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Abstract:- In the expansive domain of software 

engineering, the persistent challenge of fault prediction has 

garnered scholarly interest in machine learning 

methodologies, aiming to refine decision-making and 

enhance software quality. This study pioneers advanced 

fault prediction models, intertwining product and process 

metrics through machine learning classifiers and ensemble 

design. The methodological framework involves metric 

identification, experimentation with machine learning 

classifiers, and evaluation, considering cost dynamics. 

Empirically, 42 diverse projects from PROMISE, BUG, 

and JIRA repositories are examined, revealing advanced 

models with ensemble methods manifesting an accuracy of 

(91.7%), showcasing heightened predictive capabilities and 

nuanced cost sensitivity. Non-parametric tests affirm 

statistical significance, portraying innovation beyond 

conventional paradigms. Conclusively, these advanced 

models navigate inter-project fault prediction with finesse, 

signifying a convergence of novelty and performance. 

Simultaneously, anticipating fault proneness in software 

components is a pivotal focus in software testing. Software 

coupling and complexity metrics are critical for evaluating 

software quality. Object-oriented metrics, including 

inheritance, polymorphism, and encapsulation, influence 

software quality and offer avenues for estimating fault 

proneness. This study contributes a comprehensive 

taxonomy to the discourse, offering a holistic perspective 

on the multifaceted landscape of object-oriented metrics in 

fault prediction within the broader context of advancing 

software quality. 

 
Keywords:- Software Fault Prediction; Object-Oriented 

Testing; Object-Oriented Coupling; Machine Learning, 

Ensemble Design, Product, and Process Metrics. 

 

I. INTRODUCTION 

 

Software fault prediction has been a focal point in the 

software engineering domain for over three decades, garnering 

escalating attention from researchers [1]. The term "fault" 

denotes an erroneous step, process, or data definition in a 

computer program, commonly referred to as a "BUG." 

Scholars have approached the software fault prediction (SFP) 

challenge from two perspectives. Firstly, novel 

methodologies or combinations of existing methods have 

been introduced by researchers to enhance fault prediction 

performance. Secondly, the exploration of new parameters to 

identify the most influential metrics for fault prediction has 

been undertaken. Despite numerous approaches proposed in 

the literature, the classification of software modules as faulty 

or non-faulty remains a largely unresolved issue [2]. To 

address this challenge, scholars have increasingly turned to 
sophisticated techniques, including machine learning, deep 

learning, and unsupervised methods, indicating a shift 

towards novel and more compelling directions in fault 

prediction [3]. Machine learning algorithms have witnessed a 

surge in popularity over the last decade and continue to be 

one of the preferred methods for defect prediction [4]. As 

noted by Lessmann et al. [5], "There is a need to develop 

more reliable research procedures before having confidence 

in the conclusion of comparative studies of software 

prediction models." 

 
In this study, the aim is to evaluate the performance of 

various classifier models without bias towards any specific 

classifier. Additionally, the reported efficacy of ensemble 

techniques by previous researchers [6] for enhancing fault 

prediction accuracy is recognized. Furthermore, the 

investigation into the diversity of classifiers within ensemble 

models has been identified as crucial for improving the 

effectiveness of ensemble designs [7]. This motivation 

propels the exploration into the design of ensembles to 

enhance the predictive capability of classifiers. In the context 

of the second viewpoint, a substantial body of research has 
been dedicated to investigating the utilization of software 

metrics derived from code to discern the fault proneness of 

software components. While fault estimation models 

predominantly rely on product metrics in the existing 

literature [8], those constructed through a synergy of product 

and process metrics remain relatively scarce [9]. Although 

some scholars have underscored the importance of 

integrating both product and process metrics in their studies, 

the broader incorporation of such models has been limited. 

Madeyski and Jureczko [10], in their research, ascertained 

that process metrics contribute valuable information to fault 

proneness determination. The utilization of process metrics in 
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fault ascertainment demonstrates the potential for superior 

outcomes when compared to reliance solely on product 

metrics. The imperative for further investigations to 

substantiate and refine these advanced models was underscored 

by their findings. 

 

Radjenovic et al. [11], in a Systematic Literature Review 

(SLR), emphasized the necessity of identifying methodologies 

to measure and evaluate process-related information for fault 

proneness. Similarly, Wan et al. [12], in their study on 
perceptions, expectations, and challenges in defect prediction, 

concluded that software practitioners exhibit a preference for 

rational, interpretable, and actionable metrics in defect 

prediction. Additionally, the literature indicates not only the 

comparative superiority of process metrics over product 

metrics but also the proposition of alternative features based on 

developer-related factors, code smells, etc. [13]. This 

discernment necessitates further studies to meticulously 

examine the intricate association between metrics and fault 

proneness, thereby furnishing meaningful insights for informed 

decision-making. Consequently, the present study embarks on 

the development of advanced software fault prediction models 
that leverage a combination of metrics. Following the 

identification of a judicious set of product metrics, the research 

crafts advanced fault prediction models employing a 

systematic incorporation of process metrics, one at a time. 

 

Motivated by the imperative to advance fault prediction 

models, this study establishes a comprehensive research 

framework characterized by meticulous pre-processing and 

feature extraction activities on datasets to identify pertinent 

metrics. Subsequently, diverse machine learning classifiers 

such as Naive Bayes (NB), Decision Tree (DT), Multilayer 

Perceptron (MLP), Random Tree (RT), and Support Vector 
Machine (SVM) are employed for training and testing 

experiments to evaluate the advanced models. The 

assessment involves a set of performance metrics 

encompassing accuracy, root mean square error (RMSE), F-

score, and the area under the curve AUC(ROC). 

 

Object-Oriented (OO) Metrics have been the subject of 

numerous proposals by researchers, resulting in metric suites 

designed for diverse perspectives within the context of 

Object-Oriented software. These suites find application in 

various contexts, serving as quality indicators, complexity 

measures, fault proneness predictors, and reliability 
measures. Table 1 below provides a comprehensive overview 

of the most frequently employed OO metrics documented in 

the literature.  

 

Table 1. Object-oriented metrics 

S.no. Chidamber & Kemerer metrics (CK) [25] Li and Henry Metrics [26] MOOD Metrics [27] 

1. Weighted Methods Per Class (WMC) N/A Attribute Inheritance Factor (AIF) 

2. Depth of Inheritance tree (DIT) Number of Methods NOM Method Hiding Factor (MHF) 

3. Number of Children (NOC) Message Passing Coupling (MPC) Method Inheritance Factor (MIF) 

4. Coupling Between Objects (CBO) Data Abstracting Coupling (DAC) Attribute Hiding Factor (AHF) 

 

Multiple classifiers are harmoniously combined to 

enhance overall performance, with a specific focus on 

improving fault-detection capabilities. Additionally, an 

examination of the cost sensitivity of the proposed ensemble-

based classifier is undertaken. The outcomes of this analysis 

serve to validate the predictive efficacy of the proposed 

classifiers for the development of advanced fault prediction 

models. 
 

The noteworthy contributions of this work can be 

delineated as follows: 

 Establishment of a learning scheme comprising both base 

and ensemble learning classifiers. 

 Construction and scrutiny of the predictive capability of 

advanced fault prediction models. 

 Evaluation of the cost sensitivity of the proposed ensemble-

based classifier through a comprehensive cost evaluation 

framework using Object oriented metrics and process 

metric. 
 

II. RELATED WORK 

 

Noteworthy contributions to the field of fault prediction 

have been documented through comprehensive surveys 

conducted by Catal and Diri [14], Li Zhiqiang et al. [1], 

Matloob et al. [7], and Radjenovic et al. [11]. These surveys 

encompass various aspects, including prediction models, 

modeling techniques, and the metrics employed. Radjenovic et 

al. [11] delineate that within the literature on fault prediction 

studies, process metrics constitute 24%, source code 

contributes 27%, and object-oriented metrics constitute 49% 

of the total. Prospective studies are urged to incorporate 

methodologies for measuring and evaluating process-related 

information for fault proneness in conjunction with product 

metrics. 

 
In an empirical study conducted by Madeyski and 

Jureczko [9], utilizing both industrial and open-source 

software datasets, the significance of process metrics in 

enhancing results was notably observed. Emphasizing the 

need for replication using machine learning approaches, they 

underscore the uncertainty of features performing optimally 

in one method being equally effective in alternative 

approaches. Therefore, experimentation is warranted to 

explore the utility of both product and process-related 

metrics. 

 
Khoshgoftaar et al. [15] extend the research landscape 

by constructing software quality models employing majority 

voting with multiple training datasets. This work presents an 

opportunity for further extension by incorporating data from 

diverse software project repositories. An analysis of the 

predictive capability of ensembles, in comparison to base 

classifiers, can offer insights into the efficacy of advanced 

fault prediction models. 
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Chen et al. [16] investigated to determine whether distinct 

cross-project defect prediction methods yield consistent 

identifications of defective modules. The outcomes of this 

study suggest the potential for extension through the 

application of learning approaches founded on ensemble 

design, thereby further enhancing the performance of cross-

project defect prediction. A related exploration by Zhang et al. 

[17] delved into the utilization of various algorithms 

integrating machine learning (ML) predictors for cross-project 

defect prediction. However, to comprehensively examine the 
predictive capabilities of advanced algorithms, additional 

experimentation is deemed necessary. 

 

An analysis of the aforementioned studies underscores the 

pivotal role of pre-processing techniques in significantly 

influencing the performance of learning algorithms. 

However, a notable gap in the literature pertains to the 

scarcity of investigations on larger datasets, essential for the 

development of generalized models. Moreover, the prevalent 

issue of class imbalance demands attention to augment the 

efficacy of fault prediction [7]. The exploration of parameter 

combinations remains a relatively underexplored aspect in 

existing literature studies. Consequently, there is an 

opportunity to replicate this work by incorporating more 

datasets, with a dedicated focus on product and process 
software metrics, and experimenting with diverse scenarios 

or combinations of models, encompassing both simple and 

advanced models, to attain heightened reliability and 

robustness. 

 

Table 2: Existing Review 

Authors Metrics employed Outcomes and proposed benchmark solutions 

Chen et al. [16] Process and Product The researchers in this study explored the alignment of distinct cross-project defect 

prediction methods in identifying common defective modules. The outcomes 

suggest the potential for extension through the implementation of learning 

approaches founded on ensemble design, to enhance the overall performance of 

cross-project defect prediction methodologies. 

Khoshgoftaar et 

al. [15] 

Product and Process The authors constructed software quality models employing a majority voting 

approach with multiple training datasets. This work could be extended by 

incorporating data from diverse software project repositories. Such an extension 

would facilitate an in-depth analysis of the predictive capabilities of ensembles in 
comparison to base classifiers, particularly in the context of advanced models. 

Erturk and Sezer 

[18] 

CK Product metrics In their study, the authors concluded that the Adaptive Neuro-Fuzzy Inference 

System (ANFIS) outperforms the Neural Network (NN) and Support Vector 

Machine (SVM) approaches in predicting faults. Future research endeavors may 

consider incorporating process metrics into the analysis or developing advanced 

defect prediction models to further enhance the predictive capabilities. 

Li et al. [19] Code metrics The authors provided a summary of defect prediction studies with a focus on 

emerging topics, including machine learning-based algorithms, data manipulation 

techniques, and effort-aware prediction strategies. They emphasized the 

importance of addressing the class imbalance problem and the need for developing 

models in the field of defect prediction. 

 

In software engineering, a well-established principle 

emphasizes that high-quality software should exhibit low 
coupling and high cohesiveness. Noteworthy contributions to 

the study of cohesion metrics for fault prediction include the 

work of Marcus, Poshyvanyk, and Ferenc [28], who introduced 

the Conceptual Cohesion of Classes (C3) as a novel measure 

based on the textual coherence of methods. Utilizing an 

information retrieval approach supported by Latent Semantic 

Indexing, the study performed experiments on three open-

source subject programs. The findings advocate the integration 

of structural metrics and cohesion metrics for enhanced 

prediction accuracy. 

 
Similarly, Zhou, Xu, and Leung [29] conducted empirical 

evaluations on the effectiveness of complexity metrics in 

predicting software faults, employing CK metrics and McCabe 

metrics. Using data from three versions of Eclipse IDE, the 

authors compared the performance of LR, Naive Bayes, 

AdTree, K Star, and Neural networks. Results indicated that 

several metrics exhibit a moderate ability to differentiate fault-

prone and fault-non-prone classes, with lines of code and 

weighted method McCabe complexity identified as robust 

indicators of fault proneness. The study underscores the 

significance of not only metric selection but also the size of 
datasets and feature extraction techniques in fault prediction 

endeavors. 

 

Recent trends in software fault prediction underscore 

the increasing popularity of machine learning algorithms. 

Catal and Diri [30] empirically examined the impact of 

metric sets, dataset size, and feature selection techniques on 

fault prediction models, employing random forest (RF) and 

AIRS algorithms. The study concluded that RF algorithms 

performed better for large datasets, while Naive Bayes 

algorithms demonstrated efficacy for smaller datasets. 
Additionally, Alan [31] employed an RF machine-learning 

algorithm for outlier detection, selecting six metrics from the 

CK suite. The study highlighted the promising nature of 

threshold-based outlier detection, advocating its application 

before the development of fault prediction models. 
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III. RESEARCH METHODOLOGY 

 

In Phase I, the identification of a metrics suite is 

undertaken from metric datasets available in the PROMISE, 

BUG, and JIRA dataset repositories. Various pre-processing 

methods, including feature ranking methods, feature subset 

selection methods, and normalization, are employed to derive a 

reduced subset of features from the original dataset. This 

reduction is guided by a specific evaluation criterion, aiming to 

diminish feature space dimensionality, eliminate redundant and 
irrelevant information, and enhance data quality to improve the 

algorithm's performance. The experimental design incorporates 

N-fold cross-validation for training, testing, and replicating the 

experiment across diverse datasets. Phase II involves the 

evaluation of a simplified dataset under distinct scenarios: 

scenario-1 features a simple model based on product metrics; 

scenario-2 through scenario-5 explores advanced models 

incorporating additional process metrics (NR, NDC, NML, 

NDPV). These models are assessed using various base 

machine learning classifiers. Performance evaluation utilizes 

accuracy as key performance indices. To enhance the base 

machine learning classifier performance, classifier ensembles 

are designed through Bagging, AdaBoostM1 (a prominent 

boosting technique), and Voting algorithms. In Phase III, the 

focus shifts to examining the cost sensitivity of the proposed 
ensemble classifiers. This involves the development of a 

comprehensive cost analysis framework, facilitating a 

comparison between the best ensemble's cost and the best 

base classifier's cost through the determination of normalized 

fault removal cost. 

 
Fig 1. A framework of the Proposed ensemble model with cost analysis 

 

In alignment with the insights derived from a 
comprehensive review of the existing literature and 

identifying potential research gaps, the following research 

questions have been formulated: 

 

RQ1: How do the advanced defect prediction models, 

posited within the study, demonstrate performance 

variations across diverse machine learning classifiers? 

RQ2: To what extent does the ensemble design contribute to 

enhancing classification performance compared to the 

individual machine-learning classifiers? 

RQ3: Is there a discernible and statistically significant 
difference in performance among the base classifiers and 

ensemble classifiers? 

RQ4: Within the context of a given software system, do the 

proposed ensembles exhibit a sensitivity to cost 

considerations? 

 

The formulation of RQ1 and RQ2 is grounded in the 

intent to assess the efficacy of advanced models embodying 

distinct scenarios, characterized by a fusion of software 

product and process metrics. These models undergo training 

utilizing both base learning and ensemble-based classifiers, 

with their performances subjected to evaluation through 
metrics such as accuracy, RMSE, ROC(AUC), and F-score. 

The application of statistical tests is motivated by the 
aspiration to empirically substantiate the performance of 

predictors, thereby addressing RQ3. To address RQ4 and 

ascertain the cost-sensitivity of the proposed predictors, a 

comprehensive cost-based evaluation framework has been 

adopted. 

 

For the experimental investigations, five distinct 

scenarios were devised by the outlined research questions. 

In Scenario 1, an assemblage of all product metrics was 

curated post-data processing and normalization, forming 

what is denoted as the "Simple model." The detailed 
selection of metrics is provided in Table 3. Subsequently, 

Scenario 2 introduced the "Advanced model-1," 

incorporating product metrics alongside a singular process 

metric (Product + NR). Similarly, Scenarios 3, 4, and 5 

engendered the "Advanced model-2" (Product + NDC), 

"Advanced model-3" (Product + NML), and "Advanced 

model-4" (Product + NDPV), respectively. These designed 

models underwent testing across diverse project datasets 

from repositories such as PROMISE, Bug, and Jira, 

employing various classifiers, including DT, MLP, SVM, 

RT, NB, and classifier ensembles. 

 

http://www.ijisrt.com/


Volume 8, Issue 12, December – 2023                 International Journal of Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165 

 

IJISRT23DEC1931                                                           www.ijisrt.com                2023 

The performance assessment of the models—namely, 

"Simple model," "Advanced model-1," "Advanced model-

2," "Advanced model-3," and "Advanced model-4"—

comprised the utilization of accuracy. The metrics adopted 

in the base classifiers were obtained post-feature selection 

and ranking. N-fold cross-validation, with N set to 10 in this 

instance, facilitated the evaluation of base classifier 

performance, employing both training and testing phases. 

This methodology was consistently applied across various 

dataset versions for distinct base classifiers. 
 

To address RQ2, which seeks to assess and compare 

the performance of diverse ensemble methods, relevant 

algorithm libraries were installed using the pip Python 

installer. Algorithms such as Bagging, AdaBoostM1, and 

Voting were deployed. Heterogeneous classifier ensembles 

adopted the majority voting method, while homogeneous 

ones employed both bagging and boosting methods. 

Boosting and bootstrap aggregating incorporated Decision 

Stump and REPTree as weak learners. AdaBoosting, 

involving repeated iterations with weight adjustments, and 

bootstrap aggregating, employing sampling with 

replacement, were integral components of this phase. 

 

In light of RQ3, exploring potential statistically 

significant differences between base classifier and ensemble 

classifier performance, the authors employed Friedman's 
tests and Wilcoxon signed-rank tests. RQ4 delves into the 

cost sensitivity of the proposed ensembles, incorporating a 

normalized fault removal cost approach. To further 

scrutinize the cost sensitivity of the premier ensemble 

classifier, VOT-E2, concerning fault misclassification, a 

comparative analysis was conducted against the best-

performing base classifier, MLP. 

 

IV. RESULT AND DISCUSSION 

 

Table 3. Summary of research questions 

Research question Discussion 

Research Question 1 (RQ1): What is the performance of 

the advanced defect prediction models proposed in the 

study when subjected to various machine learning 

classifiers? 

Each model underwent testing across diverse project datasets 

sourced from PROMISE, BUG, and JIRA repositories. 

Employing distinct classifiers such as DT, MLP, SVM, RT, and 

NB, the performance of the models was assessed. 

Research Question 2 (RQ2): To what extent does 

ensemble design enhance classification performance 

compared to individual machine-learning classifiers? 

In a comprehensive evaluation, ensemble methods demonstrated 
an overall median F-score ranging between 76.50% and 87.34%, 

and ROC (AUC) values between 77.09% and 84.05%. In 

contrast, base classifiers achieved an average F-score ranging 

between 73% (Simple model) and 83% (Advanced model-2) for 

the PROMISE dataset, and ROC (AUC) values between 60% 

(Advanced model-4) and 79% (Advanced model-2). This 

observation underscores the efficacy of ensemble design in 

leveraging the strengths of multiple predictors, contributing to 

the advancement of fault prediction methodologies. 

RQ3: Whether there exists any statistically significant 

performance difference among the base classifiers and 

ensemble classifiers? 

For pairwise comparisons, the Wilcoxon signed-rank test was 

employed. The outcomes from both Friedman's tests and 

Wilcoxon signed-rank tests provide statistical evidence 
supporting the existence of significant performance differences, 

particularly highlighting the unique standing of the ensemble 

method. 

 

 
Fig 2. Box plots for Ensemble Results for average accuracy. 

 

For the Promise dataset, the average accuracy for MLP 
in the simple model is 91.7%, advanced model-1 is 80%, 

advanced model-2 is 87%, advanced model-3 is 85%, and 

advanced model-4 is 79%. Notably, the bar graph in Figure 

2 illustrates that the average accuracy for MLP is higher in 
advanced model-2 than in advanced model-3, advanced 

model-1, and the simple model. Similarly, the average 

accuracy for DT in the simple model is 74%, advanced 
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model-1 is 81%, advanced model-2 is 87%, advanced 

model-3 is 83%, and advanced model-4 is 77%. The 

corresponding bar graph (Figure 2a) indicates that the 

average accuracy for DT is higher in advanced model-2 

compared to advanced model-3, advanced model-1, and the 

simple model. 

 

The integration of machine learning techniques into 

software fault prediction has emerged as a recent and 

dynamic area of research. Researchers employ diverse 
machine learning methodologies across multiple dimensions 

within this domain, encompassing feature selection, 

classification, outlier detection, and model building. This 

study provides a comparative analysis of recent literature, 

shedding light on the various applications of machine 

learning in software fault prediction. 

 

Researchers exhibit significant diversity in their 

approaches, encompassing variations like data, metrics 

under consideration, employed machine learning algorithms, 

and the tools utilized for experimentation. The following 

table (Table 4) presents a comprehensive overview of recent 
studies, offering a qualitative analysis of the machine 

learning algorithms utilized for fault prediction. This 

comparative analysis aims to provide insights into the 

nuanced differences and trends prevalent in the application 

of machine learning techniques in software fault prediction 

studies. 

 

Table 4. Comparative analysis 

Existing 

Research 

Algorithm 

employed 

Metrics 

evaluated 

Programming 

Language 

[32] Logistic 

Regression 

C-K C++ 

[28] Logistic 

Regression 

and PCA 

Conceptual 

Cohesion of 

Classes 

C++ 

[33] Naive 

Bayes 
network, 

Random 

Forest 

C-K Java 

[30] Random 

Forest, J48 

McCabe 

[36], 

Halstead 

[37] 

C++ 

[34] Decision 

tree and 

Neural 

network 

C-K Java 

 

The presented table indicates the widespread 

popularity of logistic regression, random forest, and neural 
networks within the domain of fault prediction studies. 

Machine learning algorithms offer versatile applications for 

conducting diverse statistical and predictive analyses of 

Object-Oriented (OO) metrics. The WEKA platform serves 

as a comprehensive tool for executing and analyzing these 

algorithms. A succinct overview of the regression model and 

other pertinent techniques is provided below. 

 

Logistic regression, a statistical classification 

technique rooted in maximum likelihood estimation, is 

applicable in two modes: univariate regression and 

multivariate regression. Univariate LR is employed for the 

isolated analysis of a single metric on fault proneness. In 

contrast, Multivariate LR proves useful when multiple 

metrics need assessment for their impact on fault proneness. 

LR is employed when there is one or more than one 

independent variable. The objective of LR is to construct the 

best-fitting model that elucidates the relationship between 
dependent and independent variables. The result of LR is 

expressed through a fitted logistic regression equation. 

 

Learning can be categorized into supervised or 

unsupervised forms. In supervised learning, a dependent 

variable can be predicted from a given set of independent 

variables. A map function is generated using these variables 

to produce the desired outcome. Numerous research studies 

have leveraged various machine learning algorithms to 

predict the impact of Object-Oriented (OO) metrics on 

software fault proneness. For instance, in a study [37], a 

Decision tree was employed, and validation was conducted 
using the receiver operating characteristic (ROC) curve. The 

primary advantage of Decision trees lies in their ability to 

implicitly identify the most influential features from the 

dataset, and their performance is not influenced by the type 

of relationship between attributes. Machine learning 

algorithms like random forests are suitable for handling 

multiclass data, while Bayes networks rely on rules of 

probability for prediction. In certain studies [35-37], a set of 

learning algorithms, including Bayes networks, random 

forests, and NNge (nearest neighbor with generalization), 

were applied for a comparative analysis of prediction 
models. The Artificial Immune Recognition System (AIRS), 

inspired by the vertebrate immune system, is a machine-

learning algorithm capable of working with both nominal 

and continuous data. The study that applied AIRS found its 

performance to be superior to J48. Principal Component 

Analysis (PCA) serves as a feature selection technique, 

emphasizing variation and producing strong patterns in the 

dataset. Some studies have utilized PCA for fault prediction 

and feature selection in the context of OO metrics. 

Additionally, Neuro-fuzzy and Latent Semantic Indexing are 

other competitive algorithms explored for prediction 

purposes. 
 

V. CONCLUSION 

 

This study introduces advanced models for software 

fault prediction, leveraging information related to both 

product and process metrics. The investigation involved 

forty-two open-source code projects extracted from Promise, 

Jira, and Bug repositories. Results indicate that the MLP-

based base classifier exhibits superior performance, as 

reflected in high average accuracy (91.7%). Ensemble 

methods, incorporating bagging, boosting, and voting, 
further enhance classification performance, with VOT-E2 

(DT + MLP + SVM) producing the best results. Statistical 

tests confirm significant performance differences between 

base classifiers and ensemble classifiers, validating the 

predictive capability of the proposed models. The study 
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emphasizes the potential utility of the combination models 

for developing advanced defect prediction models, 

providing valuable insights for software engineers in new 

projects. While the experiments utilized datasets from 

Promise, Jira, and Bug repositories, extending the 

investigation to more open-source and cross-project datasets 

would enhance the generalization of results. This research 

article also presents a comprehensive taxonomy of object-

oriented (OO) metrics usage for fault proneness prediction, 

emphasizing their significance in determining software 
quality. Various machine learning algorithms have been 

applied in fault prediction, with opportunities for further 

exploration in sub-domains such as Support Vector 

Machine, Dimensionality Reduction, Gradient Boosting, and 

Deep Learning. While existing research primarily focuses on 

fault prediction, the application of OO metrics can extend to 

other testing phase activities, including test case selection, 

generation, prioritization, and clone detection. Future 

research directions may involve developing tools for 

extracting OO metrics from software, contributing to the 

efficiency of code analysis. The provided set of extensively 

used datasets and software tools, discussed in the paper, 
facilitates the evaluation of techniques/methodologies. The 

integration of predictive measures based on OO metrics into 

testing processes can optimize fault localization, refactoring, 

debugging, and test case minimization, potentially 

minimizing software maintenance costs. Ongoing research 

in object-oriented software testing aims to explore the 

impact of OO metrics on software maintenance for a more 

accurate examination of the problem. 
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