
Volume 8, Issue 1, January – 2023                International Journal of Innovative Science and Research Technology                                                 

                                                      ISSN No:-2456-2165 

 

IJISRT23JAN1225                                                               www.ijisrt.com                                                              1139 

The Advantage of Regularizing a Specific Elliptical 

Problem by the Truncation and Mollification Methods 
 

 
YAMEOGO Pierre Claver 

Dr. En Mathématiques (Ph.D) 

 

 

Abstract:- The try to prove the importance and 

advantage of using the truncation method and the 

mollification method to regularize an ill-posed elliptical 

problem. To find appropriate solutions, we will try to 

calculate the difference between the original solution and 

the approximate solution. We give a concrete example to 

see how to apply the theoretical results developed in this 

search. 

 

 

I. INTRODUCTION 

 

We propose two spectral regularization methods to 

construct an approximate stable solution to our original 

problem.  

 

Finally, some other convergence results including 

some explicit convergence rates are also established under a 

priori bound assumptions on the exact solution. But other 
methods can be used in our case here. The complexity of 

studying a poorly posed problem requires mastery of certain 

concepts, especially in elliptical case. 

 

II. REGULARIZATION AND ERROR 

ESTIMATES 

 

 The Truncation Method. 

From  

u(y) = U(y) +W(y)

=
1

2
∫ (ey√λ + e−y√λ)dEλf.           (1

′′)
+∞

γ

 

 

 We can see that the term ey√ℷ  is the cause of 

unstability. In order to overcome the ill-posedness of 

problem: 

 

uyy(y) = Au(y), 0 < y < L, 

                u(0) = f,                                              (1′ ) 
uy(0) = 0, 

 

we modify the solution by filtering the high 

frequencies using a suitable method and instead consider 

(1’’) only for λ ≤ β(δ), where β(δ) is some constant which 

satisfies lim
δ
→ β(δ) = +∞. 

 

According to spectral theory of self-adjoint operators 
[20],for any bounded Borel set, ∆β= {γ ≤ t ≤ β} ⊆ σ(A) =
[γ,+∞[, we can define the orthogonal projection 

 

𝟏∆β = ∫ 𝟏∆β(λ)dEλ = Eβ,
+∞

γ
            (1) 

∀h ∈ H, hβ = Eβh → h,   β → +∞. 

 

To solve (1) in a stable way we approximate f by its 

projection fβ,  and instead of considering (1) with f we take 

its projected version 

 

uβ(x) = cosh(y√A)fβ                                            (𝟐) 

                                              =
1

2
∫ (ey√λ +
+∞

γ

e−y√λ)𝟏[y,β]dEλf, 

 

Where 𝟏[a,b]  is the characteristic function of the 

interval [a,b] for a < b. The quantity β is referred to as a 

cut-off frequency. Let f  (resp. , fδ)  be the exact 
(resp. , the measured data) at y=0, such that ‖f − fδ‖ ≤ δ. 

 

Abstract and applied Analysis. 
 

The approximated solution  vβ
δ  corresponding to the 

measured data fδ is denoted by 
 

vβ
δ(y) =

1

2
∫ (ey√λ + e−y√x)𝟏[γ,β,]dEλfδ.
+∞

y
       (3) 

 

For simplicity, we denote the solution of problem (1’) 

by u(y), and the regularized solution associated to the data 

fδ by vβ
δ(y).  

 

Our first main theorem is the following theorem. 

 

 Theorem 1. The solution defined in (2)  depends 

continuously in C  ([𝐎,𝐋],𝐇) on the data f; that is, if uβ
1  

and uβ
2  are two regularized solutions corresponding to f1 

and f2, respectively, then on has 

 

‖uβ
1(y) − uβ

2(y)‖ ≤ ey√β‖f1 − f2‖.          (4) 

 

This inequality implies that the solution of the 

regularized problem (2) depends continuously on the data f.  
 

Now we compute the difference between the original 

solution u = u(y; f)  and the approximate solution vβ
δ =

vβ
δ(y; fδ). 

 

 Theorem 2. Let u ∈ C([O; L];H) be a solution problem 
(1′)  with the exact data f ∈ H;  then the following 

estimate holds: 
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              ‖u(y) − uβ(y)‖ ≤
2

e(L−y)√β
‖u(L)‖.         (5) 

 

Proof. From relations (1’’) and (2) we have 

 

u(y) − uβ(t) = ∫ cosh(y√λ)dEλf
+∞

β
                            (6) 

 

     = ∫ cosh(y√λ)𝟏[𝛃,+∞]dE𝛌f
+∞

γ

 

 

Then 

 

           u(y) − uβ(y) 

 

= ∫
cosh(y√λ)

cosh(L√λ)
1[β,+∞]cosh(L√λ)dEλf,

+∞

λ
  

 

 ‖u(y) − uβ(y)‖
2
 

 

≤ ∫ (
cosh(y√λ)

cosh(L√λ)
1[β,+∞])

2

cosh(L√λ)
2
d‖Eλf‖

2.
+∞

λ
          (7) 

 

Using the inequality 

 

(
cosh(y√λ)

cosh(L√λ)
1[β,+∞])

2

≤
4

e2(L−y)√β,
 

 

∫ cosh2(L√λ)d‖Eλf‖
2 ≤ ‖u(L)‖2,

+∞

β
            (8) 

 

Abstract and Applied Analysis 
 

We derive 

 

‖u(y)‖2 ≤
4

e2(L−y)√β
‖u(L)‖2.             (9) 

 

Using (4), (5) and the triangle inequality, we obtain 

 

                       ‖u(y) − vβ
δ(y)‖ 

 

               ≤ ‖u(y) − uβ(y)‖ + ‖uβ(y) − vβ
δ(y)‖           (10) 

 

≤
2

e(L−y)√β
‖u(L)‖ + ey√βδ.                                

 

This completes the proof.               

                                                                

 Remark 1. If we choose√β = (1/L)log(M/δ), where 

‖u(L)‖ = M, then we have the error bound 

 

‖u(y) − vβ
δ(y)‖ ≤ 3M(L−y)/Lδy/L.                        (11) 

 

From (11) we see that (3) is an approximation of the 

exact solution u(y).  The approximation error depends 

continuously on the measurement error for fixed 0 < y < L. 
 

However, as y → L,  the accuracy of the regularized 

solution becomes progressively lower. Consequently, we 

have note any information about the continuous dependence 

of the solution if y is close to L. 
 

In the theory of ill-posed Cauchy problems, we can 

often obtain continuous dependence on the data for the 

closed interval [O, L]  by assuming additional smoothness 

and using a stronger norm. 

 

Now we show two error estimates under the following 

conditions: 

 
(H1)u(L) ∈ D(Ap), 

 

                                                      (H2)u(L) ∈  Gp,p > 0.      

 
 Remark 2. In practice, we know that it is very difficult 

to verify the conditions (H1)  and  (H2) , so we give 

different assumptions on the given data f as follows: 

 

u(L) ∈ D(Ap) ⟺ ∫ λ2pcosh²(L√λ)d‖Eλf‖
2 < ∞

+∞

γ

 

 

                 ⟺ ∫ λ2pe2L√λd‖Eλf‖
2 < ∞,

+∞

γ

 

 

                                      u(L) ∈ Gp ⟺

∫ λ2pL√λcosh²(L√λ)d‖Eλf‖
2 < ∞

+∞

γ
 

 

                   ⟺ ∫ e2(1+p)L√λd‖Eλf‖
2 < ∞,

+∞

γ

 

 

                                               ⟺ f ∈ Gp+1.                      (12) 

 

 

 Theorem 3 If  
 

∫ λpe2L√λd‖Eλf‖
2+∞

γ
    <     E1

2  (resp.,

∫ e2(1+q)L√λd‖Eλf‖
2 < E2

2,
+∞

γ
)p > 0, q >

0, then one has the following estimates: 
 

                     ‖u(y) − vβ
δ(y)‖ 

 

        ≤ (
L

a
)
p

E1log (
1

δ
)
−p

+ δ1−
ya

L
,   0 < a ≤ 1,             (13) 

 

‖u(y) − vβ(y)‖ ≤ e
−q√βE2 + e

y√βδ. 

 

Proof. From the expansions 

 

u(y) = ∫ cosh(y√λ)dEλf,
+∞

γ

 

                            uβ(y)

= ∫ cosh(y√λ)𝟏[γ,β]dEλf,            (14)
+∞

γ
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We have 

 

u(y) − uβ(y) = ∫ cosh(y√λ)1[β,+∞]dEλf.                 (15)
+∞

γ

 

 

Then 

 

‖u(y) − uβ(u)‖² 

 

                                                         =

∫ (λ−p/2𝟏[β,+∞])
2
cosh2(y√λ)λpd‖Eλf‖²

+∞

γ
  

 

                                      

≤ ∫ (λ−p/2𝟏[β,+∞])
2
cosh2e

2L√λλpd‖Eλf‖
2                (16)

+∞

γ

 

 

                                             ≤ β−p ∫ e2L√λλpd‖Eλf‖
2+∞

γ
 

 

≤ √β
−2p
E1
2. 

 

Using theorem 3 and the triangle inequality, we can write 

 

‖u(y) − vβ
δ(y)‖ 

 

                                                   
≤ ‖u(y) − uβ(y)‖

+ ‖uβ(y) − vβ
δ(y)‖       (17) 

 

≤ √β
−p
E1 + e

y√βδ. 
 

By choosing, √β = (a/L) log(1/δ),  we obtain the 

desired inequality. 

 

Using the same techniques, we have 

 

u(y) − uβ(y) 

 

= ∫ e−q√λcosh(y√λ)eq√λ𝟏[β,+∞]dEλf,                 (18)
∞

γ

 

 

Hence 

‖u(y) − uβ(y)‖
2
 

 

         = ∫ (e−q√λ𝟏[β,+∞])
2

(cosh(y√λ)e2q√λ)
2

d‖Eλf‖
2

∞

γ

 

 

≤ e−2q√λd‖Eλu(y)‖
2 ≤ e−2q√βE2

2                (19) 
 

Using (4) and the triangle inequality, we obtain 

 

‖u(y) − vβ
δ(y)‖ 

 

 ≤ ‖u(y) − uβ(y)‖ + ‖uβ(y) − vβ
δ(y)‖                    (20) 

 

≤ e−q√βE2 + e
y√βδ. 

 

By choosing, √β = (a/L) log(1/δ), we obtain 

 

‖u(y) − vβ
δ(y)‖ ≤ δaq/LE2 + δ

1−ay/L                        (21) 

 

 The Mollification Method. Now, we approximate the 

original problem (1) by the sequence of problems 

 

uyy = Au, 0 < y < L, 

 

u(0)=f∝ = M∝f,                                                            (22) 
 

uy(0) = 0. 

 

 Theorem 4. If f ∈ H the approximate Cauchy problem 

(22) admits a unique solution u∝,  which depends 

continuously upon the data f  with respect to uniform 

topology of C([0, L];H). 
 

Proof. From the representation 

 

       u∝(y) = cosh(y√A)f∝ 

 

= ∫ cosh(y√λ)(1 + αepL√λ)
−1

dEλf,
+∞

γ

                    (23) 

 

We have 

 

      ‖uα(y)‖
2 = ∫ {

cosh(y√λ)

1+αepL√λ
}
2

d‖Eλf‖
2+∞

γ
 

 

≤ ∫ {
eL√λ

1+αepL√λ
}
2

d‖Eλf‖
2.

+∞

γ
                                            (24) 

 

 If p = 1, we obtain 

  

‖uα(y)‖
2 ≤

1

α
‖f‖.yϵ[0,L]

sup
                                                  (25) 

           

 If p > 1, the function M(s) = eLs/(1 + αepLs)  with 

s= √λ ≥ √γ  achieves its maximum at s∗ =
(1/pL) log(1/α(p − 1)), p > 1,   from which we 

deduce 

 

M∞ = M(S
∗) = c(p) (

1

α
)
1/p

,                                           (26) 

 

c(p) = p−1(p − 1)1−1/p ≤ 1. 
 

                 From this bound, we drive 

 

‖uα(y)‖ ≤ (
1

α
)

1

p ‖f‖.  y∈[0,L]
𝐬𝐮𝐩 

                                             (27) 

 

From the linear property of our problem, stability 

estimate of problem (22) may be written precisely in the 

following corollary. 
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 Corollary 1. If uα,1(y; f1)(resp, . uα,2(y, f2))  is the 

approximate solution corresponding to f1(resp,.  f2), 
then   

 

 ‖uα,1(y) − uα,2(y)‖ ≤ (
1

α
)

1
p
‖f1 − f2‖                (28) y∈[0,L]

sup      
 

 

 Remark 3. We have 

 

N(s) =
sreTs

1 + αepTs
≤
1

α
k(s) 

 

          =
1

α
sre−(p−1)Ts, p > 1,                               (29) 

 

s = √λ ≥ √γ. 

 

It is easy to show that 

 

K(s) ≤ K(s∗ =
r

L(p − 1)
)                                        (30) 

 

= (
r

L(p − 1)
)
r

 e−r = k(r, p, L) < ∞. 

 

This remark shows that uα(y) ∈ D(A
r/2) for all y ∈ [0, L]. 

 

Proof. The inclusion uα(y)  ∈  D(A
r/2)  is equivalent to 

‖Ar/2uα(y)‖ < ∞. We have 

 

 ‖Ar/2uα(y)‖
2
= ∫ λr {

cosh(y√λ)

1 + αepL√λ
}

2

d‖Eλf‖
2

+∞

γ

 

 

≤ (
1

∝
)
2

∫ {√λ
r
e−(p−1)L√λ}

2

d‖Eλf‖
2

+∞

γ

 

 

≤ (
1

∝
)
2

k(r, p, L)2‖f‖2 < ∞,                        (31) 

 

Where k(r, p, L) = supλ≥γ√λ
r
e−(p−1)L√λ = (

r

(p−1)L
)
r

e−r.      

           

Abstract and Applied Analysis 

 

 Theorem 5. If f ∈  G1, then 

 

‖u(y) − uα(y)‖ → 0,   α → 0.             (32)y∈[0,L]
sup

 

 

Proof. We compute 

 
‖u(y) − uα(y)‖

2 
 

= ∫ (1 −Mα(λ))
2
cosh²(y√λ)d‖Eλf‖

2
+∞

γ

 

 

≤ ∫ (1 −Mα(λ))
2
cosh²(L√λ)d‖Eλf‖

2
+∞

γ

 

 

≤ ∫ (1 −Mα(λ))
2
e2L√λ(y√λ)d‖Eλf‖

2
+∞

γ

 

 

= ‖(I − Mα)f̂‖
2
, 

 

Where f̂ = eL√λf and ‖f̂‖
2
= ∫ e2L√λd‖Eλf‖

2 < ∞.
+∞

γ
 

 

        This implies that ‖u(y) − uα(y)‖ ≤ ‖(I − Mα)f̂‖y∈[0,L]
sup

 

 

And by virtue of (1) of theorem , we conclude the desired 

convergence.      

                               

        The following technical lemmas play the key role in 

our analysis and calculations. 

 Lemma 1. Let 

 
[v,+∞[ ∋ s → Q({a, r, q, L}; s)

=
1

αsr + ae−qLs
 ,                                  (34) 

 

Where a > 0, α > 0, v > 0, q > 0, L > 0,  and r≥ 1.  Then 

one has 

 

Q({a, r, q, L}; s) ≤
1

α
(

k1

log(k2(1/α))
)
r

,                               (35) 

 

Where k1(r, q, L) = rqL, k2(q, r, L, a) = q
rLr−1a/r. 

 

Proof. Differentiating the expression and setting the 

derivative equal to zero, we find 

 
d

ds
Q({a, r, q, L}; s) 

 

=
−1

(αsr + ae−qLs)2
(αrsr−1 − qae−qLs) = 0.                (36) 

 

The function (d/ds) Q({a, r, q, L}; s) =
0 admits a unique solution 
 

s = {s ⟼ αrsr−1}⋂{s ⟼ qae−qLs}.                                  (37) 
 

Therefore 

 

Q({a, r, q, L}; s) ≤ Q({a, r, q, L}; ŝ) 
 

≤
1

αŝr + ae−qLs
≤
1

αŝr
.                                                      (38) 

 

We have 

 

(αrŝr−1 − qae−qLŝ) = 0 ⟺ sr−1eqLŝ =
qa

rα
.                    (39) 

 

By using the inequality (et ≥ t, t ≥ 0),  then for t =
qLs,̂  we obtain eqLŝ ≥ qLs ̂ and we can write 
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qa

rα
= ŝr−1eqLŝ ≤ eqLŝ (

eqLŝ

qL
)

r−1

= (
1

qL
)
r−1

erqLŝ ,         (40) 

 

Which  implies  that  

 

≥ (
1

rqL
)  log ((

qrL
r−1a

r
)(
1

α
)) .Hense,we obtain 

 

Q({a, r, q, L}; s) ≤
1

αŝr
≤
1

α

(

 
 k1

log(k2 (
1
α
))
)

 
 

r

,         (41) 

 

Where k1(r, q, L) = rqL, k2(q, r, L, a) = q
rLr−1a/r.           

 

 Lemma 2. Let 

 

[v,+∞[ ∋ s ↦ R({p, q, L}; s) 
 

=
epLs

(1 + αepLs)eqLS
=

1

e(q−p)Ls + αeqLs
,           (42) 

 

Where p ≥ 1, q > 0, α > 0, v > 0, and L >
0. Then on has the following.  
If 1 ≤ p ≤ q, then 

 

R({p, q, L}; s) ≤ e−(q−p)Ls ≤ e−(q−p)Lv ≤ 1.        (43) 
 

If 0 < q < p, p ≥ 1, 0 <∝≤ (p − q)/q, then 

 

R({p, q, L}; s) ≤ k3 (
1

∝
)
(p−q)/p

 

 

k3(p, q) =
q

p
(
p − q

p
)
(p−q)/p

≤ 1.            (44) 

 

Proof. By a simple differrential calculus,  
we show that the function R({p, q, L}; s) 
 

achieves its maximum at ŝ
= (1/pL) log((p − q)/

∝ q). Consequently  
 

R({p, q, L}; s) ≤ R({p, q, l}; ŝ) = k3 (
1

∝
)

(p−q)
p
.      (45) 

 

Now we assume the following a priori bounds hold: 

 

u(L) ∈ D(Ar/2) 
 

⟺∫ √λ
2r
e2L√λ

+∞

γ

d‖Eλf‖
2 ≤ E1

2 < ∞,        (46) 

 

u(L) ∈ Gq 

 

⟺∫ √λ
2r
e2(1+q)√λ

+∞

γ

d‖Eλf‖
2 ≤ E1

2 < ∞.         (47) 

 

 Theorem 6. Let  

u(resp. , uα) be the solution of problem (1′′) (resp.,

(22)) 
 

With the exact data 

f.  If (46) (resp. , (47)) is satisfied, then  on has the  
 

Following error estimates: 

 

‖u(y) − u∝(y)‖ = 0(
1

log(1/α)
)
r

,         (48) 

 
‖u(y) − uα(y)‖ 
 

= {
0(α),   if 1 ≤ p ≤ q,                                     

0(αq/p),   if 0 < q < p, p ≥ 1.         (49)
 

 

Proof. Putting 

 

B1(λ) = {
epL√λ

1 + αepL√λ
}
1

√λ
r 

 

            =
1

√λ
r
e−pL√λ + α√λ

r ≤ B2(λ) 

 

             =
1

√λ
r
e−pL√λ+α√λ

r, 

 

B3(λ) = {
epL√λ

1 + αepL√λ
}
1

eqL√λ
=

1

e(q−p)L√λ + αeqL√λ.
 

 

Using the change of variable, s = √λ, we obtain the new 

expressions 

 

B̂2(s) =
1

√γ
r
e−pLs + αer

,             (51) 

 

B̂3(s) =
1

e(q−p)Ls + αeqLs.
               (52)   

 

By virtue of lemma 

1 (inequality (35)and Lemma 2 (inequalities (43) 
 

And (69)), we can write 
 

B̂2(s) ≤
1

α

(

 
 k1

log(k2 (
1
α
))
)

 
 

r

,           (53) 

 

Where k1(r, p, L) = rqL, k2(p, r, L, √γ
r
) = qr, Lr−1√γ

r/r.
 

Consider 
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    B̂3(s) ≤ {
1,                            if 1 ≤ p ≤ q,          

(
1

α
)
(p−q)/p,

,        ifo < q < p, p ≥ 1.
   (54) 

 

Abstract and Applied Analysis 

 

We Have 

 
‖u(y) − uα(y)‖

2 

 

= ∫ {
αepL√λ

1 + αepL√λ
}

2

cosh2(y√λ)d‖Eλf‖
2

+∞

γ

 

 

≤ α2∫ {B2(λ)}
2√λ

2r
e2L√λ

+∞

γ

 d‖Eλf‖
2 

 

≤ α2 (
sup B̂2(s)

s ≥ √γ
)

2

E1
2,                         (55) 

 
‖u(y) − uα(y)‖

2                                                       
 

= ∫ {
αepL√λ

1 + αepL√λ
}

2

cosh2(y√λ)d‖Eλf‖
2

+∞

γ

 

 

≤ α2∫ {B3(λ)}
2eL(1+q)√λ

+∞

γ

 d‖Eλf‖
2 

 

≤ α2 (
sup B̂2(s)

s ≥ √γ
)

2

E2
2.                        

 

Using (53) and (54), we drive 

 

‖u(y) − uα(y)‖
2 ≤ α

1

α

(

 
 k1

log (k2 (
1
α
))
)

 
 

r

= 0(
1

log(k2(1/α))
)
r

,    

 

‖u(y) − uα(y)‖
2 ≤ {

 α,                 if 1 ≤ p ≤ q,            

αq/p,          if 0 < q < p, p ≥ 1.
 (56) 

 

Combining(28) , (48), and (49) with the help of triangle 

inequality 

 

‖u(y) − uα
δ(y)‖ 

 

≤ ‖u(y) − uα(y)‖                                                    (57) 
 

+‖u(y) − uα
δ(y)‖ = ∆1 + ∆2, 

 

We deduce the following corollary. 

 

 Corollary 3. Let u(y; f)(resp. , uα
δ(y; fδ))  be the 

solution of problem (1) (resp., (47)) with the exact data 

f  (resp., the inexact data fδ)  such that ‖f − fδ‖ ≤
δ. If (46)(resp. , (47)) is satisfied, then one has the following 
error estimates: 

 

(case r ≥ 1) 
 

‖u(y) − uα
δ(y)‖ = 0(θ1(α)) + (

1

α
)
1/p

δ,                (58)     
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(Case 1 ≤ p ≤ q) 
 

‖u(y) − uα
δ(y)‖ = 0(θ1(α)) + (

1

α
)
1/p

δ,              (59) 

 

(Case 0< q < p, p ≥ 1) 
 

‖u(y) − uα
δ(y)‖ = 0(θ3(α)) + (

1

α
)
1/p

δ,               (60) 

 

Where 

 

θ1(α) = 0(
1

log(1/α)
)
r

,                                              (61) 

 

θ2(α) = 0(α), θ2(α) = 0(α
q/p). 

 

If we choose α = α(δ) = δp/ω with ω > 1, then we have 
 

δ (
1

δp/ω
)
1/p

= δ(ω−1)/ω,                                                      (62) 

 

θ1(α) = 0(
1

log(1/δp/ω)
)
r

,                                              (63)           

 

   θ2(α) = δ
p/ω,    θ3(α) = 0(α

q/ω).                           (64) 

 

 Example: Cauchy Problem for the Modified Helmholtz 

equation. 
In this paragraph, we give a concrete example to see 

how to apply the theoretical results developed in this Study. 

 

Let us consider the Cauchy problem (modified 

Helmholtz equation) in the infinite strip ℝ x (0, 1) 

 

uyy (x, y) + uxx(x, y) − yu(x, y) = 0, x ∈  ℝ,       y ∈

(0,1),                                                                                  (65) 

 

u(x, 0) = f(x), uy(x, 0) = 0,      x ∈ ℝ, 

 

Where y is a real positive constant 

 

       Let û(ξ, y) = (𝔉u)(ξ, y)  be the Fourier transform of 

u(x, y): 
 

       û(ξ, y) =
1

√2π
∫ eξxu
ℝ

(x, y)dx.                    (66) 
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With the help of the Fourier transformed, problem (1’’) can 

be transformed to an equivalent problem in the frequency 
domain: 

 

                             ûyy(ξ, y) − ξ
2û(ξ, y) − yû(ξ, y) = 0, 

 

                                                                                ξ ∈ ℝ,          y ∈ (0,1),             (67) 

 

                                          û(ξ, 0) = f̂(ξ), ûy(ξ, 0) = 0,       ξ ∈ ℝ. 

 

It is easy to check that the formal solution of problem (67) 

has the form 

 

û(ξ, y) = cosh(y √(ξ2 + γ))f̂(ξ), (68) 

 

Or equivalently, the formal solution of problem (65) is given 

by 

 

u(x, y) = (𝔉−1û)(x, y) 
 

                                                                    

= 
1

√2π
∫ eixξû(ξ, y)dξ
ℝ

                 (69) 

 
                                                                    = 
1

√2π
∫ eixξcosh(y √(ξ2 + γ))f̂(ξ)dξ.
ℝ

 

 

Putting (ξ) = √(ξ2 + γ). Then  (ξ) ⟶+∞ |ξ| ⟶
+∞  From this remark, it is easy to see that a small 

perturbation in data f̂(ξ)  may cause a dramatically large 

error in the solution û(ξ, ξ).  In addition, the magnifying 

factor is (ξ) ∼ e|ξ|, hence, the problem is severely ill-posed. 

 

Since the data f(.) are based on (physical) observations 

and are not known with complete accuracy, we assume that f 
and fδ satisfy 

 

          ‖f − fδ‖ ≤ δ,                                        (70) 

 

Where f  and fδ  belong to L2(ℝ) , fδ  denotes the measured 

data, and δ denotes the noise level.  
 

For this problem, we define the regularized solutions with 

noisy data fδ: 
 

uN
δ (x, y)  

 

    = 
1

√2π
∫ ixξcosh
ℝ

(y √(ξ2 + γ))f̂δ(ξ)𝟏[−N,N](ξ)dξ 

 

=
1

√2π
 

 

 ∫ eixξ cosh(y √(ξ2 + γ))f̂δ(ξ)dξ
N

−N
                 (71) 

 

Where 11[−N,N] is the characteristic function of the interval 

[−N,N] 
 

u∝
δ (x, y) 

 

    = 
1

√2π
 ∫ eixξ (

cosh(y √(ξ2+γ))

1+∝e
p√(ξ2+γ)

)
ℝ

 f̂δ(ξ)dξ  

 

Where p ≥ 1. The quantities ∝ = ∝ (δ) and N =N(δ) are the 

parameters which were defined in Sections 3.1 and 3.2. 

 

III. CONCLUSION 

 

We were able to solve the problem with the truncation 

method and the mollification method. Our goal will be 

devoted to problematic waters with unknown (uncertain) 

operators: Since the physical model proceeds from an 
idealization of physical reality and is based on simplifying 

assumptions, it is therefore also a source of uncertainty. Any 

regularization theory must therefore take into account the 

possibly incomplete for uncertain character. Also, we give 

some extensions to our investigation.   
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