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Abstract:- In massive data processing, platforms using 

MapReduce are designed for data centers, which are 

generally centralized.These platforms typically rely on a 

single node to maintain and coordinate MapReduce 

tasks, leading to a single point of failure. Our aim in this 

paper has been to propose a model for MapReduce 

computation on the Red Green Blue architecture, which 

is a decentralized, triple-node big data architecture. 

This architecture is based on the peer-to-peer 

networking protocol named Content Addressable 

Network. First, we implemented all the steps of the 

MapReduce computation approach, taking into account 

the properties of the Content Addressable Network 

protocol and the Red Green Bluearchitecture. We then 

carried out an experiment in a local network to evaluate 

performance in terms of processing speed and time. The 

experiment showed that latency decreased with the 

number of compute nodes. This study not only showed 

that the Red Green Blue architecture is viable as a 

massive data processing architecture, but also improved 

processing times as a function of network nodes. The 

robustness, scalability and lack of a single point of 

failure of the Red Green Bluearchitecture mean that 

MapReduce can be easily deployed in a wider variety of 

applications. 
 

Keywords:- P2P protocol, Map Reduce, RGB architecture, 

Big data Storage. 
 

I. INTRODUCTION 
 

Over the past twenty years, the amount of data 

generated has only increased. Currently, we produce a very 

large mass of data every year, estimated at nearly 3 trillion 

(3,1018) bytes of data. It is estimated that in 2016, 90% of 

the world's data was created in the previous two years. 

Database Management System (DBMS) have been 

criticized for their monolithic architecture, which makes 

them "heavy" and costly to operate [1].It is sometimes 

argued that they are inefficient for many data management 

tasks, despite their success in enterprise data processing. 

This has been dubbed the "big data problem". And today 

the term "big data" is used to designate this phenomenon of 
high-volume, diverse data with a velocity that is becoming 

increasingly difficult to control. Whereas early DBMS 

focused on modeling the operational characteristics of 

companies, "big data" systems are now geared towards 

modeling user behavior by analyzing vast quantities of 

interaction logs. In view of the sheer volume of data 

involved, several solutions have been put forward to 

restructure DBMS [2], but the basic architecture has not 

changed dramatically. With the increase in data quantity 

and the availability of high-performance, relatively 

inexpensivehardware, database systems have been extended 

and parallelized to run on multiple hardware platforms [3]. 

Recently, a new distributed data processing framework 

called MapReduce has been proposed [4], whose 

fundamental idea is to simplify parallel processing using a 

distributed computing platform that offers only two 

interfaces: map and reduce. 
 

Hadoop[5] is the most popular framework 

implementing the map reduce computation model. Several 

other technologies developed around Hadoop make it 
efficient and easy to deploy in data centers [6]. Typically, 

Hadoop is deployed on its HDFS (Hadoop Distributed File 

System) file system for greater efficiency. But Hadoop’s 

architecture is centralized. Its main node, called the name 

node, is responsible for all the other nodes, called the data 

node. This central node constitutes a point of failure, as its 

unavailability brings the platform to a complete halt until it 

is restored [7]. 
 

In this research work, we propose the possibility of 

deploying MapReduce on a Big Data architecture. This is 

the Red Green Bleu(RGB) architecture, which uses the 

CAN distributed hash table and its network management 

methods [8]. Our contribution in this paper was first to 

define the components of MapReduce and how it integrates 

with the RGB architecture that constitutes the storage layer 

in our context, and then to build a prototype implementing 
MapReduce execution. We then deployed our system in a 

local environment and carried out an experiment by 

running a word counting process on a file stored on RGB 

architecture before concluding with an evaluation of the 

results, which show that our architecture is viable in a big 

data processing context. 
 

II. MAP REDUCE PROGRAMMING MODEL 
 

In 2004, Google published an article proposing a 

solution for processing large-scale analytical operations on 

a large cluster of servers: the MapReduce computing 

model. In this approach, users implement their own 

mapping and reduction functions, while the system is 

responsible for scheduling and synchronizing mapping and 

reduction tasks [4]. MapReduce is increasingly used in 

applications such as data mining, data analysis and 

scientific computing. Its widespread adoption and success 

are based on its distinctive features [1], which can be 

summarized as follows: 

 Flexibility: it lets you write your own calculation and 
sorting methods on a variable amount of data [1]. 

 Scalability: the MapReduce processing system can 

dynamically increase or decrease its performance as 

computing needs change [1]. 

 Efficiency: MapReduce doesn't need to load data into a 

database, which usually entails high costs. It is therefore 
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highly efficient for applications that require data to be 

processed once (or only a few times)[1]. 

 Fault tolerance: In MapReduce, each job is divided 

into several small tasks which are assigned to different 

machines[1]. 
 

In the Map Reduce computation model, a computation 
takes a set of key/value pairs as input, and produces a set of 

key/value pairs as output [4]. MapReduce is based on two 

main methods: Map and Reduce. The Map method, written 

by the user, takes a data pair as input and produces a set of 

intermediate key/value pairs. MapReduce groups all 

intermediate values associated with the same key and 

passes them onto the Reduce function. The Reduce 

function, also written by the user, accepts an intermediate 

key and a set of values for this key. It merges these values 

to form a possibly smaller set of values. As a general rule, 
each invocation of the Reduce function produces only zero 

or one output value. Intermediate values are supplied to the 

user's reduction function via an iterator [9]. This allows us 

to manage lists of values that are too large and could 

saturate memory. Many different implementations of 

MapReduce exist, depending on the environment. 

Forexample, one can be implemented on a small shared-

memory machine and another for a set of networked 

machines [4]. The following algorithms represent examples 

of pseudo code for Map and Reduce functions, and Fig.1 

shows an illustration of MapReduce execution.  

 

 

 
 

In a MapReduce computing system, tasks are sent to 

worker nodes via the scheduling module. Each worker node 

is responsible for a mapping or reduction process [1]. The 

basic implementation of the MapReduce engine must 

include the following modules (marked by gray boxes in 

Figure 1). 

 

 
Fig. 1: Map Reduce Architecture [1] 
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 The “Scheduler” module is responsible for assigning 

Map and Reduce tasks to compute nodes (also known as 
worker nodes), based on data location, network status 

and other node statistics. It also controls fault tolerance 

by rescheduling a failed process to other worker nodes 

(if possible). “Scheduler” design significantly affects 

MapReduce system performance. 

 The “Map” module analyzes a block of data and 

invokes the user-defined Map function to process the 

input data. After generating intermediate results (a set 

of key/value pairs), it groups the results based on 

partition keys, and notifies the master node of the 

position of the results. 

 The "Reduce" module extracts data from the maps after 

receiving notification from the master node once all 

intermediate results have been obtained. The "Reduce" 

module merges the data by key and all values with the 

same key are grouped together. Finally, the user-defined 

function is applied to each key/value pair and the results 

are transmitted to the master node. 
 

III. RED GREEN BLUE ARCHITECTURE 
 

Today, the ever-increasing volumes of data from a 

variety of sources have given rise to a new range of 

technologies and architecture models. These so-called Big 

Data architectures are data pipelines capable of collecting, 

storing and processing data. Most often, data is stored and 

processed in semi-structured and unstructured formats. 

However, well-known architectures such as Lamda 

architecture, Zeta architecture and Iot architecture have a 
centralized data lake, while architectures such as 

microservice architecture and kappa have several databases 

forming their data lake. In our previous work, we proposed 

an architecture model that takes advantage of the 

aforementioned architecture models and overcomes the 

limitations of centralized data lake models. This 

architecture, called RGB architecture, is a model that uses 

the decentralized peer-to-peer network (CAN) protocol 

based on distributed hash tables[8].In addition, we carried 

out a comparative study of the peer-to-peer network 

protocols Chord, CAN, Pastry and Kademlia, which 

showed that the CAN[10] protocol had a slightly higher 
routing time than the others, but ensured more efficient 

message transmission [11]. Storage operations with the 

CAN protocol therefore have a good success rate [11]. 
 

The RGB architecture is a triple-node architecture 

determined by the image properties Red Green Blue 

(RVB)[13] and based on the properties of the CAN 

protocol for information routing and node management. 

The figure (Fig.3) shows the conceptual model of the 

architecture. In the RGB architecture, we have a primary 

bootstrap node and three secondary nodes (R, G, B), called 

bootstrap secondary nodes, which are connected to other 

nodes for data storage.  In the context of the map reduce 

computational model implementation, the data nodes play 

the role of worker nodes(see image Fig.10). 
 

 
Fig. 2: Red Green Blue Architecture [8] 

 

IV. THE OPERATING PRINCIPLE OF RGB 

ARCHITECTURE 
 

A. The storage of Big Data objects 
Object storage is an unstructured data storage technique. 

It therefore enables massive data to be stored with a unique 

identifier enabling the object to be located [3]. In the RGB 

architecture, an SHA-3 key is used to generate a unique 

identifier for each object. This identifier is called the Global 

Unique IDentifier (GUID). This 512-bit key is associated 

with the object to be stored, and the key/value pair is written 

to the CAN protocol hash table[12].. The key is then divided 

into eight 64-bit subkeys. Each 64-bit sub-key is also 

associated with the object to be stored. Each key is then 

broken down into two parts of 24 bits and 40 bits. The 24 

bits are used to determine the data peer cluster that will 

contain the data to be stored.  The calculation process is 

detailed in [8].The algorithm 1 is a pseudo code of the 

calculation process.  
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Fig. 3:  Architecture of secondary bootstrap node [8] 

 

Figure (Fig.5) is a screenshot showing the calculation of keys during a storage request in the RGB architecture. This is the 
result of implementing algorithm 1. 

 

 

 
Fig. 4: Calculating storage keys 

 

B. Dynamics of nodes  

One of the design objectives of the RBG architecture is 

to have an almost totally autonomous, self-managed system 

with high fault tolerance. In its operation, the secondary 

bootstrap nodes are synchronized with the primary bootstrap 

node [8]. The first secondary node to detect the 

unavailability of the primary node will replace it while 

waiting for it to recover. As a result, the system will 

continue to operate and storage will be carried out on the 

other two remaining nodes. Adding and removing data pairs 

is managed by the CAN protocol [8]. 
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V. DATA SECURITY LAYER IN RGB 

ARCHITECTURE 
 

RGB architecture introduces data-centric security. 

Search operations require verification of all subkeys 

associated with the object being searched. During storage, a 

coordinate point (x,y) is chosen in the two-dimensional 
virtual space of CAN. Applying the SHA-3 encryption 

function to this point provides the object's GUID, which in 

turn is split into 8 subkeys. The sub-key space is called the 
virtual image space. Figure Fig.6 illustrates the association 

between the CAN image space and the virtual image space. 

 Let Pu, the CAN unique point, SHA-3 the encryption 

function, the object identifier is verified by the following 

formula 

 

𝑆𝐻𝐴3(𝑃𝑢) = ∑ (P′
𝑖
) 

8

𝑖=1

(1) 

 

 

 
Fig. 5: The image shows the association of an SHA3 key with a virtual point space 

 

To reinforce the security of data in transit, FPE[17] 

technology is used in addition to the verification of keys 

identifying objects. This technology preserves data integrity 

from capture to storage in the data lake.  The application of 

these techniques results in a data lake with reliable data[17]. 

 

VI. RESULT ON LOOKUP OPERATIONS 
 

 
Fig. 6: Average Time for LOOKUP Operations 

 

The performance of search and storage operations has 

been evaluated[8]. The figure shows the evolution of latency 

times for search requests. For 1000 store requests (STORE 

request), we generate around 1000*8 keys in the hash table.  
For search requests (LOOKUP request), the operation was 

carried out several times and the average search times were 

calculated using the following formula: the calculation of 

the average time taken for the searches is done with the 

following formula: 
 

𝑻𝑴𝑳 =
∑ (𝐓𝒊)𝒏

𝒊=𝟏

𝑵𝑳

; ;  𝑛 = 1000 (𝟐) 

 

NL is the total number of LOOPUK requests and Tiis 

the time for lookup.At the start of the experiment, latency 

was 2.9 ms (milliseconds).  A peak of 5.7 ms was also 

observed.  But as we repeated the experiment, the latency 

time dropped slightly to 4.9 ms. 
 

VII. MAP REDUCE AND RGB ARCHITECTURE 
 

Today. several technologies are designed for massive 

data processing and adapt to cloud architectures. Their 

architecture relies on several nodes with specific roles to 

coordinate task execution. These nodes perform scheduling 

and distribution tasks and contribute to network fault 

tolerance. However, the failure of individual nodes has a 

major impact on the overall system.Our MapReduce 

implementation on the RGB Architecture provides a 
dynamic framework for MapReduce, and is ableto be 

CAN virtual space Virtuel point space 

(p) 
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running on any arbitrary distributed configuration. Our 

framework exploits the characteristics of CAN[12] 
distributed hash tables coupled with our color-

codedcomputing approach to manage distributed file 

storage, fault tolerance and data retrieval[8]. 
 

Our approach to implementing MapReduce has been to 

develop modules as extensions to the CAN protocol, taking 
advantage of existing functionality. By treating each task as 

a data object, we can distribute them in the same way as 

files, relying on the protocol to route them and ensure their 

robustness. 
 

 
Fig. 7: Basic Architecture of node on RGB Architecture 

 

VIII. MAP REDUCE AND DATAFLOW 
 

In the implementation of MapReduce in the RGB 

architecture, each data peer ("worker") will perform the 

tasks and send its result to the "secondary bootstrap node". 

Note that these peers of data are also nodes in a P2P 

network using the CAN protocol. They therefore retain 

their master slave status.To launch the MapReduce process, 

the user contacts the primary bootstrap node. The primary 

bootstrap node first identifies the file using the RGB system 
search algorithms on one of the clusters (R or G or B) 

before delegating full management of all MapReduce steps 

to it. 
 

The "secondary bootstrap node" that receives a 
computation request will first select a set of nodes to 

perform the tasks, also known as "jobs". This stage 

corresponds to an initialization process, in which the 

secondary bootstrap node confirms, on the basis of its 

routing table, the availability of the nodes it has chosen to 

perform the calculations. 
 

The secondary bootstrap node's job is to divide the 

data file into smaller units called "data atoms" and then send 

each data unit to its elected peers. In this way, each compute 

node performs the job on the data unit assigned to it. The 

results are stored as a new data atom, which is then sent to 

the secondary bootstrap node. This operation takes 

(d/4)(n1/d) hops according to the routing algorithms of the 

CAN(12) protocol, with d the dimension of the space and n 

the number of nodes. The data atom can be a block of text, 
the result of a summation or a subset of the elements to be 

processed. MapReduce functions are applied to these data 

atoms. 
 

For a particular intermediate value, or a subset of 

elements to be sorted, the details of the "job" distribution are 

defined by the user. 
 

For a user who wants to run a MapReduce job on data 

stored in the RGB architecture, the primary bootstrap node 

locates the data file using its key, as described in [8], and 

sends the command to the secondary bootstrap node, which 

becomes fully responsible for executing the MapReduce job. 

The secondary node have the role of JobTracker. It 
coordinates the execution of the jobs and returns the result 

to the primary node. 
 

In our design, elected peers must finish executing a 

task before they want to leave the network. To avoid losing 
an atom of data, a timeout is assigned to each task. If a task 

is not completed when the timeout expires, the 

neighboringnode takes over the task and it is deleted from 

the node that was in charge of execution. In effect, each 

node also maintains the state of its neighbor. 
 

When the delay expires, the peer who voluntarily 

leaves the network overloads his neighbor with the data 

atom for which he was responsible. The neighbor 

determination mechanism is based on the CAN protocol 

[12].  One of the advantages of our system is its ease of 

development. The user doesn't get involvedthe uniform 

distribution of tasks, nor about the failure of a network node. 

If a node fails during an operation, its task is reassigned to 

another. This makes the system extremely robust during 

runtime. For this architecture, all a developer has to do is 
write the Map and Reduce functions, which define how to 

divide the work to be done into portions and the task to be 

performed on each portion to obtain results. 
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IX. EXPERIMENTATION AND DEPLOYMENTS 
 

A. Experimentation 

The aim of this paper is to show that our architecture is 

viable for processing massive data using the MapReduce 

model. To this end, we will carry out an experiment in a 

local network and seek to evaluate the following aspects: 

 speed of execution of Jobs submitted by compute nodes; 

 The evolution of calculation times as a function of 

calculation nodes; 

 Execution speed as a function of the number of jobs 

submitted. 
 

The acceleration or speed of computation can be 

demonstrated by showing that a "Job" distributed to several 

nodes runs faster than when assigned to a single node. In 

other words, show that ⱻn Tn < T1, where Tn is the time, it 

takes n nodes to complete a "Job". To establish scalability, 

we need to show that the cost (in terms of time) of 

distributing work grows logarithmically. Also, we need to 

show that the larger the "Jobs" to be completed, the higher 

the number of nodes if we want to achieve a low execution 

time. To estimate the execution time, we use the formula 
[15]:  

 

𝑇𝑛 =
𝑇1

𝑛
+ 𝑘 ∗ log2(𝑛) (3) 

 

T1/n is the time the job would take if it was distributed 

in an ideal universe and k*log2(n) is the network time, k 

being an unknown constant depending on network latency.  

For the purposes of this article, our experiment is based on 
counting the number of words in a file. Fig.9 shows the 

steps in the calculation process. 
 

B. Deployments 

To evaluate the performance of our MapReduce 
implementation, we chose to deploy it on a local network. 

This implementation was entirely realized in Java using the 

java.net, File, Stream API and regular expressions.  Our 

implementation implements all the routing and 

maintenance procedures defined by the CAN(12) protocol, 

which is used to implement the RGB(8) architecture. The 

machines used are configured on the Windows file system. 

Our implementation is therefore able to easily manipulate 

(create, read and write) files. To start the experiment, 

MapReduce commands and job descriptions are sent to the 

Primary Bootstrap Node, which performs a file search 
operation before transferring the commands to one of the 

secondary nodes. We tested our computing system by 

running a word frequency count. The tasks were tested in 

several configurations; we varied the initial network size 

and the size of the Jobs. Each Map job is defined by the 

number of nodes that must execute it, and produces a result 

that constitutes an input for the "Shuffle" process. Reducing 

these results involves adding up the respective fields. Our 

experiment counts the occurrence of each word in a file 

stored on the RGB[8] architecture. 

 

 
Fig. 8: Map Reduce processes for WordCount[16] 

 

 
Fig. 9: Example of a file block created after a Splitting operation 
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Fig. 10: Example of a file created after running Map 

 

 
Fig. 11: Example of files created after Shuffle 

 

 
Fig. 12: Example of files created after running Reduce 

 

 
Fig. 13: Example of a file containing the calculation result 

 
 

http://www.ijisrt.com/


Volume 8, Issue 12, December 2023             International Journal of Innovative Science and Research Technology 

                                                                                 ISSN No:-2456-2165 

 

IJISRT23DEC313                                                                www.ijisrt.com                                                                        216 

X. RESULTS 
 

In a test context, we evaluated the latency of 

MapReduce requests. We chose a file with a fixed size of 

120 MB. This file contains a set of words. The Map and 

Reduce tasks consist in counting certain keywords that we 

specified as arguments at the start of the program launch. 
First, we carried out an initial test to ensure that all the 

steps would run successfully. To do this, we configured the 

RGB architecture and the nodes on a single machine with 
32 GB ram capacity and an SSD disk. The addresses of the 

computing peers and secondary nodes are managed using 

text files. We ran the same Job several times, varying the 

number of nodes from 1 to 10. 

 

 
Fig. 14: Job execution time as a function of nodes 

 

Fig.15 shows the evolution of calculation times for the 

same. Job. We obtained an average value of 1214 

milliseconds, approximately (1.3 seconds) for one node, 

and an average value of 361 milliseconds for 10 nodes. 

Thegreater the number of nodes, the longer the execution 

time. This implies that the processes of dividing files into 

blocks, distributing these blocks, counting and sorting are 

successfully completed.   
 

 
Fig. 15: Processing time as a function of compute nodes 

 

Fig.16 shows the result of experimenting with 

MapReduce on the RGB architecture in the deployment 

environment described above. We decided to run 100 jobs 

and then 500 jobs simultaneously, varying the number of 

nodes (Workers) from 1 node to 20 nodes.  For the 100 

jobs, we have 429.4 seconds for 1 node versus 22.10 

seconds for 20 nodes. For 500 jobs, we have 4322 seconds 

for 1 node versus 1400 seconds for 20 nodes. For this 

experiment, we observe a progressive decrease in 

processing time, as shown in Fig.16. We can therefore 
deduce an acceleration factor by calculating (T1/Tn). This 

gives 19.41 for 100 jobs and 3.08 for 500 jobs respectively. 

Note that the higher the number of jobs, the longer the 

computation time, but the shorter it is if several nodes are 

assigned to the jobs. 
 

The graphs in Fig.17 show the evolution of 

computation times for jobs between 1 and 20 compute 

nodes. This estimate is based on a proportional calculation 

and the data collected in the previous analyses. The values 

(in seconds) given in the table indicate calculation times. 
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Table 1: Estimated time spent depending on nodes 

Workers 100 Jobs 200 Jobs 300 Jobs 400 jobs 500 jobs 

Time(s) 

1 429.4 858 1287 1716 4321.9 

5 214.1 729.8 1158.8 1587.8 2002.7 

10 107.5 601.5 1030.5 1459.5 1815.0 

20 22.1 472.3 901.73 1330.3 1399.3 
 

Table 2 : Estimated time spent depending on nodes 

Workers 600 jobs 700 jobs 800 jobs 900 jobs 1000 jobs 

Time(s) 

1 518.2 6049.17 6913.14 7777.13 8641.11 

5 4217.2 5081.17 5945.14 6810.13 7971.11 

10 3249.2 4113.17 4977.14 5843.13 7301.11 

      

20 2281.2 3145.17 4009.14 4876.13 6631.11 

 

Graphs on Fig.17 have the same shape, showing an improvement in calculation time despite the large numberof jobs 

submitted. 
 

 
Fig. 16: Estimating execution time as a function of nodes 

 

Furthermore, the graphs in Fig.16 and Fig.15follow a logarithmic function. Taking into account the speed of execution, we 

make a projection based on the equation 3. This produces the graphs shown in Fig.17. 
 

 
Fig. 17: Job execution speed by node 

 

Fig.18 shows a theoretical estimate of execution speed 
as a function of the number of nodes. Based on 500 jobs 

submitted, for 100 nodes we have an execution speed 66.42 

times the execution speed of a node loaded with the same 

number of jobs. At 10,000 nodes, the speed can reach 97.92 
times the speed of a loaded node. 
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XI. CONCLUSION 
 

In this article, we present MapReduce on the RGB 

architecture, a massive data processing architecture based 

on the peer-to-peer networking protocol. This architecture 

has self-managed, dynamic compute nodes thanks to the 

distributed hash table property used in the CAN protocol. 
We therefore experimented with MapReduce operation in a 

decentralized environment and showed that MapReduce is 

scalable, load-balanced and fault-tolerant thanks to the 

dynamism of the nodes in the RGB architecture from a 

network point of view.We implemented a fully functional 

version of MapReduce on the RGB architecture and carried 

out detailed experiments to test its performance. These 

experiments confirmed that the architecture is robust and 

efficient. P2P network protocols are traditionally known for 

file sharing. We have demonstrated that it can also be used 

to build a data pipeline and perform distributed 
computations on large volumes of data. 

 

In the near future, we intend to further optimize the 

performance of MapReduce and the RGB architecture by 

studying an efficient load-balancing system. 
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