑛 − 1

22𝑛+1
𝑓(−2𝑛𝓍)

+ (−
1

22𝑛
𝑓(2𝑛𝓍) +

2𝑛 + 1

22𝑛+1
𝑓(2𝑛𝓍)

−
2𝑛 − 1

22𝑛+1
𝑓(−2𝑛𝓍),𝓊)‖ 

 

≤ 𝑚𝑎𝑥 {‖𝑓(𝓍) −
2𝑛 + 1

22𝑛+1
 𝑓(2𝑛𝓍)+

2𝑛 − 1

22𝑛+1
𝑓(−2𝑛𝓍)‖ ,

‖
2𝑛 − 1

22𝑛+1
𝑓(2𝑛𝓍)−

2𝑛 − 1

22𝑛+1
𝑓(−2𝑛𝓍),𝓊‖} 

 

by(10) and Theorem (3.1), the right side satisfies 

 

≤ 𝑚𝑎𝑥 {𝑚𝑎𝑥 {
|2𝑖+1 − 1|

|2|2𝑖+3
𝜑(−2𝑖𝓍, −2𝑖𝓍, 2𝑖𝓍,𝓊),

|2𝑖+1 + 1|

|2|2𝑖+3
𝜑(2𝑖𝓍, 2𝑖𝓍,−2𝑖𝓍,𝓊)  

∶ 0 ≤ 𝑖 ≤ 𝑛 − 1} ,
|2𝑛 − 1|

|2|2𝑛+1
𝛿(2𝑛𝓍)} 

 

 

 

 

(11) 

for all 𝑛 ∈  𝑁. In particular, 

‖𝑓(𝓍) − 2−2𝑓(2𝓍),𝓊‖ ≤ 𝜓(𝓍, 𝓍, 𝓍, 𝓊)                   ∀𝓍
∈ 𝑋, ∀𝓊 ∈ 𝑌,
𝜓 is defined by (9) 

 

 

 
(12) 

 

So ‖4𝑓(𝓍) − 𝑓(2𝓍),𝓊‖ ≤ |2|2𝜓(𝓍, 𝓍, 𝓍, 𝓊)
≤ 𝜓(𝓍, 𝓍, 𝓍,𝓊)                     ∀𝓍
∈ 𝑋,∀𝓊 ∈ 𝑌 

 

 

(13) 

 

Replacing x by 21𝑥 in (13), it follows that for each 

𝑥 ∈  𝑋 and all  ∈  𝑌 , 

 ‖4𝑓(𝓍) − 4𝑓(2−1𝓍),𝓊‖ ≤ 𝜓(2−1𝓍, 2−1𝓍, 2−1𝓍,𝓊) 
 

(14) 
 

Let us consider the set 

ℱ ≔ {𝑔: 𝑋 → 𝑌| 𝑔(0) = 0} (15) 

 

and introduce a generalized metric on F as following: 

𝑑(𝑔, ℎ) = 𝑖𝑛𝑓{∝> 0: ‖𝑔(𝓍) − ℎ(𝓍), 𝑢‖ ≤
∝ 𝜓(𝓍, 𝓍, 𝓍,𝓊)}                     ∀𝓍
∈ 𝑋 𝑎𝑛𝑑 𝑎𝑙𝑙 𝓊 ∈ 𝑌 

 

 

(16) 

 

where, as usual inf 𝜙 = +∞ . Its easy to show that 

(ℱ, 𝑑) is complete (see for example ([29]). 

 

Now, we consider the linear mapping 𝐽 ∶  ℱ →  ℱsuch 

that 𝐽(ℎ)  =  4ℎ(21𝑥). we assert that J is strictly contractive 

on ℱ. 

 

Given 𝑔, ℎ ∈ ℱ, and let ∝∈ [0,∞) be an arbitrary 

constant with 𝑑(𝑔, ℎ) ≤∝ 𝜓(𝑥, 𝑥, 𝑥, 𝑢) that 

 
‖𝑔(𝑥) − ℎ(𝑥), 𝑢 ‖ ≤∝ 𝜓(𝑥, 𝑥, 𝑥, 𝑢)       (𝑥 ∈ 𝑋, 𝑢 ∈ 𝑌), then 

by (7) 
‖𝐽(𝑔)(𝑥) − 𝐽(ℎ)(𝑥), 𝑢 ‖ = ‖4𝑔(2−1𝑥) − 4ℎ(2−1𝑥), 𝑢‖ ≤

∝ |2|2𝜓(2−1𝑥), 2−1𝑥, 2−1𝑥) ≤ 𝐿
∝ 𝜓(𝑥, 𝑥, 𝑥, 𝑢) 

for all x ∈ X. It follows that 

 

𝑑(𝐽(𝑔), 𝐽(ℎ)) ≤ 𝐿𝑑(𝑔, ℎ)             (𝑔, ℎ ∈ ℱ) 
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Hence d is strictly contractive mapping with Lipschitz 

constant, L. By (14) we have, for each x ∈ X and u ∈ Y 

 
‖(𝐽𝑓)(𝑥) − 𝑓(𝑥), 𝑢‖ = ‖4𝑓(2−1𝑥) − 𝑓(𝑥), 𝑢‖

≤ 𝜓(2−1𝑥, 2−1𝑥, 2−1𝑥, 𝑢)

≤
𝐿

|2|2
𝜓(𝑥, 𝑥, 𝑥, 𝑢) 

 

This means that 𝑑(𝐽(𝑓), 𝑓) ≤
𝐿

|2|2
. 

 

By Theorem (2.8) there exists a mapping 𝑄: X → Y 

satisfies the following: 

 

(1)   𝑄 is fixed point of J, and 𝑄 is a unique fixed point 

of J in the set 

 

𝒥 = {𝑔 ∈ ℱ ∶ 𝑑(𝑔, 𝐽(𝑓)) < ∞} 
 

That 𝑄 is a unique mapping such that there exists α ∈
[0,∞) satisfying 

 
‖𝑓(𝑥) − 𝑄(𝑥), 𝑢‖ ≤  𝛼𝜓(𝑥, 𝑥, 𝑥, 𝑢) 

 

for all x ∈ X and all u ∈ Y. 

 

(2)   lim
𝑛→∞

𝐽𝑛𝑓(𝑥) = lim
𝑛→∞

22𝑛𝑓(2−𝑛𝑥) = 𝑄(𝑥)          (for 

all x ∈ X and all u ∈ Y ).  

Therefore for all x,y,z ∈ X and u ∈ Y , 

 
‖𝑄(𝑥 + 𝑦 + 𝑧) + 𝑄(𝑥) + 𝑄(𝑦) + 𝑄(𝑧) − 𝑄(𝑥 + 𝑦) − 𝑄(𝑥

+ 𝑧) − 𝑄(𝑦 + 𝑧), 𝑢‖ 

= lim
𝑛→∞

|2|2𝑛 ‖𝑓(2−𝑛(𝑥 + 𝑦 + 𝑧)) + 𝑓(2−𝑛(𝑥))

+ 𝑓(2−𝑛(𝑦)) + 𝑓(2−𝑛(𝑧))
− 𝑓(2−𝑛(𝑥 + 𝑦))   − 𝑓(2−𝑛(𝑥 + 𝑧))
− 𝑓(2−𝑛(𝑦 + 𝑧), 𝑢‖ 

 

≤ lim
𝑛→∞

|2|2𝑛 𝜑(2−𝑛𝑥, 2−𝑛𝑦, 2−𝑛𝑧, 𝑢) (17) 

 

it easy to show that by induction 
|2|2𝑛𝜑(2−𝑛𝑥, 2−𝑛𝑦, 2−𝑛𝑧, 𝑢) ≤ 𝐿𝑛𝜑(𝑥, 𝑦, 𝑧, 𝑢) , 

 

so the right side of (17)≤ lim
𝑛→∞

𝐿𝑛 𝜑(𝑥, 𝑦, 𝑧, 𝑢) =

0  (𝑠𝑖𝑛𝑐𝑒 𝐿 < 1) 
 

By lemma (2.10) this show that 𝑄 is quadratic . 

 

(3)   𝑑(𝑓, 𝑄) ≤
1

1−𝐿
𝑑(𝑓, 𝐽(𝑓)). This implies 𝑑(𝑓, 𝑄) ≤

1

1−𝐿
.
𝐿

|2|2
=

𝐿

|2|2−|2|2.𝐿
 

 

Thus ‖𝑓(𝑥) − 𝑄(𝑥), 𝑢‖ ≤
𝐿

|2|2−|2|2.𝐿
𝜓(𝑥, 𝑥, 𝑥, 𝑢). Then 

we have the inequality (8). 

 
Hence the proof of the theorem is end. 

 

Similarly, as the proof theorem (3.3), the Hyers-Ulam 

stability of equation (2) is proved under approximately odd 

condition in a non-Archimedean 2-Banach spaces. 

 Theorem 3.4. 𝐿𝑒𝑡  𝑓 ∶ 𝑋 → 𝑌 𝑏𝑒 𝑎 𝜑-approximately 

quadratic function with 𝑓(0) = 0 such that for all x,y,z ∈ 

X and all 

 u ∈ Y, 

‖𝑓(𝑥)  +  𝑓(−𝑥), 𝑢‖ ≤  𝛿(𝑥) (18) 

 

where 𝛿 ∶ 𝑋 → [0,∞). Let 0 < L < 1 be a constant such that, 
 

|2|2𝑛𝜑(2−1𝑥, 2−1𝑦, 2−1𝑧, 𝑢) ≤ 𝐿𝜑(𝑥, 𝑦, 𝑧, 𝑢) (19) 

 

for each x,y ∈ X. Then there exists a unique quadratic 

mapping Q: X → Y such that 

 

‖𝑓(𝑥) − 𝑄(𝑥), 𝑢‖ ≤
𝐿

|2| − |2|. 𝐿
𝜓(𝑥, 𝑥, 𝑥, 𝑢) (20) 

 

for all x ∈ X and all u ∈ Y, where 

 

𝜓(𝑥, 𝑥, 𝑥, 𝑢)

= max {max {
1

|2|3
𝜑(−𝑥, −𝑥, 𝑥, 𝑢),

|3|

|2|3
𝜑(𝑥, 𝑥, 𝑥, 𝑢)},

1

|2|3
𝛿(2𝑥)} 

 

(21) 

 

Proof. Let 𝑓 ∶  𝑋 → 𝑌 𝑏𝑒 𝑎 𝜑-approximately quadratic 

function with 𝑓(0) = 0 satisfies the inequality (18), So for 

all x ∈ X, and u ∈ Y, we have for n ∈ N 

 

‖
2𝑛 − 1

22𝑛+1
𝑓(2𝑛𝓍) +

2𝑛 − 1

22𝑛+1
𝑓(−2𝑛𝓍)‖

≤
|2𝑛 − 1|

|2|2𝑛+1
𝜓(2𝑛𝓍) 

 

 

 

(22) 

 

for all x ∈ X, u ∈ Y and n ∈ N, 

 

‖𝑓(𝓍) −
1

2𝑛
𝑓(2𝑛𝓍),𝓊‖

= ‖𝑓(𝓍) −
2𝑛 + 1

22𝑛+1
𝑓(2𝑛𝓍)

+
2𝑛 − 1

22𝑛+1
𝑓(−2𝑛𝓍)                       

+
−2𝑛 − 1

22𝑛+1
𝑓(2𝑛𝓍) −

2𝑛 − 1

22𝑛+1
𝑓(2𝑛𝓍),𝓊‖ 

 

≤ 𝑚𝑎𝑥 {‖𝑓(𝓍) −
2𝑛 + 1

22𝑛+1
 𝑓(2𝑛𝓍)+

2𝑛 − 1

22𝑛+1
𝑓(−2𝑛𝓍)‖ ,

‖
2𝑛 + 1

22𝑛+1
𝑓(2𝑛𝓍)+

2𝑛 − 1

22𝑛+1
𝑓(−2𝑛𝓍),𝓊‖} 

 

By (22) and Theorem (3.1), the right side satisfies 

 

≤ 𝑚𝑎𝑥 {𝑚𝑎𝑥 {
|2𝑖+1 − 1|

|2|2𝑖+3
𝜑(−2𝑖𝓍, −2𝑖𝓍, 2𝑖𝓍,𝓊),

|2𝑖+1 + 1|

|2|2𝑖+3
𝜑(2𝑖𝓍, 2𝑖𝓍,−2𝑖𝓍,𝓊)  

∶ 0 ≤ 𝑖 ≤ 𝑛 − 1} ,
|2𝑛 − 1|

|2|2𝑛+1
𝜓(2𝑛𝓍)} 

 

 

 

 
(23) 

for all n ∈ N. In particular, 
‖𝑓(𝑥) − 2−1𝑓(2𝑥), 𝑢‖ ≤
 𝜓(𝑥, 𝑥, 𝑥, 𝑢)                   (𝑥 ∈ 𝑋, 𝑢 ∈
𝑌),        𝜓 is defined by (21)     

 

 

(24) 

 

this follows that 
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‖2𝑓(𝑥) − 𝑓(2𝑥), 𝑢 ‖ ≤  |2|𝜓(𝑥, 𝑥, 𝑥, 𝑢)

≤ 𝜓(𝑥, 𝑥, 𝑥, 𝑢)             (𝑥 ∈ 𝑋, 𝑢
∈ 𝑌) 

(25) 

 

Replacing x by 2−1𝑥 in (25), it follows that for each x 

∈ X and all u ∈ Y, 

 

‖𝑓(𝑥) − 2𝑓(2−1𝑥), 𝑢‖ ≤  𝜓(2−1𝑥, 2−1𝑥, 2−1𝑥, 𝑢) (26) 

 

Similarly, as proof of the theorem (3.3) we can 

consider the set ℱ is defined by (15) and introduce d is a 

generalized metric on ℱ which defined by (16). It clearly 

(ℱ, 𝑑) is complete. 

 

Now we consider the linear mapping 𝐽 ∶  ℱ → ℱ such 

that 𝐽(ℎ) = 2ℎ(2−1𝑥) Similarly, as proof of the theorem 

(3.3) of J is strictly contractive on ℱ. By (26) we have, for 

all x ∈ X and all u ∈ Y 

 
‖(𝐽𝑓)(𝑥) − 𝑓(𝑥), 𝑢‖ = ‖2𝑓(2−1𝑥) − 𝑓(𝑥), 𝑢‖

≤  𝜓(2−1𝑥, 2−1𝑥, 2−1𝑥, 𝑢)

≤
𝐿

|2|
𝜓(𝑥, 𝑥, 𝑥, 𝑢) 

 

This means that 𝑑(𝐽(𝑓), 𝑓)  ≤
𝐿

|2|
.  By Theorem (2.8) 

there exists a mapping 𝑄 ∶ 𝑋 → 𝑌 satisfies the following: 

 

(1)   𝑄 is fixed point of 𝐽, and 𝑄 is a unique fixed point 

of J in the set 
 

𝒥 = {𝑔 ∈ ℱ ∶ 𝑑(𝑔, 𝐽(𝑓)) < ∞} 
 

That 𝑄 is a unique mapping such that there exists 𝛼 ∈
[0,∞) satisfying 

 
‖𝑓(𝑥) − 𝑄(𝑥), 𝑢‖ ≤  𝛼𝜓(𝑥, 𝑥, 𝑥, 𝑢) 

 

for all x ∈ X and all u ∈ Y. 
 

(2)   lim
𝑛→∞

𝐽𝑛𝑓(𝑥) = lim
𝑛→∞

22𝑛𝑓(2−𝑛𝑥) = 𝑄(𝑥)          (for 

all x ∈ X and all u ∈ Y ).  

Therefore for all x, y, z ∈ X and u ∈ Y , 

 
‖𝑄(𝑥 + 𝑦 + 𝑧) + 𝑄(𝑥) + 𝑄(𝑦) + 𝑄(𝑧) − 𝑄(𝑥 + 𝑦) − 𝑄(𝑥

+ 𝑧) − 𝑄(𝑦 + 𝑧), 𝑢‖ 

= lim
𝑛→∞

|2|𝑛 ‖𝑓(2−𝑛(𝑥 + 𝑦 + 𝑧)) + 𝑓(2−𝑛(𝑥)) + 𝑓(2−𝑛(𝑦))

+ 𝑓(2−𝑛(𝑧)) − 𝑓(2−𝑛(𝑥 + 𝑦))     
− 𝑓(2−𝑛(𝑥 + 𝑧)) − 𝑓(2−𝑛(𝑦 + 𝑧)), 𝑢‖ 

 

≤ lim
𝑛→∞

|2|𝑛 𝜑(2−𝑛𝑥, 2−𝑛𝑦, 2−𝑛𝑧, 𝑢) (27) 

 

it easy to show that by induction 
|2|𝑛𝜑(2−𝑛𝑥, 2−𝑛𝑦, 2−𝑛𝑧, 𝑢) ≤ 𝐿𝑛𝜑(𝑥, 𝑦, 𝑧, 𝑢)  

so the right side of (27)  

 

 ≤ lim
𝑛→∞

𝐿𝑛 𝜑(𝑥, 𝑦, 𝑧, 𝑢) = 0   (𝑠𝑖𝑛𝑐𝑒 𝐿 < 1) 

 

By lemma (2.10) this show that 𝑄 is quadratic. 

 

(3)   𝑑(𝑓,𝑄) ≤
1

1−𝐿
𝑑(𝑓, 𝐽(𝑓)). This implies 𝑑(𝑓, 𝑄) ≤

1

1−𝐿
.
𝐿

|2|
=

𝐿

|2|−|2|.𝐿
 

       

 Thus ‖𝑓(𝑥) − 𝑄(𝑥), 𝑢‖ ≤
𝐿

|2|−|2|.𝐿
𝜓(𝑥, 𝑥, 𝑥, 𝑢). Then 

we have the inequality (20). 

 

Hence the proof of the theorem is end. 

 

 Theorem 3.5. 𝐿𝑒𝑡 𝑓 ∶ 𝑋 → 𝑌 𝑏𝑒 𝑎 𝜑-approximately 

quadratic function with 𝑓(0)  =  0 such that for all x, y, 

z ∈ X and all u ∈ Y, 

 

‖𝑓(𝑥) −  𝑓(−𝑥), 𝑢‖ ≤  𝛿(𝑥) (28) 

 

where 𝛿 ∶ 𝑋 → [0,∞). Let 0 < L < 1 be a constant such that, 

 

|2|−2𝜑(2𝑥, 2𝑦, 2𝑧, 𝑢) ≤ 𝐿𝜑(𝑥, 𝑦, 𝑧, 𝑢) (29) 

 

for each x,y,z ∈ X. Then there exists a unique quadratic 

mapping Q : X → Y such that 

 

‖𝑓(𝑥) − 𝑄(𝑥), 𝑢‖ ≤
1

1 − 𝐿
𝜓(𝑥, 𝑥, 𝑥, 𝑢) (30) 

 

for all x ∈ X and all u ∈ Y , where 

 

𝜓(𝑥, 𝑥, 𝑥, 𝑢)

= max {max {
1

|2|3
𝜑(−𝑥, −𝑥, 𝑥, 𝑢),

|3|

|2|3
𝜑(𝑥, 𝑥, −𝑥, 𝑢)},

1

|2|3
𝛿(2𝑥)} 

 

 

(31) 

 

Proof. Let 𝑓 ∶  𝑋 → 𝑌 𝑏𝑒 𝑎 𝜑-approximately quadratic 

function satisfies the inequality (28) and 𝑓(0) = 0, then for 

all 

 

x ∈ X, and u ∈ Y . As theorem (3.3) we have for all n ∈ N, 

 
‖𝑓(𝑥) − 2−2𝑓(2𝑥), 𝑢‖

≤  𝜓(𝑥, 𝑥, 𝑥, 𝑢)           (𝑥 ∈ 𝑋, 𝑢
∈ 𝑌),         

(32) 

 

and we consider the set ℱ is defined by (15) and 

introduce a generalized metric d is defined by (16) on ℱ. Its 
clearly (ℱ, 𝑑) is complete. 

 

Now, we consider the linear mapping 𝐽 ∶ ℱ → ℱ such that 

𝐽(ℎ) = 2−2ℎ(2𝑥). we assert that J is strictly contractive on 

ℱ. 
 

Given 𝑔, ℎ ∈ ℱ, and let 𝛼 ∈ [0,∞)be an arbitrary 

constant with 𝑑(𝑔, ℎ) ≤  𝛼𝜓(𝑥, 𝑥, 𝑥, 𝑢)that 
 

‖𝑔(𝑥) − ℎ(𝑥), 𝑢‖ ≤ 𝛼𝜓(𝑥, 𝑥, 𝑥, 𝑢)     (𝑥 ∈ 𝑋, 𝑢 ∈ 𝑌 ), 
 

 then by (29) we have 
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‖(𝐽𝑓)(𝑥) − 𝑓(𝑥), 𝑢‖ = ‖
1

4
𝑔(2𝑥) −

1

4
ℎ(2𝑥), 𝑢‖

≤ 𝛼|2|−2𝜓(2𝑥, 2𝑥, 2𝑥, 𝑢)
≤ 𝐿𝛼𝜓(𝑥, 𝑥, 𝑥, 𝑢) 

 

for all 𝑥 ∈ 𝑋 and all 𝑢 ∈ 𝑌 . It follows that 

 

𝑑(𝐽(𝑔), 𝐽(ℎ)) ≤ 𝐿𝑑(𝑔, ℎ)              (𝑔, ℎ ∈ ℱ) 
 

Hence d is strictly contractive mapping with Lipschitz 

constant, 𝐿. By (32) we have, for each 𝑥 ∈  𝑋 and 𝑢 ∈  𝑌 

 

‖(𝐽𝑓)(𝑥) − 𝑓(𝑥), 𝑢‖ = ‖
1

4
𝑓(2𝑥) − 𝑓(𝑥), 𝑢‖

≤ 𝜓(𝑥, 𝑥, 𝑥, 𝑢) 

 

This means that 𝑑(𝐽(𝑓), 𝑓) ≤ 1 < ∞. By Theorem 

(2.8) there exists a mapping 𝑄 ∶ 𝑋 → 𝑌 satisfies the 

following: 

 

(1)   𝑄 is fixed point of J, and 𝑄 is a unique fixed point 
of J in the set 

 

𝒥 = {𝑔 ∈ ℱ ∶ 𝑑(𝑔, 𝐽(𝑓)) < ∞} 
 

That 𝑄 is a unique mapping such that there exists 𝛼 ∈
[0,∞) satisfying 

 
‖𝑓(𝑥) − 𝑄(𝑥), 𝑢‖ ≤  𝛼𝜓(𝑥, 𝑥, 𝑥, 𝑢) 

 

for all x ∈ X and all u ∈ Y . 

 

(2)   lim
𝑛→∞

𝐽𝑛𝑓(𝑥) = lim
𝑛→∞

2−2𝑛𝑓(2𝑛𝑥) = 𝑄(𝑥)          (for 

all x ∈ X and all u ∈ Y ).  

Therefore for all x,y,z ∈ X and u ∈ Y , 

 
‖𝑄(𝑥 + 𝑦 + 𝑧) + 𝑄(𝑥) + 𝑄(𝑦) + 𝑄(𝑧) − 𝑄(𝑥 + 𝑦) − 𝑄(𝑥

+ 𝑧) − 𝑄(𝑦 + 𝑧), 𝑢‖ 

 

= lim
𝑛→∞

|2|−2𝑛 ‖𝑓(2𝑛(𝑥 + 𝑦 + 𝑧)) + 𝑓(2𝑛𝑥) + 𝑓(2𝑛𝑦)

+ 𝑓(2𝑛𝑧) − 𝑓(2𝑛(𝑥 + 𝑦))     
− 𝑓(2𝑛(𝑥 + 𝑧)) − 𝑓(2𝑛(𝑦 + 𝑧), 𝑢‖ 

 

≤ lim
𝑛→∞

|2|−2𝑛 𝜑(2𝑛𝑥, 2𝑛𝑦, 2𝑛𝑧, 𝑢) (33) 

 

t easy to show that by induction  

 
|2|−2𝑛𝜑(2𝑛𝑥, 2𝑛𝑦, 2𝑛𝑧, 𝑢) ≤ 𝐿𝑛𝜑(𝑥, 𝑦, 𝑧, 𝑢)  
 

so the right side of (33) 

 

 ≤ lim
𝑛→∞

𝐿𝑛 𝜑(𝑥, 𝑦, 𝑧, 𝑢) = 0            (𝑠𝑖𝑛𝑐𝑒 𝐿 < 1) 

 

By lemma (2.10) this show that 𝑄 is quadratic. 

 

(3)   𝑑(𝑓, 𝑄) ≤
1

1−𝐿
𝑑(𝑓, 𝐽(𝑓)).  

This implies  

𝑑(𝑓,𝑄) ≤
1

1 − 𝐿
 

      

  Thus ‖𝑓(𝑥) − 𝑄(𝑥), 𝑢‖ ≤
1

1−𝐿
𝜓(𝑥, 𝑥, 𝑥, 𝑢) for all 𝑥 ∈

𝑋 and all 𝑢 ∈ 𝑌. Then we have the inequality (30). 

 

Hence the proof of the theorem is end. 

 

 Theorem 3.6. Let 𝑓 ∶  𝑋 → 𝑌 𝑏𝑒 𝑎 𝜑-approximately 

quadratic function with 𝑓(0) = 0 such that for all x,y,z ∈ 

X  and all u ∈ Y , 

 
‖𝑓(𝑥) +  𝑓(−𝑥), 𝑢‖ ≤  𝛿(𝑥) 

 

(34) 

 

where 𝛿 ∶ 𝑋 → [0,∞). Let 0 < L < 1 be a constant 

such that, 

 

|2|−2𝜑(2𝑥, 2𝑦, 2𝑧, 𝑢) ≤ 𝐿𝜑(𝑥, 𝑦, 𝑧, 𝑢) (35) 

 

for each x,y,z ∈ X, and all u ∈ Y. Then there exists a 

unique quadratic mapping Q : X → Y such that 

 

‖𝑓(𝑥) − 𝑄(𝑥), 𝑢‖ ≤
1

1 − 𝐿
𝜓(𝑥, 𝑥, 𝑥, 𝑢) (36) 

 

for all x ∈ X and all u ∈ Y , where 

 

𝜓(𝑥, 𝑥, 𝑥, 𝑢)

= max {max {
1

|2|3
𝜑(−𝑥, −𝑥, 𝑥, 𝑢),

|3|

|2|3
𝜑(𝑥, 𝑥, −𝑥, 𝑢)},

1

|2|3
𝛿(2𝑥)} 

 

(37) 

 
Proof. Similarly, as proof the last theorem we can 

proof this theorem with consider the linear mapping 𝐽 ∶ ℱ →
ℱ which is strictly contractive on ℱ such that 𝐽(ℎ) =
1

2
ℎ(2𝑥), by (24) 

 

‖(𝐽𝑓)(𝑥) − 𝑓(𝑥), 𝑢‖ = ‖
1

2
𝑓(2𝑥) − 𝑓(𝑥), 𝑢‖

≤ 𝜓(𝑥, 𝑥, 𝑥, 𝑢) 
 

This means that 𝑑(𝐽(𝑓), 𝑓) ≤ 1. The rest of proof as proof 

of theorem (3.5).                                                                                       

 

IV. APPLICATIONS 

 

As example o 𝜑(𝓍, 𝑦, 𝑧, 𝓊)f in Theorems (3.3),(3.5), 

we can take 𝜑(𝓍, 𝑦, 𝑧, 𝓊) = 𝜃(‖𝓍‖𝑝 + ‖𝑦‖𝑝 + ‖𝑧‖𝑝)‖𝓊‖ 

for all 𝓍, 𝑦, 𝑧 and all 𝓊 ∈ Y and some positive real number 𝜃. 

Then we have the following corollaries: 

 

 Corollary 4.1. Let θ, δ, p be positive real numbers such 

that p < 2, and let f : X → Y is mapping satisfying 
 

‖𝑓(𝓍 + 𝑦 + 𝑧) + 𝑓(𝓍) + 𝑓(𝑦) − 𝑓(𝓍 + 𝑦)
− 𝑓(𝓍 + 𝑧) − 𝑓(𝑦 + 𝑧), 𝑢‖

≤ 𝜃(‖𝓍‖𝑝 + ‖𝑦‖𝑝 + ‖𝑧‖𝑝)‖𝓊‖,   

 

 

(38) 

 

‖𝑓(𝑥) − 𝑓 (−𝑥), 𝑢‖ < 𝛿 (39) 

 

for all x,y,z ∈ X and all u ∈ Y . Then there exists a unique 

quadratic mapping 𝑄: X → Y satisfying 
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‖𝑓(𝓍) − 𝑄(𝓍), 𝑢‖ ≤  
1

|2|𝑝 − |2|2
𝜓(𝑥, 𝑥, 𝑥, 𝑢)   (40) 

 

where, 

𝜓(𝑥, 𝑥, 𝑥, 𝑢) = 𝑚𝑎𝑥 {
|3|

|2|3
𝜃‖𝓍‖𝑝‖𝓊‖,

1

|2|3
𝛿} (41) 

 

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be mapping satisfying (38), (39). Put 

𝑥 = 𝑦 = 𝑧 = 0 in (38). This implies 𝑓(0) = 0. 
Now let 𝜑(𝑥, 𝑦, 𝑧, 𝑢) = 𝜃(‖𝓍‖𝑝 + ‖𝑦‖𝑝 + ‖𝑧‖𝑝)‖𝓊‖ for all 

𝑢 ∈ 𝑌 and all 𝑥, 𝑦, 𝑧 ∈ 𝑋, so 

 
|2|2𝜑(2−1𝓍, 2−1𝑦, 2−1𝑧, 𝑢)

= |2|2𝜃(‖2−1𝓍‖𝑝 + ‖2−1𝑦‖𝑝

+ ‖2−1𝑧‖𝑝)‖𝓊‖ = |2|2−𝑝(𝓍, 𝓍, 𝓍, 𝓊) 
 

since 𝑝 < 2 we have 𝐿 = |2|2−𝑝 < 1 and by Theorem (3.3) 

there exists a unique quadratic mapping 𝑄 ∶ 𝑋 → 𝑌 

such that 

 

 ‖𝑓(𝓍) − 𝑄(𝓍), 𝑢‖ ≤  
1

|2|2(1−|2|2−𝑝)
𝜓(𝑥, 𝑥, 𝑥, 𝑢) =

1

|2|𝑝−|2|2
𝜓(𝑥, 𝑥, 𝑥, 𝑢)  

 

for and all 𝑢 ∈ 𝑌 and all 𝑥, 𝑦, 𝑧 ∈ 𝑋 where 𝜓 is defined by 

(41). 

 

 Corollary 4.2. 𝐿𝑒𝑡 𝜃, 𝛿, 𝑝 be positive real numbers such 

that p > 2, and 𝑙𝑒𝑡 𝑓 ∶ 𝑋 → 𝑌 is mapping satisfying 

 
‖𝑓(𝓍 + 𝑦 + 𝑧) + 𝑓(𝓍) + 𝑓(𝑦) − 𝑓(𝓍 + 𝑦)

− 𝑓(𝓍 + 𝑧) − 𝑓(𝑦 + 𝑧), 𝑢‖

≤ 𝜃(‖𝓍‖𝑝 + ‖𝑦‖𝑝 + ‖𝑧‖𝑝)‖𝓊‖,   

 

 

(42) 

 

‖𝑓(𝑥) − 𝑓 (−𝑥), 𝑢‖ < 𝛿 (43) 

 

for all x,y,z ∈ X and all u ∈ Y . Then there exists a unique 

quadratic mapping 𝑄: X → Y satisfying 

 

‖𝑓(𝓍) − 𝑄(𝓍), 𝑢‖ ≤  
1

1 − |2|𝑝−2
𝜓(𝑥, 𝑥, 𝑥, 𝑢)   (44) 

 

where, 
 

𝜓(𝑥, 𝑥, 𝑥, 𝑢) = 𝑚𝑎𝑥 {
|3|

|2|3
𝜃‖𝓍‖𝑝‖𝓊‖,

1

|2|3
𝛿} (45) 

 

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 be mapping satisfying (42),(43). its 

clearly 𝑓(0)  =  0.   
 

Now let 𝜑(𝑥, 𝑦, 𝑧, 𝑢) = 𝜃(‖𝓍‖𝑝 + ‖𝑦‖𝑝 + ‖𝑧‖𝑝)‖𝓊‖ for all 

𝑢 ∈ 𝑌 and all 𝑥, 𝑦, 𝑧 ∈ 𝑋, so 

 
|2|−2𝜑(2𝓍, 2𝑦, 2𝑧, 𝑢)

= |2|−2𝜃(‖2𝓍‖𝑝 + ‖2𝑦‖𝑝 + ‖2𝑧‖𝑝)‖𝓊‖
= |2|𝑝−2𝜑(𝓍, 𝓍, 𝓍,𝓊) 

 

since 𝑝 > 2 we have 𝐿 = |2|𝑝−2 < 1 and by Theorem (3.5) 

there exists a unique quadratic mapping 𝑄 ∶ 𝑋 → 𝑌 

such that 

 

 ‖𝑓(𝓍) − 𝑄(𝓍), 𝑢‖ ≤  
1

1−|2|𝑝−2
𝜓(𝑥, 𝑥, 𝑥, 𝑢)                    (45). 

 

 

for all 𝑢 ∈ 𝑌 and all 𝑥, 𝑦, 𝑧 ∈ 𝑋, where 𝜓 is defined by  
 

 Corollary 4.3. Let θ,δ,p be positive real numbers such 

that p < 2, and let f : X → Y is mapping satisfying  

 
‖𝑓(𝓍 + 𝑦 + 𝑧) + 𝑓(𝓍) + 𝑓(𝑦) − 𝑓(𝓍 + 𝑦)

− 𝑓(𝓍 + 𝑧) − 𝑓(𝑦 + 𝑧), 𝑢‖

≤ 𝜃(‖𝓍‖𝑝 + ‖𝑦‖𝑝 + ‖𝑧‖𝑝)‖𝓊‖,   

 

 

(46) 

 

‖𝑓(𝑥) − 𝑓 (−𝑥), 𝑢‖ < 𝛿 (47) 

 

for all x,y,z ∈ X and all u ∈ Y . Then there exists a unique 

quadratic mapping 𝑄: X → Y satisfying 

 

‖𝑓(𝓍) − 𝑄(𝓍), 𝑢‖ ≤  
|2|2−𝑝

|2| (1 − |2|2−𝑝)
𝜓(𝑥, 𝑥, 𝑥, 𝑢)   (48) 

 

where, 

 

𝜓(𝑥, 𝑥, 𝑥, 𝑢) = 𝑚𝑎𝑥 {
|3|

|2|3
𝜃‖𝓍‖𝑝‖𝓊‖,

1

|2|3
𝛿} (49) 

 

Proof. Similarly as proof of corollary (4.1) Let 𝑓 ∶ 𝑋 → 𝑌 be 
mapping satisfying (46), (47). and by theorem 

(3.4) with p < 2 and a constant 𝐿 = |2|2−𝑝 < 1 we have 

(48), where 𝜓 is defined by (49). 

 

 Corollary 4.4. Let θ,δ,p be positive real numbers such 

that p > 2, and let f : X → Y is mapping satisfying  

 
‖𝑓(𝓍 + 𝑦 + 𝑧) + 𝑓(𝓍) + 𝑓(𝑦) − 𝑓(𝓍 + 𝑦)

− 𝑓(𝓍 + 𝑧) − 𝑓(𝑦 + 𝑧), 𝑢‖

≤ 𝜃(‖𝓍‖𝑝 + ‖𝑦‖𝑝 + ‖𝑧‖𝑝)‖𝓊‖,   

 

 

(50) 

 

‖𝑓(𝑥) + 𝑓 (−𝑥), 𝑢‖ < 𝛿 (51) 

 

for all x,y,z ∈ X and all u ∈ Y . Then there exists a unique 

quadratic mapping 𝑄: X → Y satisfying 

 

‖𝑓(𝓍) − 𝑄(𝓍), 𝑢‖ ≤  
1

1 − |2|𝑝−2
𝜓(𝑥, 𝑥, 𝑥, 𝑢)   (52) 

 
where, 

𝜓(𝑥, 𝑥, 𝑥, 𝑢) = 𝑚𝑎𝑥 {
|3|

|2|3
𝜃‖𝓍‖𝑝‖𝓊‖,

1

|2|3
𝛿} (53) 

 

 

 

Proof. Similarly as proof of the previous corollaries and by 

theorem (3.6) with p > 2 and constant Lipschitz 

𝐿 = |2|𝑝−2 < 1 we have (52), 𝜓 is defined by (53). 
 

As another example of 𝜑(𝑥, 𝑦, 𝑧, 𝑢) in theorems (3.3),(3.4), 

(3.5) and theorem(3.6), we can take 
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𝜑(𝑥, 𝑦, 𝑧, 𝑢) = 𝜃(‖𝓍‖𝑝‖𝑦‖𝑝‖𝑧‖𝑝)‖𝓊‖ for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 

and all𝑢 ∈ 𝑌 and some positive real numbers 𝑝, 𝑞, 𝑟, 𝜃. Then 

we have the following corollaries: 

 

 Corollary 4.5. Let p,q,r,δ and θ be positive real numbers 

such that p + q + r = 2, f : X → Y is a mapping 

satisfying 
 
‖𝑓(𝓍 + 𝑦 + 𝑧) + 𝑓(𝓍) + 𝑓(𝑦) + 𝑓(𝑧) − 𝑓(𝓍 + 𝑦)

− 𝑓(𝓍 + 𝑧) − 𝑓(𝑦 + 𝑧), 𝑢‖

≤ 𝜃(‖𝓍‖𝑝 + ‖𝑦‖𝑝 + ‖𝑧‖𝑝)‖𝓊‖,   

 

 

(54) 

 

‖𝑓(𝑥) − 𝑓 (−𝑥), 𝑢‖ < 𝛿 (55) 

 

for all u ∈ Y and all x,y,z ∈ X. Then there exists a unique 

quadratic mapping 𝑄: X → Y satisfying 

 
‖𝑓(𝓍) − 𝑄(𝓍), 𝑢‖

≤

{
 

 
1

1 − |2|𝑝+𝑞+𝑟−2
𝜓(𝑥, 𝑥, 𝑥, 𝑢),                      𝑝 + 𝑞 + 𝑟 > 2

1

|2|2 − |2|2. |2|2−𝑝+𝑞+𝑟
𝜓(𝑥, 𝑥, 𝑥, 𝑢),        𝑝 + 𝑞 + 𝑟 < 2

       

              
 

 

where, 

 

𝜓(𝑥, 𝑥, 𝑥, 𝑢) =

𝑚𝑎𝑥 {
1

|2|3
𝜃‖𝓍‖𝑝+𝑞+𝑟 ,

1

|2|3
𝛿}                       for all x ∈ X 

and all u ∈ Y  

(56) 

 

Proof. Let 𝑓 ∶ 𝑋 → 𝑌 satisfies (54) and (55). 𝜑(𝑥, 𝑦, 𝑧, 𝑢) =
𝜃(‖𝓍‖𝑝‖𝑦‖𝑝‖𝑧‖𝑟)‖𝓊‖ for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, all 𝑢 ∈ 𝑌  

and 𝑝 + 𝑞 + 𝑟 ≠ 2,     (p,q,r and 𝜃 be positive real 

numbers). 

Then we have, 

 

𝜑(2𝑥, 2𝑦, 2𝑧, 𝑢) = |2|𝑝+𝑞+𝑟𝜃(‖𝓍‖𝑝‖𝑦‖𝑝‖𝑧‖𝑟)‖𝓊‖
= |2|𝑝+𝑞+𝑟𝜑(𝑥, 𝑦, 𝑧, 𝑢)
= |2|2|2|𝑝+𝑞+𝑟−2𝜑(𝑥, 𝑦, 𝑧, 𝑢). 

 

Hence 𝑖𝑓 𝑝 +  𝑞 +  𝑟 >  2, by theorem(3.5) and let 𝐿 =
|2|𝑝+𝑞+𝑟−2 < 1 there exists a unique quadratic mapping 

𝑄 ∶ 𝑋 → 𝑌  
 

satisfying‖𝑓(𝓍) − 𝑄(𝓍), 𝑢‖ ≤ {
1

1−|2|𝑝+𝑞+𝑟−2
𝜓(𝑥, 𝑥, 𝑥, 𝑢)for 

all 𝑥, 𝑦, 𝑧 ∈  𝑋 and all 𝑢 ∈  𝑌. 

 

Where 𝜓(𝑥, 𝑥, 𝑥, 𝑢) = 𝑚𝑎𝑥 ={
1

|2|3
‖𝓍‖𝑝+𝑞+𝑟 ,

1

|2|3
𝛿}. 

 

Now 𝑖𝑓 𝑝 +  𝑞 +  𝑟 <  2, for all 𝑥, 𝑦, 𝑧 ∈  𝑋 and 𝑢 ∈  𝑌 

𝜑(𝑥, 𝑦, 𝑧, 𝑢) = |2|−(𝑝+𝑞+𝑟)𝜑(2𝑥, 2𝑦, 2𝑧, 𝑢)
= |2|−2|2|2−𝑝−𝑞−𝑟𝜑(2𝑥, 2𝑦, 2𝑧, 𝑢). 

Thus by Theorem(3.3) there 

exists a unique quadratic mapping 𝑄 ∶  𝑋 →  𝑌 such that 

 

‖𝑓(𝓍) − 𝑄(𝓍), 𝑢‖ ≤
1

|2|2−|2|2.|2|2−𝑝−𝑞−𝑟
𝜓(𝑥, 𝑥, 𝑥, 𝑢),  

 

for all 𝑥 ∈ 𝑋 and all 𝑢 ∈ 𝑌, where 𝜓 is defined by (56). 

 

 Corollary 4.6. Let p, q, r, δ and θ be positive real 

numbers with p+q+r≠2. Suppose that f :X→Y is a 

mapping satisfying 

 
‖𝑓(𝓍 + 𝑦 + 𝑧) + 𝑓(𝓍) + 𝑓(𝑦) + 𝑓(𝑧) − 𝑓(𝓍 + 𝑦)

− 𝑓(𝓍 + 𝑧) + 𝑓(𝑦 + 𝑧), 𝑢‖

≤ 𝜃(‖𝓍‖𝑝 + ‖𝑦‖𝑝 + ‖𝑧‖𝑝)‖𝓊‖,   

 

 

(57) 

 

‖𝑓(𝑥) + 𝑓 (−𝑥), 𝑢‖ < 𝛿 (58) 

 

for all u ∈ Y and all x,y,z ∈ X. Then there exists a unique 

quadratic mapping 𝑄: X → Y satisfying 

 
‖𝑓(𝓍) − 𝑄(𝓍), 𝑢‖

≤

{
 

 
1

1 − |2|𝑝+𝑞+𝑟−2
𝜓(𝑥, 𝑥, 𝑥, 𝑢),                      𝑝 + 𝑞 + 𝑟 > 2

1

|2| − |2|. |2|2−𝑝−𝑞−𝑟
𝜓(𝑥, 𝑥, 𝑥, 𝑢),        𝑝 + 𝑞 + 𝑟 < 2

    

                 
 

 

where, 

 

𝜓(𝑥, 𝑥, 𝑥, 𝑢)

= 𝑚𝑎𝑥 {
1

|2|3
𝜃‖𝓍‖𝑝+𝑞+𝑟 ,

1

|2|3
𝛿}                        

 

for all x ∈ X and all u ∈ Y  

(59) 

 

Proof. Similarly as proof of corollary (4.5). 𝐼𝑓 𝑝 + 𝑞 + 𝑟 >
2, by Theorem (3.6), we have 

 

‖𝑓(𝓍) − 𝑄(𝓍), 𝑢‖ ≤
1

1−|2|𝑝+𝑞+𝑟−2
𝜓(𝑥, 𝑥, 𝑥, 𝑢),  

 

for all 𝑥 ∈ 𝑋 and all 𝑢 ∈ 𝑌, where 𝜓 is defined by (59). 

 

Thus 𝑖𝑓 𝑝 + 𝑞 + 𝑟 < 2, by Theorem (3.4) we have  

 ‖𝑓(𝓍) − 𝑄(𝓍), 𝑢‖ ≤
|2|2−𝑝−𝑞−𝑟

|2|−|2|.|2|2−𝑝−𝑞−𝑟
𝜓(𝑥, 𝑥, 𝑥, 𝑢), 

 

 for all 𝑥 ∈ 𝑋 and all 𝑢 ∈ 𝑌, where 𝜓 is defined by (59). 
 

Now, we will study the stability of the following 

functional equation with several variable on a non-

Archimedean 2-Banach spaces as following: 

 

𝐷𝑓(𝑥1,… , 𝑥𝑘) = 𝑓 (∑𝑥𝑖

𝑘

𝑖=1

) + (𝑘

− 2)∑𝑓(𝑥𝑖)

𝑘

𝑖=1

−∑ ∑ 𝑓(𝑥𝑖 + 𝑥𝑗)

𝑘

𝑗=1,𝑗>𝑖

𝑘

𝑖=1

 

 

 
 

 

 

 

 

(60) 

 

for any 𝑘 ≥ 3. 

 

 

By Janfada [14] we can see that the quadratic function 𝑓 ∶
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𝑋 → 𝑌 defined by f(x)= x2  and any additive mapping not 

only satisfies the following equation functional: 

 

𝑓(𝓍 + 𝑦 + 𝑧) + 𝑓(𝓍) + 𝑓(𝑦) + 𝑓(𝑧)
= 𝑓(𝓍 + 𝑦)+ 𝑓(𝑦 + 𝑧)
+ 𝑓(𝑥 + 𝑧) 

 

 

 

(61) 

 
but also, 

 

𝐷𝑓(𝑥1,… , 𝑥𝑘) =0 (62) 

 

For all 𝑥𝑖 ∈  𝑋, 𝑖 = 1,2, . . , 𝑘. 

In following we prove the generalized Hyers-Ulam-Rassias 

stability of (62) will be proved in non-Archimedean 2- 

normed spaces by using Theorems (3.3),(3.4),(3.5) and 

(3.6). 

 

 Theorem 4.7. Let X and Y be common domain and range 
of the f 's in the functional equations (61) and (62). Then 

the functional equation (62) is equivalent to (61). 

 

Proof. See [14] 

 

 Corollary 4.8. Let 𝑘 ∈ 𝑁 𝑎𝑛𝑑 𝑘 ≥ 3. Assume that 

mapping 𝑓 ∶ 𝑋𝑘 ×  𝑌 → 𝑌 such that 𝑓(0) = 0 and 𝑓 

satisfies the following inequalities: 

  

‖𝑓 (∑𝑥𝑖

𝑘

𝑖=1

) + (𝑘 − 2)∑𝑓(𝑥𝑖)

𝑘

𝑖=1

−∑ ∑ 𝑓(𝑥𝑖 + 𝑥𝑗), 𝑢

𝑘

𝑗=1,𝑗>𝑖

𝑘

𝑖=1

‖

≤ ∅(𝑥1, 𝑥2,… , 𝑥𝑘 , 𝑢) 

 
 

 

 

 

 

 

(63) 

 

‖𝑓(𝓍) − 𝑓(−𝓍), 𝑢‖ ≤ 𝛿(𝑥) (64) 

 

Where 𝜙 ∶ 𝑋𝑘 × 𝑌 → [0,∞) and 𝛿 ∶ 𝑋 → [0,∞) are 

mapping such that for all 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 ∈ 𝑋 and ∀𝑢 ∈ 𝑌.  

For 𝑘 ∈  𝑁, 0 <  𝐿 <  1 
 

|2|2∅(2−1𝑥1, 2
−1𝑥2, 2

−1𝑥3, … , 2
−1𝑥𝑘, 𝑢)

≤ 𝐿∅(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 , 𝑢) 
 

(65) 

 

for all 𝑥, 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 ∈ 𝑋 and ∀𝑢 ∈ 𝑌 . Then there exists 

a unique quadratic mapping 𝑄 ∶  𝑋 →  𝑌 such that 

‖𝑓(𝓍) − 𝑄(𝑥), 𝑢‖ ≤
1

|2|2 − |2|2𝐿
𝜓(𝑥, 𝑥, 𝑥, 𝑢) (66) 

 

for all 𝑥 ∈  𝑋 and all 𝑢 ∈  𝑌 , where 

 

𝜓(𝑥, 𝑥, 𝑥, 𝑢)

= max

{
 

 {𝑚𝑎𝑥
1

|2|3
∅(−𝑥,−𝑥, 𝑥, 0, . . ,0, 𝑢),

3

|2|3
∅

(𝑥, 𝑥,−𝑥, 0, . . ,0, 𝑢)},
1

|2|3
𝛿(2𝑥)

}
 

 

 

 

 

 

 

(67) 

 

for all x ∈ X and all u ∈ Y 

 

Proof. Let 𝑓 ∶ 𝑋𝑘 × 𝑌 → 𝑌 be mapping satisfies (63), 

𝑓(0) = 0 and by setting(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 , 𝑢) =
(𝑥1, 𝑥2, 𝑥3, 0,0,… ,0, 𝑢) in (63), we obtain, 

 
‖𝑓(𝑥1 + 𝑥2 + 𝑥3) + 𝑓(𝑥1) + 𝑓(𝑥2) + 𝑓(𝑥3)

− 𝑓(𝑥1 + 𝑥2) − 𝑓(𝑥2 + 𝑥3)
− 𝑓(𝑥1 + 𝑥3), 𝑢‖

≤ ∅(𝑥1, 𝑥2, 𝑥3, 0,0,… ,0, 𝑢) 

 

 

 

(68) 

 

for all 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋, and all u ∈ Y. 

 

Now by Considering 

 

𝜑(𝑥1, 𝑥2, 𝑥3, 𝑢) = ∅(𝑥1, 𝑥2, 𝑥3, 0,0,… ,0, 𝑢),  
 

we obtain 

 

𝜑(2−1𝑥1, 2
−1𝑥2, 2

−1𝑥3, 𝑢)
= ∅(2−1𝑥1, 2

−1𝑥2, 2
−1𝑥3, 0,0,… ,0, 𝑢)

≤ (𝑥1, 𝑥2, 𝑥3, 0,0,… ,0, 𝑢)
= 𝐿∅(𝑥1, 𝑥2, 𝑥3, 𝑢) 

 

for all 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋, and all u ∈ Y. 
 

By theorem (3.3) we have (66) with 𝜓 is defined by (67). 

 

 Corollary 4.9. 𝐿𝑒𝑡 𝑘 ∈  𝑁 𝑎𝑛𝑑 𝑘 ≥  3. Assume that 

mapping 𝑓 ∶ 𝑋𝑘 × 𝑌 → 𝑌 such that 𝑓(0) = 0 and 𝑓 

satisfies the following inequalities: 

 

‖𝑓 (∑𝑥𝑖

𝑘

𝑖=1

) + (𝑘 − 2)∑𝑓(𝑥𝑖)

𝑘

𝑖=1

−∑ ∑ 𝑓(𝑥𝑖 + 𝑥𝑗), 𝑢

𝑘

𝑗=1,𝑗>𝑖

𝑘

𝑖=1

‖

≤ ∅(𝑥1, 𝑥2,… , 𝑥𝑘 , 𝑢) 

 

 
 

 

 

 

 

(69) 

 

‖𝑓(𝓍) + 𝑓(−𝓍), 𝑢‖ ≤ 𝛿(𝑥) (70) 

 

Where 𝜙 ∶ 𝑋𝑘 × 𝑌 → [0,∞) and 𝛿 ∶ 𝑋 → [0,∞) are 

mapping such that for all 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 ∈ 𝑋 and ∀𝑢 ∈ 𝑌.  

For 𝑘 ∈  𝑁, 0 <  𝐿 <  1 

 
|2|2∅(2−1𝑥1, 2

−1𝑥2, 2
−1𝑥3, … , 2

−1𝑥𝑘, 𝑢)
≤ 𝐿∅(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 , 𝑢) 

(71) 

for all 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 ∈ 𝑋 and ∀𝑢 ∈ 𝑌 . Then there exists a 

unique quadratic mapping 𝑄 ∶  𝑋 →  𝑌 such that 

 

‖𝑓(𝓍) − 𝑄(𝑥), 𝑢‖ ≤
𝐿

|2| − |2|𝐿
𝜓(𝑥, 𝑥, 𝑥, 𝑢) (72) 

 

for all 𝑥 ∈  𝑋 and all 𝑢 ∈  𝑌 , where 
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𝜓(𝑥, 𝑥, 𝑥, 𝑢)

= max

{
 

 {𝑚𝑎𝑥
1

|2|3
∅(−𝑥,−𝑥, 𝑥, 0, . . ,0, 𝑢),

3

|2|3
∅(𝑥, 𝑥, −𝑥, 0, . . ,0, 𝑢)},

1

|2|3
𝛿(2𝑥)

}
 

 

 

 

 

 

(73) 

 

for all x ∈ X and all u ∈ Y.  

Proof. Similarly as proof corollary(4.8) and by 

Theorem(3.4) we have (72). 

 

 Corollary 4.10. 𝐿𝑒𝑡 𝑘 ∈  𝑁 𝑎𝑛𝑑 𝑘 ≥  3. Assume that 

mapping 𝑓 ∶ 𝑋𝑘 × 𝑌 → 𝑌 such that 𝑓(0) = 0 and 𝑓 

satisfies the following inequalities: 

 

‖𝑓 (∑𝑥𝑖

𝑘

𝑖=1

) + (𝑘 − 2)∑𝑓(𝑥𝑖)

𝑘

𝑖=1

−∑ ∑ 𝑓(𝑥𝑖 + 𝑥𝑗), 𝑢

𝑘

𝑗=1,𝑗>𝑖

𝑘

𝑖=1

‖

≤ ∅(𝑥1, 𝑥2,… , 𝑥𝑘 , 𝑢) 

 

 

 

 

(74) 

 

‖𝑓(𝓍) − 𝑓(−𝓍), 𝑢‖ ≤ 𝛿(𝑥) (75) 

 

Where 𝜙 ∶ 𝑋𝑘 × 𝑌 → [0,∞) and 𝛿 ∶ 𝑋 → [0,∞) are 

mapping such that for all 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 ∈ 𝑋 and ∀𝑢 ∈ 𝑌.  

For 𝑘 ∈  𝑁, 0 <  𝐿 <  1 

 
|2|−2∅(2𝑥1, 2𝑥2, 2𝑥3, … ,2𝑥𝑘, 𝑢)

≤ 𝐿∅(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 , 𝑢) 
 

(76) 

 

for all 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 ∈ 𝑋 and ∀𝑢 ∈ 𝑌 . Then there exists a 

unique quadratic mapping 𝑄 ∶  𝑋 →  𝑌 such that 

 

‖𝑓(𝓍) − 𝑄(𝑥), 𝑢‖ ≤
1

1 − 𝐿
𝜓(𝑥, 𝑥, 𝑥, 𝑢) (77) 

 

for all 𝑥 ∈  𝑋 and all 𝑢 ∈  𝑌 , where 

 

𝜓(𝑥, 𝑥, 𝑥, 𝑢)

= max

{
 

 {𝑚𝑎𝑥
1

|2|3
∅(−𝑥, −𝑥, 𝑥, 0, . . ,0, 𝑢)

,
3

|2|3
∅(𝑥, 𝑥, −𝑥, 0, . . ,0, 𝑢)},

1

|2|3
𝛿(2𝑥)

}
 

 

 

 

 

 

(78) 

 

for all x ∈ X and all u ∈ Y 
Proof. Similarly as proof corollary (4.8) and by Theorem 

(3.5) we have (77).  

 

 Corollary 4.11. 𝐿𝑒𝑡 𝑘 ∈  𝑁 𝑎𝑛𝑑 𝑘 ≥  3. Assume that 

mapping 𝑓 ∶ 𝑋𝑘 × 𝑌 → 𝑌 such that 𝑓(0) = 0 and 𝑓 

satisfies the following inequalities: 

 

‖𝑓 (∑𝑥𝑖

𝑘

𝑖=1

) + (𝑘 − 2)∑𝑓(𝑥𝑖)

𝑘

𝑖=1

−∑ ∑ 𝑓(𝑥𝑖 + 𝑥𝑗), 𝑢

𝑘

𝑗=1,𝑗>𝑖

𝑘

𝑖=1

‖

≤ ∅(𝑥1, 𝑥2,… , 𝑥𝑘 , 𝑢) 

 

 

 

 
 

(79) 

 

‖𝑓(𝓍) + 𝑓(−𝓍), 𝑢‖ ≤ 𝛿(𝑥) (80) 

 

Where 𝜙 ∶ 𝑋𝑘 × 𝑌 → [0,∞) and 𝛿 ∶ 𝑋 → [0,∞) are 

mapping such that for all 𝑥, 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 ∈ 𝑋 and 

 ∀𝑢 ∈ 𝑌.  
 

For 𝑘 ∈  𝑁, 0 <  𝐿 <  1 

 
|2|−2∅(2𝑥1, 2𝑥2, 2𝑥3, … ,2𝑥𝑘 , 𝑢) ≤ 𝐿∅(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 , 𝑢) 

 

for all 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 ∈ 𝑋 and ∀𝑢 ∈ 𝑌 . Then there exists a 

unique quadratic mapping 𝑄 ∶  𝑋 →  𝑌 such that 

 

‖𝑓(𝓍) − 𝑄(𝑥), 𝑢‖ ≤
1

1 − 𝐿
𝜓(𝑥, 𝑥, 𝑥, 𝑢) (82) 

 

for all 𝑥 ∈  𝑋 and all 𝑢 ∈  𝑌 , where 

 

𝜓(𝑥, 𝑥, 𝑥, 𝑢)

= max

{
 

 {𝑚𝑎𝑥
1

|2|3
∅(−𝑥, −𝑥, 𝑥, 0, . . ,0, 𝑢)

,
3

|2|3
∅(𝑥, 𝑥, −𝑥, 0, . . ,0, 𝑢)},

1

|2|3
𝛿(2𝑥)

}
 

 

 

 

 

 

 

 

(83) 
 

for all x ∈ X and all u ∈ Y 

Proof. Similarly as proof corollary (4.8) and by 

Theorem(3.6) we have (82). 

 

V. CONCLUSION 

 

A study of the stability properties of a type of quadratic 

equation in non-Archimedean 2-Banach spaces by fixed 

point method has been done. The stability quadratic 

functional equation with n-variable has been proved on the 
same space. It would be interesting also to study slimier 

properties for n-normed spaces. 
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