
Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1931 www.ijisrt.com 2019

A Comprehensive Analysis of Ensemble-based Fault

Prediction Models Using Product, Process, and

Object-Oriented Metrics in Software Engineering

Atul Pandey1 , Srujana Maddula2 , Gaddam Prathik Kumar3 , Sarthak Kumar Shailendra4 , Karan Mudaliar5

1 Btech Graduate, (Electrical & Electronics Engineering), Vellore Institute of Technology, Vellore, Tamil Nadu, India
2 Data Scientist, Target, Benguluru, Karnataka, India

3 Btech Graduate, (Computer Science & Engineering), Sharda University, Uttar Pradesh, India
4 Btech Graduate, Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
5 Btech Graduate, (Computer Science & Engineering), Vellore Institute of Technology, Vellore, Tamil Nadu, India

Abstract:- In the expansive domain of software

engineering, the persistent challenge of fault prediction has

garnered scholarly interest in machine learning

methodologies, aiming to refine decision-making and

enhance software quality. This study pioneers advanced

fault prediction models, intertwining product and process

metrics through machine learning classifiers and ensemble

design. The methodological framework involves metric

identification, experimentation with machine learning

classifiers, and evaluation, considering cost dynamics.

Empirically, 42 diverse projects from PROMISE, BUG,

and JIRA repositories are examined, revealing advanced

models with ensemble methods manifesting an accuracy of

(91.7%), showcasing heightened predictive capabilities and

nuanced cost sensitivity. Non-parametric tests affirm

statistical significance, portraying innovation beyond

conventional paradigms. Conclusively, these advanced

models navigate inter-project fault prediction with finesse,

signifying a convergence of novelty and performance.

Simultaneously, anticipating fault proneness in software

components is a pivotal focus in software testing. Software

coupling and complexity metrics are critical for evaluating

software quality. Object-oriented metrics, including

inheritance, polymorphism, and encapsulation, influence

software quality and offer avenues for estimating fault

proneness. This study contributes a comprehensive

taxonomy to the discourse, offering a holistic perspective

on the multifaceted landscape of object-oriented metrics in

fault prediction within the broader context of advancing

software quality.

Keywords:- Software Fault Prediction; Object-Oriented

Testing; Object-Oriented Coupling; Machine Learning,

Ensemble Design, Product, and Process Metrics.

I. INTRODUCTION

Software fault prediction has been a focal point in the

software engineering domain for over three decades, garnering

escalating attention from researchers [1]. The term "fault"

denotes an erroneous step, process, or data definition in a

computer program, commonly referred to as a "BUG."

Scholars have approached the software fault prediction (SFP)

challenge from two perspectives. Firstly, novel

methodologies or combinations of existing methods have

been introduced by researchers to enhance fault prediction

performance. Secondly, the exploration of new parameters to

identify the most influential metrics for fault prediction has

been undertaken. Despite numerous approaches proposed in

the literature, the classification of software modules as faulty

or non-faulty remains a largely unresolved issue [2]. To

address this challenge, scholars have increasingly turned to
sophisticated techniques, including machine learning, deep

learning, and unsupervised methods, indicating a shift

towards novel and more compelling directions in fault

prediction [3]. Machine learning algorithms have witnessed a

surge in popularity over the last decade and continue to be

one of the preferred methods for defect prediction [4]. As

noted by Lessmann et al. [5], "There is a need to develop

more reliable research procedures before having confidence

in the conclusion of comparative studies of software

prediction models."

In this study, the aim is to evaluate the performance of

various classifier models without bias towards any specific

classifier. Additionally, the reported efficacy of ensemble

techniques by previous researchers [6] for enhancing fault

prediction accuracy is recognized. Furthermore, the

investigation into the diversity of classifiers within ensemble

models has been identified as crucial for improving the

effectiveness of ensemble designs [7]. This motivation

propels the exploration into the design of ensembles to

enhance the predictive capability of classifiers. In the context

of the second viewpoint, a substantial body of research has
been dedicated to investigating the utilization of software

metrics derived from code to discern the fault proneness of

software components. While fault estimation models

predominantly rely on product metrics in the existing

literature [8], those constructed through a synergy of product

and process metrics remain relatively scarce [9]. Although

some scholars have underscored the importance of

integrating both product and process metrics in their studies,

the broader incorporation of such models has been limited.

Madeyski and Jureczko [10], in their research, ascertained

that process metrics contribute valuable information to fault

proneness determination. The utilization of process metrics in

http://www.ijisrt.com/

Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1931 www.ijisrt.com 2020

fault ascertainment demonstrates the potential for superior

outcomes when compared to reliance solely on product

metrics. The imperative for further investigations to

substantiate and refine these advanced models was underscored

by their findings.

Radjenovic et al. [11], in a Systematic Literature Review

(SLR), emphasized the necessity of identifying methodologies

to measure and evaluate process-related information for fault

proneness. Similarly, Wan et al. [12], in their study on
perceptions, expectations, and challenges in defect prediction,

concluded that software practitioners exhibit a preference for

rational, interpretable, and actionable metrics in defect

prediction. Additionally, the literature indicates not only the

comparative superiority of process metrics over product

metrics but also the proposition of alternative features based on

developer-related factors, code smells, etc. [13]. This

discernment necessitates further studies to meticulously

examine the intricate association between metrics and fault

proneness, thereby furnishing meaningful insights for informed

decision-making. Consequently, the present study embarks on

the development of advanced software fault prediction models
that leverage a combination of metrics. Following the

identification of a judicious set of product metrics, the research

crafts advanced fault prediction models employing a

systematic incorporation of process metrics, one at a time.

Motivated by the imperative to advance fault prediction

models, this study establishes a comprehensive research

framework characterized by meticulous pre-processing and

feature extraction activities on datasets to identify pertinent

metrics. Subsequently, diverse machine learning classifiers

such as Naive Bayes (NB), Decision Tree (DT), Multilayer

Perceptron (MLP), Random Tree (RT), and Support Vector
Machine (SVM) are employed for training and testing

experiments to evaluate the advanced models. The

assessment involves a set of performance metrics

encompassing accuracy, root mean square error (RMSE), F-

score, and the area under the curve AUC(ROC).

Object-Oriented (OO) Metrics have been the subject of

numerous proposals by researchers, resulting in metric suites

designed for diverse perspectives within the context of

Object-Oriented software. These suites find application in

various contexts, serving as quality indicators, complexity

measures, fault proneness predictors, and reliability
measures. Table 1 below provides a comprehensive overview

of the most frequently employed OO metrics documented in

the literature.

Table 1. Object-oriented metrics

S.no. Chidamber & Kemerer metrics (CK) [25] Li and Henry Metrics [26] MOOD Metrics [27]

1. Weighted Methods Per Class (WMC) N/A Attribute Inheritance Factor (AIF)

2. Depth of Inheritance tree (DIT) Number of Methods NOM Method Hiding Factor (MHF)

3. Number of Children (NOC) Message Passing Coupling (MPC) Method Inheritance Factor (MIF)

4. Coupling Between Objects (CBO) Data Abstracting Coupling (DAC) Attribute Hiding Factor (AHF)

Multiple classifiers are harmoniously combined to

enhance overall performance, with a specific focus on

improving fault-detection capabilities. Additionally, an

examination of the cost sensitivity of the proposed ensemble-

based classifier is undertaken. The outcomes of this analysis

serve to validate the predictive efficacy of the proposed

classifiers for the development of advanced fault prediction

models.

The noteworthy contributions of this work can be

delineated as follows:

 Establishment of a learning scheme comprising both base

and ensemble learning classifiers.

 Construction and scrutiny of the predictive capability of

advanced fault prediction models.

 Evaluation of the cost sensitivity of the proposed ensemble-

based classifier through a comprehensive cost evaluation

framework using Object oriented metrics and process

metric.

II. RELATED WORK

Noteworthy contributions to the field of fault prediction

have been documented through comprehensive surveys

conducted by Catal and Diri [14], Li Zhiqiang et al. [1],

Matloob et al. [7], and Radjenovic et al. [11]. These surveys

encompass various aspects, including prediction models,

modeling techniques, and the metrics employed. Radjenovic et

al. [11] delineate that within the literature on fault prediction

studies, process metrics constitute 24%, source code

contributes 27%, and object-oriented metrics constitute 49%

of the total. Prospective studies are urged to incorporate

methodologies for measuring and evaluating process-related

information for fault proneness in conjunction with product

metrics.

In an empirical study conducted by Madeyski and

Jureczko [9], utilizing both industrial and open-source

software datasets, the significance of process metrics in

enhancing results was notably observed. Emphasizing the

need for replication using machine learning approaches, they

underscore the uncertainty of features performing optimally

in one method being equally effective in alternative

approaches. Therefore, experimentation is warranted to

explore the utility of both product and process-related

metrics.

Khoshgoftaar et al. [15] extend the research landscape

by constructing software quality models employing majority

voting with multiple training datasets. This work presents an

opportunity for further extension by incorporating data from

diverse software project repositories. An analysis of the

predictive capability of ensembles, in comparison to base

classifiers, can offer insights into the efficacy of advanced

fault prediction models.

http://www.ijisrt.com/

Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1931 www.ijisrt.com 2021

Chen et al. [16] investigated to determine whether distinct

cross-project defect prediction methods yield consistent

identifications of defective modules. The outcomes of this

study suggest the potential for extension through the

application of learning approaches founded on ensemble

design, thereby further enhancing the performance of cross-

project defect prediction. A related exploration by Zhang et al.

[17] delved into the utilization of various algorithms

integrating machine learning (ML) predictors for cross-project

defect prediction. However, to comprehensively examine the
predictive capabilities of advanced algorithms, additional

experimentation is deemed necessary.

An analysis of the aforementioned studies underscores the

pivotal role of pre-processing techniques in significantly

influencing the performance of learning algorithms.

However, a notable gap in the literature pertains to the

scarcity of investigations on larger datasets, essential for the

development of generalized models. Moreover, the prevalent

issue of class imbalance demands attention to augment the

efficacy of fault prediction [7]. The exploration of parameter

combinations remains a relatively underexplored aspect in

existing literature studies. Consequently, there is an

opportunity to replicate this work by incorporating more

datasets, with a dedicated focus on product and process
software metrics, and experimenting with diverse scenarios

or combinations of models, encompassing both simple and

advanced models, to attain heightened reliability and

robustness.

Table 2: Existing Review

Authors Metrics employed Outcomes and proposed benchmark solutions

Chen et al. [16] Process and Product The researchers in this study explored the alignment of distinct cross-project defect

prediction methods in identifying common defective modules. The outcomes

suggest the potential for extension through the implementation of learning

approaches founded on ensemble design, to enhance the overall performance of

cross-project defect prediction methodologies.

Khoshgoftaar et

al. [15]

Product and Process The authors constructed software quality models employing a majority voting

approach with multiple training datasets. This work could be extended by

incorporating data from diverse software project repositories. Such an extension

would facilitate an in-depth analysis of the predictive capabilities of ensembles in
comparison to base classifiers, particularly in the context of advanced models.

Erturk and Sezer

[18]

CK Product metrics In their study, the authors concluded that the Adaptive Neuro-Fuzzy Inference

System (ANFIS) outperforms the Neural Network (NN) and Support Vector

Machine (SVM) approaches in predicting faults. Future research endeavors may

consider incorporating process metrics into the analysis or developing advanced

defect prediction models to further enhance the predictive capabilities.

Li et al. [19] Code metrics The authors provided a summary of defect prediction studies with a focus on

emerging topics, including machine learning-based algorithms, data manipulation

techniques, and effort-aware prediction strategies. They emphasized the

importance of addressing the class imbalance problem and the need for developing

models in the field of defect prediction.

In software engineering, a well-established principle

emphasizes that high-quality software should exhibit low
coupling and high cohesiveness. Noteworthy contributions to

the study of cohesion metrics for fault prediction include the

work of Marcus, Poshyvanyk, and Ferenc [28], who introduced

the Conceptual Cohesion of Classes (C3) as a novel measure

based on the textual coherence of methods. Utilizing an

information retrieval approach supported by Latent Semantic

Indexing, the study performed experiments on three open-

source subject programs. The findings advocate the integration

of structural metrics and cohesion metrics for enhanced

prediction accuracy.

Similarly, Zhou, Xu, and Leung [29] conducted empirical

evaluations on the effectiveness of complexity metrics in

predicting software faults, employing CK metrics and McCabe

metrics. Using data from three versions of Eclipse IDE, the

authors compared the performance of LR, Naive Bayes,

AdTree, K Star, and Neural networks. Results indicated that

several metrics exhibit a moderate ability to differentiate fault-

prone and fault-non-prone classes, with lines of code and

weighted method McCabe complexity identified as robust

indicators of fault proneness. The study underscores the

significance of not only metric selection but also the size of
datasets and feature extraction techniques in fault prediction

endeavors.

Recent trends in software fault prediction underscore

the increasing popularity of machine learning algorithms.

Catal and Diri [30] empirically examined the impact of

metric sets, dataset size, and feature selection techniques on

fault prediction models, employing random forest (RF) and

AIRS algorithms. The study concluded that RF algorithms

performed better for large datasets, while Naive Bayes

algorithms demonstrated efficacy for smaller datasets.
Additionally, Alan [31] employed an RF machine-learning

algorithm for outlier detection, selecting six metrics from the

CK suite. The study highlighted the promising nature of

threshold-based outlier detection, advocating its application

before the development of fault prediction models.

http://www.ijisrt.com/

Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1931 www.ijisrt.com 2022

III. RESEARCH METHODOLOGY

In Phase I, the identification of a metrics suite is

undertaken from metric datasets available in the PROMISE,

BUG, and JIRA dataset repositories. Various pre-processing

methods, including feature ranking methods, feature subset

selection methods, and normalization, are employed to derive a

reduced subset of features from the original dataset. This

reduction is guided by a specific evaluation criterion, aiming to

diminish feature space dimensionality, eliminate redundant and
irrelevant information, and enhance data quality to improve the

algorithm's performance. The experimental design incorporates

N-fold cross-validation for training, testing, and replicating the

experiment across diverse datasets. Phase II involves the

evaluation of a simplified dataset under distinct scenarios:

scenario-1 features a simple model based on product metrics;

scenario-2 through scenario-5 explores advanced models

incorporating additional process metrics (NR, NDC, NML,

NDPV). These models are assessed using various base

machine learning classifiers. Performance evaluation utilizes

accuracy as key performance indices. To enhance the base

machine learning classifier performance, classifier ensembles

are designed through Bagging, AdaBoostM1 (a prominent

boosting technique), and Voting algorithms. In Phase III, the

focus shifts to examining the cost sensitivity of the proposed
ensemble classifiers. This involves the development of a

comprehensive cost analysis framework, facilitating a

comparison between the best ensemble's cost and the best

base classifier's cost through the determination of normalized

fault removal cost.

Fig 1. A framework of the Proposed ensemble model with cost analysis

In alignment with the insights derived from a
comprehensive review of the existing literature and

identifying potential research gaps, the following research

questions have been formulated:

RQ1: How do the advanced defect prediction models,

posited within the study, demonstrate performance

variations across diverse machine learning classifiers?

RQ2: To what extent does the ensemble design contribute to

enhancing classification performance compared to the

individual machine-learning classifiers?

RQ3: Is there a discernible and statistically significant
difference in performance among the base classifiers and

ensemble classifiers?

RQ4: Within the context of a given software system, do the

proposed ensembles exhibit a sensitivity to cost

considerations?

The formulation of RQ1 and RQ2 is grounded in the

intent to assess the efficacy of advanced models embodying

distinct scenarios, characterized by a fusion of software

product and process metrics. These models undergo training

utilizing both base learning and ensemble-based classifiers,

with their performances subjected to evaluation through
metrics such as accuracy, RMSE, ROC(AUC), and F-score.

The application of statistical tests is motivated by the
aspiration to empirically substantiate the performance of

predictors, thereby addressing RQ3. To address RQ4 and

ascertain the cost-sensitivity of the proposed predictors, a

comprehensive cost-based evaluation framework has been

adopted.

For the experimental investigations, five distinct

scenarios were devised by the outlined research questions.

In Scenario 1, an assemblage of all product metrics was

curated post-data processing and normalization, forming

what is denoted as the "Simple model." The detailed
selection of metrics is provided in Table 3. Subsequently,

Scenario 2 introduced the "Advanced model-1,"

incorporating product metrics alongside a singular process

metric (Product + NR). Similarly, Scenarios 3, 4, and 5

engendered the "Advanced model-2" (Product + NDC),

"Advanced model-3" (Product + NML), and "Advanced

model-4" (Product + NDPV), respectively. These designed

models underwent testing across diverse project datasets

from repositories such as PROMISE, Bug, and Jira,

employing various classifiers, including DT, MLP, SVM,

RT, NB, and classifier ensembles.

http://www.ijisrt.com/

Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1931 www.ijisrt.com 2023

The performance assessment of the models—namely,

"Simple model," "Advanced model-1," "Advanced model-

2," "Advanced model-3," and "Advanced model-4"—

comprised the utilization of accuracy. The metrics adopted

in the base classifiers were obtained post-feature selection

and ranking. N-fold cross-validation, with N set to 10 in this

instance, facilitated the evaluation of base classifier

performance, employing both training and testing phases.

This methodology was consistently applied across various

dataset versions for distinct base classifiers.

To address RQ2, which seeks to assess and compare

the performance of diverse ensemble methods, relevant

algorithm libraries were installed using the pip Python

installer. Algorithms such as Bagging, AdaBoostM1, and

Voting were deployed. Heterogeneous classifier ensembles

adopted the majority voting method, while homogeneous

ones employed both bagging and boosting methods.

Boosting and bootstrap aggregating incorporated Decision

Stump and REPTree as weak learners. AdaBoosting,

involving repeated iterations with weight adjustments, and

bootstrap aggregating, employing sampling with

replacement, were integral components of this phase.

In light of RQ3, exploring potential statistically

significant differences between base classifier and ensemble

classifier performance, the authors employed Friedman's
tests and Wilcoxon signed-rank tests. RQ4 delves into the

cost sensitivity of the proposed ensembles, incorporating a

normalized fault removal cost approach. To further

scrutinize the cost sensitivity of the premier ensemble

classifier, VOT-E2, concerning fault misclassification, a

comparative analysis was conducted against the best-

performing base classifier, MLP.

IV. RESULT AND DISCUSSION

Table 3. Summary of research questions

Research question Discussion

Research Question 1 (RQ1): What is the performance of

the advanced defect prediction models proposed in the

study when subjected to various machine learning

classifiers?

Each model underwent testing across diverse project datasets

sourced from PROMISE, BUG, and JIRA repositories.

Employing distinct classifiers such as DT, MLP, SVM, RT, and

NB, the performance of the models was assessed.

Research Question 2 (RQ2): To what extent does

ensemble design enhance classification performance

compared to individual machine-learning classifiers?

In a comprehensive evaluation, ensemble methods demonstrated
an overall median F-score ranging between 76.50% and 87.34%,

and ROC (AUC) values between 77.09% and 84.05%. In

contrast, base classifiers achieved an average F-score ranging

between 73% (Simple model) and 83% (Advanced model-2) for

the PROMISE dataset, and ROC (AUC) values between 60%

(Advanced model-4) and 79% (Advanced model-2). This

observation underscores the efficacy of ensemble design in

leveraging the strengths of multiple predictors, contributing to

the advancement of fault prediction methodologies.

RQ3: Whether there exists any statistically significant

performance difference among the base classifiers and

ensemble classifiers?

For pairwise comparisons, the Wilcoxon signed-rank test was

employed. The outcomes from both Friedman's tests and

Wilcoxon signed-rank tests provide statistical evidence
supporting the existence of significant performance differences,

particularly highlighting the unique standing of the ensemble

method.

Fig 2. Box plots for Ensemble Results for average accuracy.

For the Promise dataset, the average accuracy for MLP
in the simple model is 91.7%, advanced model-1 is 80%,

advanced model-2 is 87%, advanced model-3 is 85%, and

advanced model-4 is 79%. Notably, the bar graph in Figure

2 illustrates that the average accuracy for MLP is higher in
advanced model-2 than in advanced model-3, advanced

model-1, and the simple model. Similarly, the average

accuracy for DT in the simple model is 74%, advanced

http://www.ijisrt.com/

Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1931 www.ijisrt.com 2024

model-1 is 81%, advanced model-2 is 87%, advanced

model-3 is 83%, and advanced model-4 is 77%. The

corresponding bar graph (Figure 2a) indicates that the

average accuracy for DT is higher in advanced model-2

compared to advanced model-3, advanced model-1, and the

simple model.

The integration of machine learning techniques into

software fault prediction has emerged as a recent and

dynamic area of research. Researchers employ diverse
machine learning methodologies across multiple dimensions

within this domain, encompassing feature selection,

classification, outlier detection, and model building. This

study provides a comparative analysis of recent literature,

shedding light on the various applications of machine

learning in software fault prediction.

Researchers exhibit significant diversity in their

approaches, encompassing variations like data, metrics

under consideration, employed machine learning algorithms,

and the tools utilized for experimentation. The following

table (Table 4) presents a comprehensive overview of recent
studies, offering a qualitative analysis of the machine

learning algorithms utilized for fault prediction. This

comparative analysis aims to provide insights into the

nuanced differences and trends prevalent in the application

of machine learning techniques in software fault prediction

studies.

Table 4. Comparative analysis

Existing

Research

Algorithm

employed

Metrics

evaluated

Programming

Language

[32] Logistic

Regression

C-K C++

[28] Logistic

Regression

and PCA

Conceptual

Cohesion of

Classes

C++

[33] Naive

Bayes
network,

Random

Forest

C-K Java

[30] Random

Forest, J48

McCabe

[36],

Halstead

[37]

C++

[34] Decision

tree and

Neural

network

C-K Java

The presented table indicates the widespread

popularity of logistic regression, random forest, and neural
networks within the domain of fault prediction studies.

Machine learning algorithms offer versatile applications for

conducting diverse statistical and predictive analyses of

Object-Oriented (OO) metrics. The WEKA platform serves

as a comprehensive tool for executing and analyzing these

algorithms. A succinct overview of the regression model and

other pertinent techniques is provided below.

Logistic regression, a statistical classification

technique rooted in maximum likelihood estimation, is

applicable in two modes: univariate regression and

multivariate regression. Univariate LR is employed for the

isolated analysis of a single metric on fault proneness. In

contrast, Multivariate LR proves useful when multiple

metrics need assessment for their impact on fault proneness.

LR is employed when there is one or more than one

independent variable. The objective of LR is to construct the

best-fitting model that elucidates the relationship between
dependent and independent variables. The result of LR is

expressed through a fitted logistic regression equation.

Learning can be categorized into supervised or

unsupervised forms. In supervised learning, a dependent

variable can be predicted from a given set of independent

variables. A map function is generated using these variables

to produce the desired outcome. Numerous research studies

have leveraged various machine learning algorithms to

predict the impact of Object-Oriented (OO) metrics on

software fault proneness. For instance, in a study [37], a

Decision tree was employed, and validation was conducted
using the receiver operating characteristic (ROC) curve. The

primary advantage of Decision trees lies in their ability to

implicitly identify the most influential features from the

dataset, and their performance is not influenced by the type

of relationship between attributes. Machine learning

algorithms like random forests are suitable for handling

multiclass data, while Bayes networks rely on rules of

probability for prediction. In certain studies [35-37], a set of

learning algorithms, including Bayes networks, random

forests, and NNge (nearest neighbor with generalization),

were applied for a comparative analysis of prediction
models. The Artificial Immune Recognition System (AIRS),

inspired by the vertebrate immune system, is a machine-

learning algorithm capable of working with both nominal

and continuous data. The study that applied AIRS found its

performance to be superior to J48. Principal Component

Analysis (PCA) serves as a feature selection technique,

emphasizing variation and producing strong patterns in the

dataset. Some studies have utilized PCA for fault prediction

and feature selection in the context of OO metrics.

Additionally, Neuro-fuzzy and Latent Semantic Indexing are

other competitive algorithms explored for prediction

purposes.

V. CONCLUSION

This study introduces advanced models for software

fault prediction, leveraging information related to both

product and process metrics. The investigation involved

forty-two open-source code projects extracted from Promise,

Jira, and Bug repositories. Results indicate that the MLP-

based base classifier exhibits superior performance, as

reflected in high average accuracy (91.7%). Ensemble

methods, incorporating bagging, boosting, and voting,
further enhance classification performance, with VOT-E2

(DT + MLP + SVM) producing the best results. Statistical

tests confirm significant performance differences between

base classifiers and ensemble classifiers, validating the

predictive capability of the proposed models. The study

http://www.ijisrt.com/

Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1931 www.ijisrt.com 2025

emphasizes the potential utility of the combination models

for developing advanced defect prediction models,

providing valuable insights for software engineers in new

projects. While the experiments utilized datasets from

Promise, Jira, and Bug repositories, extending the

investigation to more open-source and cross-project datasets

would enhance the generalization of results. This research

article also presents a comprehensive taxonomy of object-

oriented (OO) metrics usage for fault proneness prediction,

emphasizing their significance in determining software
quality. Various machine learning algorithms have been

applied in fault prediction, with opportunities for further

exploration in sub-domains such as Support Vector

Machine, Dimensionality Reduction, Gradient Boosting, and

Deep Learning. While existing research primarily focuses on

fault prediction, the application of OO metrics can extend to

other testing phase activities, including test case selection,

generation, prioritization, and clone detection. Future

research directions may involve developing tools for

extracting OO metrics from software, contributing to the

efficiency of code analysis. The provided set of extensively

used datasets and software tools, discussed in the paper,
facilitates the evaluation of techniques/methodologies. The

integration of predictive measures based on OO metrics into

testing processes can optimize fault localization, refactoring,

debugging, and test case minimization, potentially

minimizing software maintenance costs. Ongoing research

in object-oriented software testing aims to explore the

impact of OO metrics on software maintenance for a more

accurate examination of the problem.

REFERENCES

[1]. Z. Li, X.Y. Jing, and X. Zhu, “Progress on approaches

to software defect prediction,” Iet Software, Vol. 12,

No. 3, 2018, pp. 161–175.

[2]. Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A

general software defect-proneness prediction

framework,” IEEE Transactions on Software

Engineering, Vol. 37, No. 3, 2010, pp. 356–370.

[3]. X. Yang, D. Lo, X. Xia, and J. Sun, “TLEL: A two-

layer ensemble learning approach for just-in-time

defect prediction,” Information and Software

Technology, Vol. 87, 2017, pp. 206–220.

[4]. L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-
grained just-in-time defect prediction,” Journal of

Systems and Software, Vol. 150, 2019, pp. 22–36.

[5]. S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,

“Benchmarking classification models for software

defect prediction: A proposed framework and novel

findings,” IEEE Transactions on Software Engineering,

Vol. 34, No. 4, 2008, pp. 485–496.

[6]. S.S. Rathore and S. Kumar, “An empirical study of

ensemble techniques for software fault prediction,”

Applied Intelligence, Vol. 51, No. 6, 2021, pp. 3615–

3644.
[7]. F. Matloob, T.M. Ghazal, N. Taleb, S. Aftab, M.

Ahmad et al., “Software defect prediction using

ensemble learning: A systematic literature review,”

IEEE Access, 2021.

[8]. R. Jabangwe, J. Börstler, D. Šmite, and C. Wohlin,

“Empirical evidence on the link between object-

oriented measures and external quality attributes: A

systematic literature review,” Empirical Software

Engineering, Vol. 20, No. 3, 2015, pp. 640–693.

[9]. I. Kiris, S. Kapan, A. Kılbas, N. Yılmaz, I. Altuntaş et

al., “The protective effect of erythropoietin on renal

injury induced by abdominal aortic-ischemia-

reperfusion in rats,” Journal of Surgical Research, Vol.

149, No. 2, 2008, pp. 206–213.
[10]. L. Madeyski and M. Jureczko, “Which process metrics

can significantly improve defect prediction models?

An empirical study,” Software Quality Journal, Vol.

23, No. 3, 2015, pp. 393–422.

[11]. D. Radjenović, M. Heričko, R. Torkar, and A.

Živkovič, “Software fault prediction metrics: A

systematic literature review,” Information and software

technology, Vol. 55, No. 8, 2013, pp. 1397–1418.

[12]. Y. Wu, Y. Yang, Y. Zhao, H. Lu, Y. Zhou et al., “The

influence of developer quality on software fault-

proneness prediction,” in Eighth International

Conference on Software Security and Reliability
(SERE). IEEE, 2014, pp. 11–19.

[13]. C. Bird, N. Nagappan, B. Murphy, H. Gall, and P.

Devanbu, “Don’t touch my code! Examining the

effects of ownership on software quality,” in

Proceedings of the 19th ACM SIGSOFT symposium

and the 13th European conference on Foundations of

software engineering, 2011, pp. 4–14.

[14]. C. Catal and B. Diri, “Investigating the effect of

dataset size, metrics sets, and feature selection

techniques on software fault prediction problem,”

Information Sciences, Vol. 179, No. 8, 2009, pp. 1040–
1058.

[15]. T.M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute

selection and imbalanced data: Problems in software

defect prediction,” in 22nd IEEE International

conference on tools with artificial intelligence, Vol. 1.

IEEE, 2010, pp. 137–144.

[16]. X. Chen, Y. Mu, Y. Qu, C. Ni, M. Liu et al., “Do

different cross-project defect prediction methods

identify the same defective modules?” Journal of

Software: Evolution and Process, Vol. 32, No. 5, 2020,

p. e2234.

[17]. Y. Zhang, D. Lo, X. Xia, and J. Sun, “Combined
classifier for cross-project defect prediction: An

extended empirical study,” Frontiers of Computer

Science, Vol. 12, No. 2, 2018, p. 280.

[18]. E. Erturk and E.A. Sezer, “A comparison of some soft

computing methods for software fault prediction,”

Expert systems with applications, Vol. 42, No. 4, 2015,

pp. 1872–1879.

[19]. Z. Li, X.Y. Jing, and X. Zhu, “Heterogeneous fault

prediction with cost-sensitive domain adaptation,”

Software Testing, Verification, and Reliability, Vol.

28, No. 2, 2018, p. e1658.
[20]. T. Wang, W. Li, H. Shi, and Z. Liu, “Software defect

prediction based on classifiers ensemble,” Journal of

Information and Computational Science, Vol. 8, No.

16, 2011, pp. 4241–4254.

http://www.ijisrt.com/

Volume 8, Issue 12, December – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23DEC1931 www.ijisrt.com 2026

[21]. K. Bańczyk, O. Kempa, T. Lasota, and B. Trawiński,

“Empirical comparison of bagging ensembles created

using weak learners for a regression problem,” in

Asian Conference on Intelligent Information and

Database Systems. Springer, 2011, pp. 312–322.

[22]. G. Catolino and F. Ferrucci, “An extensive evaluation

of ensemble techniques for software change

prediction,” Journal of Software: Evolution and

Process, Vol. 31, No. 9, 2019, p. e2156.

[23]. L. Reyzin and R.E. Schapire, “How boosting the
margin can also boost classifier complexity,” in

Proceedings of the 23rd International Conference on

Machine Learning, 2006, pp. 753–760.

[24]. J. Petrić, D. Bowes, T. Hall, B. Christianson, and N.

Baddoo, “Building an ensemble for software defect

prediction based on diversity selection,” in Proceedings

of the 10th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement,

2016, pp. 1–10.

[25]. Chidamber SR, Kemerer CF. Towards a metrics suite

for object-oriented design. ACM; 1991 Nov 1.

[26]. Li W, Henry S. Object-oriented metrics that predict
maintainability. Journal of systems and software. 1993

Nov 1;23(2):111-22.

[27]. Abreu FB, Carapuça R. Object-oriented software

engineering: Measuring and controlling the

development process. In Proceedings of the 4th

International Conference on software quality 1994 Oct

3 (Vol. 186, pp. 1-8).

[28]. Marcus A, Poshyvanyk D, Ferenc R. Using the

conceptual cohesion of classes for fault prediction in

object-oriented systems. IEEE Transactions on

Software Engineering. 2008 Mar;34(2):287-300.
[29]. Zhou Y, Xu B, Leung H. On the ability of complexity

metrics to predict fault-prone classes in object-oriented

systems. Journal of Systems and Software. 2010 Apr

1;83(4):660-74.

[30]. Catal C, Diri B. Investigating the effect of dataset size,

metrics sets, and feature selection techniques on

software fault prediction problem. Information

Sciences. 2009 Mar 29;179(8):1040-58.

[31]. Alan O, Catal PD. An outlier detection algorithm based

on object-oriented metrics thresholds. InComputer and

Information Sciences, 2009. ISCIS 2009. 24th

International Symposium on 2009 Sep 14 (pp. 567-
570). IEEE.

[32]. Basili VR, Briand LC, Melo WL. A validation of

object-oriented design metrics as quality indicators.

IEEE Transactions on Software Engineering. 1996

Oct;22(10):751-61.

[33]. Catal C, Diri B. Software fault prediction with object-

oriented metrics based artificial immune recognition

system. In International Conference on Product

Focused Software Process Improvement 2007 Jul 2

(pp. 300-314). Springer, Berlin, Heidelberg.

[34]. Gyimothy T, Ferenc R, Siket I. Empirical validation of
object-oriented metrics on open source software for

fault prediction. IEEE Transactions on Software

Engineering. 2005 Oct;31(10):897-910.

[35]. Thwin MM, Quah TS. Application of neural networks

for software quality prediction using object-oriented

metrics. Journal of systems and software. 2005 May

1;76(2):147-56.

[36]. Zhou Y, Leung H. Empirical analysis of object-

oriented design metrics for predicting high and low

severity faults. IEEE Transactions on Software

Engineering. 2006 Oct;32(10):771-89.

[37]. Singh Y, Kaur A, Malhotra R. Empirical validation of

object-oriented metrics for predicting fault proneness
models. Software quality journal. 2010 Mar 1;18(1):3.

http://www.ijisrt.com/

