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A Numerical Statistical Solution for the  

Time-Independent Schrödinger Equation – Part II 
 

Dr. Ismail Abbas 
 

Abstract:- In a previous paper we studied the extension 

of transition matrix chains B from the heat diffusion 

equation to the numerical statistical solution of the time-

independent Schrödinger equation in a spatial dimension 

x. 
 

In this paper, we propose the extension of transition 

matrix chains B to the numerical statistical solution of 

the time-independent Schrödinger equation in two 

spatial dimensions x,y. 
 

Extending physical transition matrix chains B to 

the solution of the time-independent Schrödinger 

equation requires respecting certain limitations of the 

bases that we briefly explain in this article. 
 

We present the numerical statistical solution via 

matrix B in two illustrative situations, namely the two-

dimensional heat diffusion equation and the two-

dimensional infinite potential well where the numerical 

results are surprisingly accurate. 
 

I. INTRODUCTION 
 

In a previous article, we studied the extension of 

transition matrix chains B to the numerical statistical 

solution of the time-independent Schrödinger equation in 

one dimension x. 
 

In this paper, we propose the extension of transition 

matrix chains B to the numerical statistical solution of the 

time-independent Schrödinger equation in the two 

dimensions x,y. 
 

The numerical results obtained via the B transition 

matrix chains in two distinct solutions, namely the solution 

of the PDE problem of thermal diffusion and quantum 

particles in a well of infinite potential, prove to be superior 

to those obtained by solving the conventional thermal PDE 

and the Schrödinger equation. 
 

It is expected that, in the near future, 
 

Thermal PDEs and Schrödinger PDEs would both 

become a thing of the past, while their B-matrix equivalent 

chains, even in their infancy, represent the future. 
 

Note that extending physical transition matrix chains B 

to the solution of the time-independent Schrödinger equation 

requires the introduction of some basic physical and 

mathematical terms or concepts which we briefly state in the 

following ten guiding concepts, 

 Square matrices are a subset of mathematical matrices 

and Physical square matrices that have physical meaning 

(such as transition matrix B) are a subset of square 

matrices. 

 Statistical transition matrices and chains of statistical 

transition matrices exist and its modeling works 

effectively in the solution of partial differential 

equations. 
 

At present, we know two of them, namely the 

mathematical statistical transition matrix of Markov and the 

transition matrix B which is the subject of this article. 
 

However, in Markov matrix chains we do not care 

about the energy density, boundary conditions, source 

term, average properties of the medium, etc., whereas in 

the case of B matrix chains we let's do this. 
 

 A physical transition matrix chain B for the energy 

density U can be defined by the recurrence relation, 

U (x, t+ dt) =B. U(x,t) 
 

As a result, a chain transition matrix, such as the 

statistical transition matrix B, must be able to describe the 

solution trajectory through its own solution space for a given 

time evolution which is the energy solution E in 4- D x-t. 

space. 
 

 All matrix equations “resulting from the solution of PDE 

via the transition matrix” are not eigen value equations. 
 

For example, the matrix of the numerical solution of 

heat diffusion equation results in a system of non-

homogeneous first-order linear algebraic equations while the 

matrix equation of the numerical solution of the Schrödinger 

equation is homogeneous and results in an eigenvalue 

problem with multiple eigenvalues. 
 

Several eigenvalues have their corresponding 

eigenvectors. 
 

BOTH time-dependent and time-independent 

Schrödinger equations are in-depth examples of eigenvalue 

equations in quantum mechanics, with their eigenvalues 

corresponding to the allowed energy levels of the quantum 

system. 
 

Generally speaking, in statistical transition matrix B 

eigenvalue is the dominant eigenvalue (eigenvalue of 

maximal absolute value) equal to 1. 
 

 What is Schrödinger equation and what is time-

independent Schrödinger equation? 

The Schrödinger equation is a second-order linear PDE 

in the so-called wave function ψ(x,t) and is a way to 

probabilistically describe the time evolution of energy, 

momentum and position of quantum particles in space. 
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His time-independent equation for ψ(x) describes the 

equilibrium state that occurs when the evolutionary time 
tends towards infinity. 

 

It should be noted that another way to describe 

quantum particle dynamics is to use statistical transition 

matrices that completely ignore the Schrödinger equation as 
if it never existed in the same way as solving the heat 

diffusion equation without going through the thermal PDE. 
 

 What is a numerical solution and a statistical solution! 

The numerical solution replaces the analytical solution 
of the time-dependent PDE by discretizing space and time 

into dx and dt and replacing the differentials dy/dx by 

[y+dy-2y +y-dy]/2dx And d ^2 y/ dx ^2 by [y+dy-2y +y-

dy]/dx^2. etc. 
 

In other words, the numerical solution method reduces 

the PDE to a system of algebraic equations. 
 

This subject called numerical differential calculus was 
first introduced by I. Newton through his method of 

differential calculus is now known as finite difference 

method (FDM). 
 

It is worth mentioning that statistical transition 

matrices completely ignore Newton's calculus and FDM 

as if they never existed. 
 

Newtonian calculus and FDM techniques exist 

intrinsically in statistical transition matrix chains. 

 This means that, in a way, the numerical statistical 

solution is a subset of the numerical solution in which 

the differential calculus is ignored and replaced by the 

statistics of the transition matrix. 

 In addition, we emphasize that the method of separation 

of variables 

W(x,y,z,t)=X(x)Y(y)Z(z) f(t) 

Is not obligatory because it is intrinsically included in 

the 4D inseparable unit space of the chains of matrix B. 

 The Monte Carlo numerical (technical) method is closest 

to the Cairo technical method. 
 

However, the numerical Monte Carlo method is a bit 

old and requires generating a random numerical variable 

thousands of times. This makes the interpretation of its 

numerical results long and tedious. 
 

 Finally, it should be mentioned that today we only 

know one physical transition matrix which is the 

transition matrix B resulting from the so-called Cairo 

technique. 
 

Note that the statistical transition matrices operate in 

their own space, open or closed and characterized by 

RO=PE/E = constant. 
 

The space of statistical transition matrices meets the 

Hamilton space of the Schrödinger equation in the special 

case RO = 1/2. 
 

Through this article, we examine in detail two different 

illustrative physical problems in the areas of the heat 

diffusion equation and the time-independent Schrödinger 

equation. 
 

We present numerical solutions for thermal conduction 

in a two-dimensional thermal energy field and the steady-

state distribution of quantum energy density in an infinite 

potential well where the numerical results are surprisingly 
accurate. 

 

II. THEORY 
 

In practice, the field of modern quantum mechanics 

relies entirely on the Schrödinger equation and its 

derivatives which constitute a subset of physics but not 

physics as a whole. 
 

Bohr's original theory of the hydrogen atom introduced 

for the first time in history the condition of quantization of 

electronic energy as quantification of the circular orbits of 

the electron around the nucleus in orbits called allowed 

orbits. The so-called authorized orbits give rise to authorized 
atomic energy states, as opposed to prohibited energy states. 

 

Niels Bohr's original model in 1913 was based entirely 

on Newton's laws of motion supplemented by Bohr's 

quantification hypothesis, of the principal quantum number 
n, namely, 

 

mv.2π.Rn=n h . . .                                                       (1) 

n=1,2,3. . , infinity 
 

where Rn is the nth radius of electrons circulating 

around the nucleus. 
 

At the time, N. Bohr did not say a word about the 

electronic cloud or the superposition of quantum states. 
 

He also said nothing about the electron cloud in a 

quadratic potential nor about any of the quantization 

numbers (n, l, m, s) other than principal quantum number n. 
 

This is called classical quantum mechanics, where the 

electron is considered to be a particle whose position x, 

velocity v and trajectory in space are known. Although old 

and classic, Bohr's original hypothesis in 1913 introduced a 

giant step towards modern quantum mechanics and the 

Schrödinger equation to come in 1927. 
 

Accordingly, the term classical quantum mechanics 

corresponds to the original model of quantum mechanics 

developed by N. Bohr's theory of the hydrogen atom in 1913 

and to similar models which considered subatomic particles 

as a point in x-t space , before the Schrödinger equation of 

1927 which was completed. by the Bohr/Copenhagen 

interpretation. This interpretation is known as the principle 
of superposition of quantum states. 

 

A second giant step was Bohr's modern theory of the 

hydrogen atom in 1927, where he introduced the concept of 

representing the dynamics of subatomic particles in space as 
a probability cloud described by the Schrödinger equation 

which replaced Newton's laws of motion. 
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The concept of a quantum point particle and a quantum 

particle path subject to Newton's laws of motion has been 
radically overturned. 

 

In this article we describe how to apply the chains of 

the matrix B to describe the dependence of the total energy 

E on a principal quantum number n (in order not to go 

further to other quantum numbers l, m,s) without go 

through the Schrödinger equation or Bohr's quantum 

hypothesis Eq 1. 
 

We assume that the proposed numerical statistical 
solution for the time-independent Schrödinger equation 

constitutes a preliminary step on a long path towards the 

solution of complete quantum mechanics described by the 

time-dependent Schrödinger equation. 
 

We recall that, in previous articles [2,3,4] we 

introduced numerical statistical solutions to time-dependent 

partial differential equations such as the Poisson and 

Laplace partial differential equations, sound intensity and 

time of reverberation in audio rooms, digital integration and 

differentiation, etc. 
 

Our numerical statistical modeling proposed for the 

study of time-independent SEs is based on the same chains 

of transition matrices B and its derived transfer matrices D, 

E. 
 

The basic entries of the statistical transition matrix 

B(i,j) are well defined in 1D, 2D and 3D configuration space 

problems via four statistical conditions[2,3,4] and the 

resulting transfer matrices D ,E are also well defined via the 

following elements of the relationships: 
 

E(N)=B0 + B +B2+ B3 +.. . +BN                                 (2) 
 

Where, 

B0=I, the unit matrix. 
 

If N is large enough, we arrive at the time-independent 

steady state solution, 
 

E = 1/(I-B)                                                                  (3)  
 

For N sufficiently large. 
 

In all cases, transfer matrix D is defined as, 
 

D=E-I                                                                          (4) 
 

Equation 3 is the reason why we introduced the 

transfer matrix E to use in the first step, and then calculated 
the transfer matrix D from equation 4 in the second step. 

 

This procedure is called the Cairo technique 

(bydistinction )[2,3,4]. 
 

We emphasize again that the Cairo technical procedure 

for solving the time-dependent PDE in classical physics and 

its proposed extension to cover QM problems is not 

complicated but rather lengthy and requires mastery of some 
prerequisites in matrix algebra and in statistical transition 

matrix chains [1, 2,3,4]. 
 

In the Cairo techniques approach the time dependent 

solution of the PDE energy density U(x,t) is given by, 
 

U(x,t)=D(N) . (b +S)  + IC * BN(5) 
 

Where S is the source/sink term vector and IC is the 

initial conditions vector. 
 

Equation 5 is used as a time-dependent statistical PDE 

equivalence matrix which has been used in the solution of 

classical physics problems such as thermal conduction PDE 

and it is now proposed to find a solution for the Schrödinger 

equation in 1D and 2D geometric shapes. 
 

It should be noted that equation 5 contains a term due 

to the initial state conditions described by IC* BN which 

decreases exponentially with time because the module of 

matrix B is less than 1. This term tends towards zero with 

time and is therefore not treated in the present case of the 
steady state in the remainder of this article. 

 

Note that Eq 5 is the solution of U(x,t) in 4D x-t 

unitary space where the real time t is completely lost and is 

replaced by a  dimensionless integer N. 
 

It is also worth mentioning that discretizing time t into 

forbidden and allowed where t = N dt and N is an integer is 

inherently itself a quantification of time. 
 

Again, the integer N is the number of iterations which 

is number of time steps or time jumps dt. 
 

One of the important reasons for replacing the 

Schrödinger equation with chains of statistical transition 

matrices is that you are moving from a field of SE where 

many questions remain unanswered to the field of modern 

statistical physics where almost all questions have 

adequate answers. 
 

Once againwe emphasize here that the subject of the 

statistical equivalence of the Schrödinger equation is not 

complicated but is a bit long and requires prior knowledge 

of matrix algebra [1] and the statistical solution of the 
matrix B to problems of statistics and classical physics [2, 

3,4, 6]. 
 

The question arises how to extend the B matrix chain 

solution of the Cairo technique to cover time-independent 
stationary situations in 2D quantum mechanics problems? 

 

In other words, how can we process Equation 5 in 

order to find a statistical equivalence of the 2D Schrödinger 
equation? 

 

This is the subject of current article. 
 

The time-independent Schrödinger equation, 

describing the square root of the probability density function 

ψ in all space, is expressed as follows: 
 

 ψ(x,y,z)=-h^2/2m. Nabla^2 ψ(x,y,z) + V(x,y,z) .ψ(x,y,z) 

. . . (6) 

Considering that the statistical equivalence approach of 

the Cairo techniques which is in general a time-dependent 
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solution for the energy density U(x,t) as given by equation 

5, 
 

U(x,t)=D(N) . (b + S) + IC. B^N  .  . . . .  .                 (5) 
 

The similarity between Equation 5 and Equation 6 is 

obvious and the application of Equation 5 to solving 

quantum mechanical problems seems natural. 
 

In order to apply Equation 5 as a substitution for 

Equation 6, we propose two important natural assumptions: 

 If the stationary Schrödinger equation can be interpreted 

as an eigenvalue equation in Hamiltonian space 

describing the square root of the probability density ψ 

then the square of ψ can also be interpreted as an 

eigenvalue equation in l 'space of matrix B (or any other 
appropriate space equation) having eigenvalues (λ ^ 2) 

 the square of ψ can also be interpreted as the quantum 

energy density and that ψ^2 is subject to the classical 

physical transition matrix B described by equation 5 with 

secondary modification. 
 

The modifications required for Equation 5 to describe 

the time-independent Schrödinger equation are briefly: 

 The vector of boundary conditions b in Eq. 5 must be set 

equal to 0 since the function ψ extends to +/- infinity and 

is bounded. 

 The source/sink term S in Eq. 5 is conveniently 

described by a function of the potential V(x), viz,  

 S(x,y)= Constant C1* V(x,y) (7) 
 

 Note that nature itself is linear and the expression 

S(x)=C1 V(x) in equation 7 conforms to this reality. 
 

The choice of the constants C1  depends on the size 

and structure of the B matrix. 
 

Equation 5 suggests that stationary solution of 

quantum energy density U(x)=E is expressed as, 

E(x,y)=λ[B + C1 E(x,y)] (8) 
 

Where λ is the dominant eigen value and is equal to 1 . 
 

Equation 8 is the eigenvector equivalence of the B 

matrix of the time-independent Schrödinger equation for 
bounded quantum systems. 

 

It is worth mentioning that the same transition matrix 

B which works efficiently for the solution of the time-
dependent heat conduction equation is proposed for the 

solution of the time-independent Schrödinger equation but 

with different Ro, different BC and a different source term 

S. 
 

RO is an element of the closed interval [0,1][2,3,4]) 

and represents the constant of motion in the statistical space 

of matrix B. 
 

In the case of the thermal diffusion equation, RO is an 
explicit function of the thermal diffusion coefficient D. 

 

The in-depth study of the transition matrix solutions 

allows all possible values of RO in the interval [0,1] for 

solution of the thermal conduction equation where RO is a 

function of the diffusivity of the material. 
 

 

 

On the other hand we assume that the authorized 

values of RO for quantum mechanics problems are elements 

of [0,1/2]. The statistical reason is that for RO = < ½, 

equation 2 converges and diverges otherwise. 
 

We also assume that the solution via matrix chains B 

may be, in some way, more informative than SE itself, a 

claim which will be explored in more detail when describing 

solutions to the Schrödinger equations in 3D. 
 

It is worth mentioning that B-matrix string theory 

is not entirely new and has been working effectively since 

2020 [2,3,4]. 

 

In order not to worry too much about the details of the 

theory, let's move on to the following numerical situations. 
 

III. NUMERICAL RESULTS 
 

A. 2D Heat diffusion equation 

The heat diffusion/conduction equation has particular 

importance both in modern classical physics (classical 

physical laws supplemented by the modern definition of 

transition probability) and in classical and modern quantum 

mechanics where there are many communities of 

characteristics. 
 

We start here with the 2D thermal diffusion equation 

problem where we find many similarities in the solution 

procedure. The solutions to the Schrödinger equation and 

that of the thermal diffusion equation are both based on the 

same transition matrix B, whether 1D, 2D or 3D. 
 

In the previous part I of this article, we solved the 

thermal conduction/diffusion equation in 1D configuration 

via 1D B-matrix chains. 
 

In this second part of the article, we solve the heat 

diffusion field in 2D configuration via 2D B matrix chains. 

Here we find and test the accuracy and precision of 

numerical statistics of the Cairo techniques method in two-

dimensional thermal conduction/diffusion situations. 
 

A fundamental hypothesis consistent with the concepts 

of B-matrix chains emerges: 
 

For all nodes of a multidimensional object subject to 

Dirichlet boundary conditions, the boundary conditions 

and the source/ sink term (b-vctor source/sink term) are 

expressed as , 
 

BC=BC(x)+BC(y)+BC(z)  .  .  .  . Rule 1 
 

S=Sx+Sy+Sz . . . . . . Rule 2 
 

Rules 1,2 are at the origin of the little-explained rule in 

quantum mechanics, namely: 
 

E=Ex+Ey+Ez 
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Consider the simple case of a rectangular domain with 

9 equidistant free nodes, u1, u2, u3, ... u9 and 12 Dirichlet 

boundary conditions BC1 to BC12. These 12 BC conditions 

are reduced to only 9 BC when using rule 1, as shown in 
Figure 2. 

 

 
Fig. 1: A 2D rectangular domain with 9 equally spaced free nodes subject to Dirichlet BC. 

 

Again, the 12 boundary conditions in Figure 2 can be reduced to 9 modified BCs for the 9 boundary nodes via the use of 

Rule 1 as follows: 

BC1 = BC1X + BC1Y 

BC2 = BC2X + BC2Y 

. . . . . . . . . . . . . . . . 

BC9 = BC9X + BC9Y 
 

 Step 1 

The first step consists of constructing the 9x9 two-dimensional transition matrix B in such a way as to satisfy the conditions i-

iv[3,8] and to take the presupposed value of RO. 
 

for an arbitrary RO, the 9x9 matrix B is given by, 

RO 1/4-RO/4 0.0 1/4-RO / 4 0.0 0.0 0.0 0.0 0.0 

1/4-RO/4 RO 1/4-RO/4 0.01/4-RO/4 0.0 0.0 0.0 0.0 

0.0 1/4-RO/4 RO 0.0 1 /4-RO/ 4 0.0 0.0 0.0 0.0 

1/4-RO/4 0.0 0.0 RO 1/4-RO/4 0.0 1/4-RO/4 0.0 0.0 

0.0 1/4-RO /4 0.0 1/4-RO/4 RO 1/ 4 -RO /4 0.0 1/4-RO/4 0.0  0.0 0.0 1/4-RO/4 0.0 1/4-RO/4 RO 0.0 0.0 1 /4-RO/4 
0.0 0.0 0.0 1/4-RO/4 0.0 0.0 RO 1/4-RO/4 0.0 

0.0 0.00.0 1/4-RO/4 0.0 1/4-RO/4 0.0 RO 1/4-RO/ 4 0.0 

0.0 0.00 0.00 0.00 1/4-RO/4 0.00 1/4-RO/4 RO 
 

We call it matrix M1 
Note that all diagonal elements of M1 (Mi,j) are equal to RO. 
 

 Step 2 

Calculate the transfer matrix E from equation 3. 
 

E= 

67/5611/28  1/811/28  ¼  3/28   1/8  3/28 .3/56 

11/2837/2811/28¼  1/2  1/4 3/28  5/28  3/28 

1/8 11/2867/563/28  ¼ 11/28  3/56  3/28   1/8 
11/28 1/4  3/28 37/281/2  5/28 11/281/4  3/28 

¼    ½   ¼   1/2 3/2 1/2 1/4   1/2 ¼  

3/28   1/4 11/28 5/28  ½   37/28 3/28¼  11/28 

1/8  3/28  3/56 11/281/4  3/28 67/5611/281/8 

3/28  5/28  3/28   1/4 1/2   1/4 11/2837/2811/28 
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3/56  3/28   1/8  3/28 1/4 11/28 1/8 11/2867/56 
 

 

 Step 3 

The last step 3 is to use equation 5 to obtain the 

temperature distribution vector, namely: 
 

U(x, y)=D(N) . (b +S) + IC * BN (5) 
 

With source term S=0 and initial conditions IC =0 
 

Mathews [1,pp 524] classically solved the same 

thermal system shown in Figure 1 via 9 linear algebraic 

equations resulting from the FDM technique. 
 

He calculated the steady-state temperature distribution 

using the Gaussian elimination method in a more efficient 

scheme by extending the tridiagonal algorithm to the more 

sophisticated penta-diagonalalgorithm for its arbitrarily 

chosen vector boundary conditions, 
 

b = [100,20,20,80,0,0,260, 180 180]^T. . . . . . (9)  
 

Mathews arrived at the temperature solution vector: 
 

T=[55,7143, 43,2143, 27,1429, 

79,6429,70,0000,45,3571,112,357,111,786,84,2857] ^T... . 

(10) 
 

Now, in the proposed statistical solution, the Dirichlet 

boundary conditions are modified via rule 1. It follows that 

the vector b corresponding to Figure 1 and the arbitrary 

Mathews boundary conditions is simply rewritten as 

follows: 
 

b= [100/4, 20/4, 20/4, 20/ 4, 80/4, 0., 0,260/4, 180/4, 

180/4]^ T 
 

Using equation 5 and the previous vector b, we arrive 

at, 

T=[ 390/7,605/14,  190/7,1115/14,  

70,635/14,790/7,1565/14, 

  590/7]^T . . . . ..(11) 
 

Note that: 

 Comparing the results of Mathews Eq 10 for the 2D 

thermal equation applied in Figure 1 with the numerical 

results obtained via the matrix transition statistical 

chains B Eq 11, we find a striking accuracy. 

 The proposed numerical statistical method bypasses 

the Heat PDE and FDM techniques. 
 

B. Quantum particle in a 2D infinite potential well 
 

 Step 1 

Construct the 2D statistical matrix B corresponding to 

Figure 2 which represents a quantum particle in a 2D 

infinite potential well. 

 

 
Fig. 2: A quantum particle in a 2D infinite potential well 

 

The basis for generating an eigen or proper matrix is 

the 2D matrix B with 9 equidistant free nodes as shown in 

Figure 2, nodes 1-9. 
 

Note that RO=0 because PE is zero. 
 

It is expressed by the same matrix M1 explained 

previously in the example of 2D thermal conduction. 
 

 Step 2 

Compose the proper or eigen matrix M2 as given by, 

M2=M1+S(x,y) 

Where S(x,y ) is a diagonal matrix and S=C1*V(x,y) 
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The resulting eigenmatrix M2 will be given by, 

 

 

 

M2= 

1/14  1/4    0  1/4    0    0    0    0    0 

 1/4 4/14  1/4    0  1/4    0    0    0    0 

   0  1/4 1/14    0    0  1/4    0    0    0 

 1/4    0    0 4/14  1/4    0  1/4    0    0 

   0  1/4    0  1/4 9/14  1/4    0  1/4    0 

   0    0  1/4    0  1/4 4/14    0    0  1/4 

   0    0    0  1/4    0    0 1/14  1/4    0 

   0    0    0    0  1/4    0  1/4 4/14  1/4 

   0    0    0    0    0  1/4    0  1/4 1/14 

Where C1 is substituted for by the factor 1/14. 
 

 Step 3 

The energy eigenvector E(x,y) is equal to the principal diagonal of the matrix A which gives the following eigenvector 

equation, 
 

2/14  1/4    0  1/4    0    0    0    0    0 

 1/4 4/14  1/4    0  1/4    0    0    0    0 

   0  1/4 2/14    0    0  1/4    0    0    0 

 1/4    0    0 4/14  1/4    0  1/4    0    0 

   0  1/4    0  1/4 9/14  1/4    0  1/4    0 

   0    0  1/4    0  1/4 4/14    0    0  1/4 

   0    0    0  1/4    0    0 2/14  1/4    0 

   0    0    0    0  1/4    0  1/4 4/14  1/4 

   0    0    0    0    0  1/4    0  1/4 2/14 

* 

[2/144/142/144/149/144/142/144/142/14]T 

is equal to, 

 

[8/49123/392   

8/49123/392137/196123/3928/49123/392   8/49] T  
 

Showing that the energy eigenvector is=  

[2/144/142/144/149/144/142/144/142/14 ] T 
 

with a dominant eigenvalue almost equal to 1. 
 

 

 

 

The reason why we multiply the nodes 1,3,6 and 9 by 

the factor 2 is that these nodes are located at the four 

intersections of the two axes x and y where the rule 

E=Ex+Ey applies. 
 

The x-oriented eigenvectors and the y-oriented 

eigenvectors are shown in Figure 2 in black and red lines. 
 

A quantum mechanical case similar to Figure 2 but 

slightly more complicated is that of 25 equidistant free 

nodes of rectangular shape. 
 

Here, the eigenmatrix of 25x25 entries and the 25 

eigenvectors are presented in the following matrix form, 
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2/40 0.25  0.0  0.0  0.0 0.25  0.0   0.0  0.0  0.0  0.0   0.0   0.0   0.0  0.0

  0.0  0.0   0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

0.25 4/40 0.25  0.0  0.0  0.0 0.25   0.0  0.0  0.0  0.0   0.0   0.0   0.0  0.0

  0.0  0.0   0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0 0.25 9/40 0.25  0.0  0.0  0.0  0.25  0.0  0.0  0.0   0.0   0.0   0.0  0.0

  0.0  0.0   0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0 0.25 4/40 0.25  0.0  0.0   0.0 0.25  0.0  0.0   0.0   0.0   0.0  0.0

  0.0  0.0   0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0 0.25 2/40  0.0  0.0   0.0  0.0 0.25  0.0   0.0   0.0   0.0  0.0

  0.0  0.0   0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

0.25  0.0  0.0  0.0  0.0 4/40 0.25   0.0  0.0  0.0 0.25   0.0   0.0   0.0  0.0

  0.0  0.0   0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0 0.25  0.0  0.0  0.0 0.25 9/40  0.25  0.0  0.0  0.0  0.25   0.0   0.0  0.0

  0.0  0.0   0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0 0.25  0.0  0.0  0.0 0.25 16/40 0.25  0.0  0.0   0.0  0.25   0.0  0.0

  0.0  0.0   0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0 0.25  0.0  0.0  0.0  0.25 9/40 0.25  0.0   0.0   0.0  0.25  0.0

  0.0  0.0   0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0 0.25  0.0  0.0   0.0 0.25 4/40  0.0   0.0   0.0   0.0 0.25

  0.0  0.0   0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0 0.25  0.0   0.0  0.0  0.0 9/40  0.25   0.0   0.0  0.0

 0.25  0.0   0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0 0.25   0.0  0.0  0.0 0.25 16/40  0.25   0.0  0.0

  0.0 0.25   0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.25  0.0  0.0  0.0  0.25 25/40  0.25  0.0

  0.0  0.0  0.25  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0   0.0 0.25  0.0  0.0   0.0  0.25 16/40 0.25

  0.0  0.0   0.0 0.25  0.0  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0   0.0  0.0 0.25  0.0   0.0   0.0  0.25 9/40

  0.0  0.0   0.0  0.0 0.25  0.0  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0   0.0  0.0  0.0 0.25   0.0   0.0   0.0  0.0

 4/40 0.25   0.0  0.0  0.0 0.25  0.0  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0   0.0  0.0  0.0  0.0  0.25   0.0   0.0  0.0

 0.25 9/40  0.25  0.0  0.0  0.0 0.25  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0   0.0  0.0  0.0  0.0   0.0  0.25   0.0  0.0

  0.0 0.25 16/40 0.25  0.0  0.0  0.0 0.25  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0   0.0  0.0  0.0  0.0   0.0   0.0  0.25  0.0

  0.0  0.0  0.25 9/40 0.25  0.0  0.0  0.0 0.25  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0   0.0  0.0  0.0  0.0   0.0   0.0   0.0 0.25

  0.0  0.0   0.0 0.25 4/40  0.0  0.0  0.0  0.0 0.25 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0   0.0  0.0  0.0  0.0   0.0   0.0   0.0  0.0

 0.25  0.0   0.0  0.0  0.0 2/40 0.25  0.0  0.0  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0   0.0  0.0  0.0  0.0   0.0   0.0   0.0  0.0

  0.0 0.25   0.0  0.0  0.0 0.25 4/40 0.25  0.0  0.0 
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 0.0  0.0  0.0  0.0  0.0  0.0  0.0   0.0  0.0  0.0  0.0   0.0   0.0   0.0  0.0

  0.0  0.0  0.25  0.0  0.0  0.0 0.25 9/40 0.25  0.0 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0   0.0  0.0  0.0  0.0   0.0   0.0   0.0  0.0

  0.0  0.0   0.0 0.25  0.0  0.0  0.0 0.25 4/40 0.25 

 0.0  0.0  0.0  0.0  0.0  0.0  0.0   0.0  0.0  0.0  0.0   0.0   0.0   0.0  0.0

  0.0  0.0   0.0  0.0 0.25  0.0  0.0  0.0 0.25 2/40 

* 

[2/404/409/40 4/40 2/404/40 9/40 9/4016/40 9/40 4/40 9/4016/4025/4016/40 . . . .   … .]T 

= 

[21/40027/200321/1600  27/200  21/400  27/200481/160097/200481/160027/200321/1600  97/200253/320  97/200 . . etc]T  

It is clear that in this case the proportionality constant C1 =1/40. 
 

IV. CONCLUSION 
 

Extending the physical transition matrix chains B to 

the solution of the time-independent Schrödinger equation is 
not complicated but it is a bit long and requires respecting 

certain limitations of the bases that we briefly explain in this 

article. 
 

The present study shows that the statistical chains of 

the B matrix can be applied to the solution of the 2D heat 

equation and the time-independent 2D Schrödinger 

equation. 
 

We present the numerical solution via the statistical 

transition matrix B in two illustrative situations, namely the 

2D heat diffusion equation and the two-dimensional infinite 

potential well where the numerical results are of excellent 

accuracy. 
 

NB:In the previous calculations, the author used his 

own double precision algorithm as explained in ref. 8. 

No ready-made algorithms such as Python or 

MATLAB are needed. 
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