
Volume 8, Issue 2, February – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23FEB1296 www.ijisrt.com 1877

A Generic Middleware for Integrating

ERP and Web Applications

Abdulaziz Almuhaisin,

Saudi Aramco, PO Box 10760 Dhahran 31311 Saudi Arabia

Abstract:- A middleware is an application used to map

and pipe outputs and inputs of differentheterogeneous

applications to stick them together to enable them to

share data back andforth. A client-side web application

often reads and stores data in a server of backend Enter-

prise Resource Planning (ERP) system using a middle-

ware.However, the current practice for building middle-

ware is specific to each clientapplication such that the

middleware needs to be updated each time when an in-

terface in aclient side or a server side is changed. In addi-

tion, the middleware tends to be complex,and needs fre-

quent maintenance.Accordingly, there exists a need for a

generic middleware that can work with anyweb applica-

tion to any data server without the need of updating the

middleware in case ofan interface change, and that can

be easily maintained without a frequent maintenance.

I. INTRODUCTION

A middleware is an application used to map and pipe

outputs and input of different heterogeneous applications to

stick them together to enable them to share data back and

forth. Example of middleware include database middleware,

application server middleware, message-oriented middle-

ware, web middleware. (What is a middleware? [1]. In this

more specific sense middleware can be described as the dash

("-") in client-server, or the -to- in peer-to-peer. Services that

can be regarded as middleware include enterprise applica-

tion integration, data integration, message oriented middle-
ware (MOM), object request brokers (ORBs), and the enter-

prise service bus (ESB).[2] .

Each program typically provides messaging services so
that different applications can communicate using messaging

frameworks like simple object access protocol (SOAP), web

services, representational state transfer (REST), and JavaS-

cript object notation (JSON). While all middleware performs

communication functions, the type a company chooses to

use will depend on what service is being used and what type

of information needs to be communicated. This can include

security authentication, transaction management, message

queues, applications servers, web servers, and directories.

Middleware can also be used for distributed processing with

actions occurring in real time rather than sending data back

and forth [3].

II. MIDDLEWARE CHALLENGES

A. Scalbility and application dynamic topology

Scalability is defined as follows if an application grows

or changed the middleware need to be flexible to adapt to

such change without affecting the application performance

or expected results. Middlewares that are efficient and ge-

neric must be capable of maintaining data integrity and per-

formance levels as the application grows or enhanced. Ap-

plication topology is dynamic with different requirement

changes or feature additions or bug fixing. Middleware need

to be robust and generic enough despite these dynamic
changing of applications. [4]

B. Quality of Service

Increasing concerns about service quality have led to

several proposals that advocate integrating QoS manage-
ment into distribution infrastructures. QoS management at

the middleware and application levels aims to control attrib-

utes such as response time, availability, data accuracy, con-

sistency, and security level. Therefore, middleware should

provide new mechanisms to maintain QoS over an extended

period and even adjust itself when the required QoS and the

state of the application changes.

C. Performance

Middleware systems rely on interception and indirection

mechanisms, which induce performance penalties. Adapta-

ble middleware introduces additional indirections, which

make the situation even worse. This problem may be allevi-

ated by various optimization methods, which aim at elimi-

nating the unnecessary overheads by such techniques as in

lining, i.e. injecting the middleware code directly into the
application. Flexibility must be preserved, by allowing the

effect of the optimizations to be reversed if needed [5]

III. IMPLEMENTING GENERIC MIDDLEWARE

To able to build a generic middleware, a protocol or a

communicationstandard need to be established. The protocol

will be divided into three main parts. Thefirst is agreeing on

what the web application will send to the middleware. The

second partis how the middleware will handle the request
coming from a web application, how toauthenticate the ap-

plication user, and how to fetch or post data to the ERP

backend system.The final part is how to handle requests

coming from the middleware, the design of thehttp handler

in the backend ERP system, and an importing parameter that

accepts theusername in each function that will be used to

handle a client request.

http://www.ijisrt.com/

Volume 8, Issue 2, February – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23FEB1296 www.ijisrt.com 1878

A. Creating the middleware API

This section presents the design principles considered in
the architecture design. First fig 1.1 shows the architectural

design to able to build a generic middle ware a protocol or a

communication standard need to be established. The proto-

col will be divided into three main parts. The first is agree-

ing on what the web application will send to the middle

ware. The second part is how the middle ware will handle

the request coming from the web application and how to get
the logged in user from active directory and how to fetch or

post data to the SAP backend system. The final part is how

to handle requests coming from themiddle ware and the de-

sign of the http handler in the backend ERP system.

Fig. 1: Illustrates a middleware architecture in a system. Middlewarearchitecture includes a client, a web application server, ERP

systems,and a Windows active directory. Client includes a front end web application.Web application server includes a web server

and a middleware. ERP systemsincludes an authorization server and an ERP Backend system

B. Web application side

The web application need to send a POST request to the

API with a JSON in the request body. The JSON request

need to have the name of the data the same name of the SAP

function module importing parameters. Also the POST re-

quest header need to consist of the following header fields:

 User name identifier (X-USER-IDNT)

 Password identifier (X-PASSWORD-IDNT)

 Target SAP system https handler URL (X-URL-IDNT)

 Operation code or function module name in the target

SAP system (X-OPERATION_CODE)

Fig. 3: Illustrates an exemplary POST request by a web application.

POST request comprises a header comprising a plural-

ity of fieldsincluding a username identifier (X-USER-
IDNT), a password identifier (X-PASSWORDIDNT),a tar-

get system HTTP Uniform Resource Locators (URL) identi-

fier (X-URLIDNT),and an operation code (X-

OPERATION_CODE). The operation code may be afunc-

tion module name in the target system. Values of these fields

are identifiers and notthe actual information. For example,

an identifier of a password is sent via a value in thepassword

identifier, but not the actual password. As such, the
username identifier identifiesa username. The password

identifier identifies a password. The target system HTTP

URL identifier identifies an address of a target system. The

operation code identifies a code ora function module name

to run on a target system.

http://www.ijisrt.com/

Volume 8, Issue 2, February – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23FEB1296 www.ijisrt.com 1879

These are identifiers and not the actual information.

For example, the identifier of the password is sent but not
the actual password.

The web application will call the API asynchronously

and wait for a reply from the API server.

C. Middleware

The middle ware is developed on a web application

server using C# or any other programming language. In this

article the REST API will be built in C#. First entry point

for this API is a POST handler accepting a JSON object
from the body. The client includes a web application that

creates a first Hypertext Transfer Protocol (HTTP) POST

request including a header and a body. The web application

server includes a web server and a middleware.

The middleware receives the first HTTP POST request

from the web application. Then, the middleware creates a
HTTP GET request using the header. The middleware estab-

lishes a secure connection with an authorization server, and

submits the HTTP GET request to the authorization server

asynchronously. The middleware receives a response to the

HTTP GET request regarding a validation of identifiers in a

query string of the HTTP GET request, and decrypts a

username and a password using the identifiers in response to

the identifiers located in the authorization server. The mid-

dleware serializes an output of the decrypted username and

password in a Java Script Object Notation (JSON) format,

and places the output in a body of a second HTTP POST

request. The middleware responds the second HTTP POST
request to a data server. The ERP system includes the au-

thorization server and the data server.

 The design to handle the authorization request in the ERP authorization server

Fig. 4: is a flowchart of a method of providing interconnection of heterogeneousapplications by a middleware.

Once the authorization data is available from the au-

thorization server, the middle will need to establish a POST

request connection to the target data server using the user

name and password from authorization server. This new

post request needs to have content type as JSON and will

two headers in the request. The headers are:

 X-INITIATOR

 This header will have the logged-on user from the net-

work using the “http context” from the web server

 X-OPERATION_CODE

 Which the header from the previous request originating

from the web application

The middleware then will establish an asynchronous

call to the target data server and wait for a response. The

target data server needs to have an http interface mapped to

a handler class this class will map the request to a REST

API handler class. The REST API handler class need to

have a POST handler method. The method will read the

headers X-INITIATOR and X-OPERATION_CODE and
then will call the generic handler method that will accept the

json from the original request, the X-INITIATOR and the X-

OPERATION_CODE

http://www.ijisrt.com/

Volume 8, Issue 2, February – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23FEB1296 www.ijisrt.com 1880

IV. GENERIC HANDLER

This generic handler method needs to be built using

dynamic programming concept and need to be structured in

a specific way explained below.

 the generic handler will need to have six dynamic

pointer variables

 Dynamic pointer to a table variable

 Dynamic pointer variable to importing parameters

 Dynamic pointer variable to exporting parameters

 Dynamic pointer to a work area

 Dynamic pointer to temporary variable to importing

parameters

 Dynamic pointer to temporary variable to exporting

parameters.

 get the interface of the method or function that will pro-

vide the required data or do the required operation

based on the X-OPERATION_CODE
 Loop at the interface structure of the function to sepa-

rate the importing parameters into one table or array

and the exporting parameters to another table or an ar-

ray.

 Point the dynamic pointer importing variable to a ref-

erence of data of same type as the importing parame-

ters structure.

 Point the dynamic pointer exporting variable to a refer-

ence of data of same type as the exporting parameters

structure.

 De-serialize the JSON object that came with original
request and update importing dynamic pointer target

memory location to hold the JSON object de-

serialization output.

 Dynamically insert the initiator name into the import-

ing parameters

 Call the function

 Serialize the output from the dynamic exporting varia-

ble to JSON format and return the output to the client

via the middleware.

V. CONCLUSION

This method will provide a generic middleware design

that can work with any web application to any data server

without the need to update the middleware in case of inter-

face change and it is easy to maintain although it should not

require any frequent maintenance.

REFERENCES

[1.] https://azure.microsoft.com/en-us/overview/what-is-

middleware/

[2.] (Luckham, D. C. (2011). Event Processing for Busi-

ness: Organizing the Real-Time Enterprise. John

Wiley & Sons. pp. 27–28. ISBN 9781118171851).

[3.] https://azure.microsoft.com/en-us/overview/what-is-

middleware/

[4.] K. Smith, D. Taniar and M. Ashrafi, "ODAM: An

Optimized Distributed Association Rule Mining Al-

gorithm" in IEEE Distributed Systems Online, vol. 7,

no. 03, pp. 1, 2004.

[5.] doi: 10.1109/MDSO.2004.1285877

[6.] Sacha Krakowaik “Middleware Architecture with
Patterns and Frameworks”, Creative Commons li-

cense Feb 2009

First A. Author Abdulaziz Almuhaisin is an IT pro-

fessional at Saudi Aramco. He received Bachelor degree in
computer science from King Fahad University of Petroleum

and Minerals. Currently he is a blockchain expert in Saudi

Aramco

http://www.ijisrt.com/
https://azure.microsoft.com/en-us/overview/what-is-middleware/
https://azure.microsoft.com/en-us/overview/what-is-middleware/
https://azure.microsoft.com/en-us/overview/what-is-middleware/
https://azure.microsoft.com/en-us/overview/what-is-middleware/

