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Abstract:- The research focuses on leveraging video 

analytics to track the sequence followed during clamping 

in the Automobile Manufacturing industry while 

adhering to the principles of the Poka-Yoke system. The 

study proposes the development of a Machine Learning 

(ML) model using the latest version of YOLOv8 (You 

Only Look Once) / YOLO-NAS (Neural Architecture 

Search) to achieve a remarkable accuracy rate of 99%. 

By harnessing the power of video analytics, the 

manufacturing process can be monitored and optimized 

to ensure efficient clamping operations. The utilization 

of video analytics enables real-time tracking of the 

clamping sequence, providing valuable insights into the 

production line. The ML model developed with YOLOv8 

can accurately identify and analyze the clamping steps, 

ensuring that they followed the correct sequence. By 

adhering to the principles of the Poka-Yoke system, 

which is an error-proofing method, the manufacturing 

industry can significantly reduce defects and improve 

overall quality. The proposed system's integration with 

video analytics and ML techniques offers many 

advantages, including continuous monitoring, rapid 

identification of deviations, and immediate corrective 

actions. By achieving a 99% accuracy rate, the system 

provides a robust and reliable solution for ensuring 

precise adherence to the clamping sequence, 

contributing to enhanced manufacturing efficiency. The 

research also explores the potential deployment of the 

system in an AWS (Amazon Web Services) cloud 

environment, which offers scalability, flexibility, and 

efficient data processing capabilities. This cloud-based 

implementation allows for seamless integration into 

existing manufacturing workflows and facilitates 

centralized monitoring and management. Overall, this 

study presents a comprehensive approach to tracking the 

clamping sequence in the Automobile Manufacturing 

industry, leveraging video analytics, and adhering to the 

Poka-Yoke system. The ML model developed using 

YOLOv8 (You Only Look Once) / YOLO-NAS (Neural 

Architecture Search) demonstrates exceptional accuracy, 

paving the way for improved quality control, reduced 

errors, and enhanced productivity in automotive 

manufacturing processes. 

 

Keywords:- Poka-Yoke, Automobile Manufacturing, Video 

Analytics, Artificial Intelligence, Total Quality Management 

in Manufacturing.      

  

I. INTRODUCTION 

 
The aim of this research study and development of 

machine learning (ML) is to elevate the efficiency of 

automobile manufacturing. This research study and 

development is based on the open-source CRISP-ML(Q) 

mindmap available on the 360DigiTMG website (ak.1) 

[Fig.1]. In the manufacturing industry, manual assembly 

plays a crucial role in the production of various vehicle body 

parts, including truck bodies joining with precision. Manual 

truck body manufacturing involves assembling different 

vehicle parts to create a functional and durable truck body. 

However, this process can be prone to certain quality issues 
that need to be carefully addressed to ensure the production 

of high-quality truck bodies. Some issues common are 

Inconsistent Fit and Finish, Poor Weld Quality, Loose or 

improper joined parts, Inadequate Surface Preparation and 

coating because of gaps, and incomplete or Incorrect 

Component joining.  
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Fig 1 CRISP-ML (Q) Methodological Framework, Outlining its Key Components and Steps Visually. 

(Source: -Mind Map - 360DigiTMG) 

 

It is essential to address the human error of 

implementing the Poka-Yoke [20] system that may arise 

during the assembly process. By implementing proper 
training, quality control measures, and regular inspections, 

manufacturers can improve the consistency, precision, and 

overall quality of manual truck body assembly, ensuring the 

timely production of high-quality and reliable products. But 

practically this process is not followed because of human 

psychology, attitude, stress, and strain because of repeated 

tasks. Hence, it needs modern technological support to 

overcome the above pitfalls. 

 

We can overcome the mentioned constraints using the 

embedded Artificial Intelligence driven camera to monitor 
the workers’ tasks regularly and revert with feedback to do 

the right job on the first attempt itself. 

 

II. METHODS AND TECHNIQUES 

 

 Dataset Creation, Including Pre-Processing & 

Augmentation: 

We have extracted each second frame from sample 

videos using Python. We also used the Roboflow (ak.3) 

algorithm for annotating each task of the operator and, 

created 2081 images with labels for further pre-processing 
and augmentation tasks. In the pre-processing stage, we 

applied auto-orientation, auto-resizing the images and 

automatically setting the contrast. In the augmentation 

process, we applied  

 Flip: Horizontal,90°  

 Rotate: Clockwise, Counter-Clockwise,  

 Rotation: Between -15° and +15°, 

 Shear: ±15° Horizontal, ±15° Vertical,  

 Gray-scale: Apply to 25% of images,  

 Hue: Between -25° and +25°,  

 Saturation: Between -25% and +25%, 

 Brightness: Between -25% and +25%, 

 Exposure: Between -25% and +25%, 

 Blur: Up to 2.5px, 

 Noise: Up to 5% of pixels,  

 Mosaic: Applied,  

 Bounding Box:  

 Flip: Horizontal,  

 Bounding Box: 90° Rotate: Clockwise, Counter-

Clockwise,  

 Bounding Box: Rotation: Between -15° and +15°, 

 Bounding Box: Shear: ±15° Horizontal, ±15° Vertical,  

 Bounding Box: Brightness: Between -25% and +25%, 

 Bounding Box: Exposure: Between -25% and +25%, 

 Bounding Box: Blur: Up to 2.5px, 

 Bounding Box: Noise: Up to 5% of pixels. 

 
We verified every extracted sample video frame for 

considering the result of Improved Model Generalization, 

Accurate Representation, and Reduced Bias influencing 

factors. 
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Augmentation techniques provide additional images 

for training, and this helps us in the object detection process, 

which further smoothens any environmental conditions. 

 

In order to harness the capabilities of object detection 

techniques such as YOLO and address its limitations, we 

propose the integration of a novel Machine Learning 

workflow (ak.2) [Fig.2] that combines YOLO's efficiency 

with complementary methodologies. This workflow 

introduces a multi-stage approach, where YOLO's initial 

detections are further refined using advanced post-

processing algorithms. In the following sections, we detail 

the components of this workflow and present experimental 

results that demonstrate its effectiveness in pushing the 

boundaries of object detection performance. 

 

 
Fig 2 ML Workflow Architecture: A comprehensive overview of the machine learning pipeline for Clamping Sequence Detection. 

(Source: -  Open-Source ML Workflow Tool- 360DigiTMG) 

 

 Model Architecture Diagram: 

 

 
Fig 3 Architecture Diagram: Illustrating Data Flow and Components for Clamp Detection and Sequencing via Computer Vision 

and Machine Learning Methods. 
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 Role of Artificial Intelligence in Implementing the Poka-

Yoke Principle.  

Japanese industrial engineers introduced Poka-Yoke 

[20] or mistake-proofing or error-proofing principles to 

create high-precision object or clamping status sequence 

detecting models. 

 

There are two types of Poke-Yoke systems:- Warning 
Poka-Yoke [20] and Control Poka-Yoke [20] , which were 

implemented to ensure zero errors while doing clamping 

works. Artificial Intelligence (AI) plays a crucial role in 

preventing human errors and defects in manufacturing 

processes. 

 

After several AI model comparisons, YOLO V8 [8,9] 

and YOLO-NAS [Fig.4] were the two models in this 

specific research. 

 

 
Fig 4 Yolo Models Comparison based on Average mAP Performance Sourced from the blog published by Augmented Startups. 

 

 
Fig 5 Object Detection Flowchart in Yolo model [1,2,3,4,5,6,10,12,13,14,15,16,17,18,19] 

 

The aim is to detect the clamp’s status, whether open or closed. 12 clamps open and 12 closed a total of 24 clamps. We 

trained our model on the dataset of 24 object detection in the first part.  
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Fig 6 Object Tracking Flow chart in the YOLO model. [1,2,3,4,5,6,10,12,13,14,15,16,17,18,19] 

 

The objects are tracked by first checking the status of 
the left-side clamps status and the status of the mirror image 

clamps on the right side, and then comparing both to track 

them for sequence pair analysis. 

 

 Clamping Pair Sequence  

Object detection and tracking are performed by an AI 

model, the operators are immediately alerted whether the 

sequence pair is right or wrong and the operators followed 

the right sequence every time.   

    

 API Interface  
The details of object detection and pair sequences are 

converted into JSON format. The JSON data is then updated 

on the AWS server for future audit and Total Quality 

Management (TQM) processes. Storing the data in JSON 

format on the AWS server enables efficient retrieval and 

analysis for auditing and TQM purposes.   

 

 Alert Mechanism  

Data received from the object detection and clamping 

pair sequence data will trigger in the API interface and will 

automatically alert the operator about the clamping task 

right or wrong sequence [Fig.3] through laser light over the 
assembly table, Raspberry Pi IV is used and connected with 

the laser diodes for alerting operators 

III. RESULTS AND DISCUSSION 

 

Based on the YOLO model's ability to track objects 

and infer spatial relationships can significantly enhance 

workflow monitoring and optimization [Fig.4] [Fig.5]. By 

analyzing manual operators clamping tasks captured in 

video feeds, YOLO can identify inefficiencies due to 

skipping sequences and deviations from standard operating 

procedures [Fig.6] [Fig.7] [Fig.8] [Fig.9] [Fig.10] [Fig.11]. 

This information enables us to streamline processes, by 

eliminating the re-doing the same tasks, boost the 

production speed, allocate the right resources effectively, 
and identify areas for improvement, leading to enhanced 

productivity and operational efficiency. 

 

We have extracted video frames each second into 2081 

images [Fig.12] [Fig.13] [Fig.14] [Fig.15] [Fig.16] [Fig.17]. 

These images we used to identify the tasks by marking 

labels for them with minute details also considered [Fig.18] 

[Fig.19]. 

 

Annotated labels we used for the input dataset for the 

YOLO model [Fig.20] [Fig.21]. We started working on an 

image dataset into all possibilities of camera capturing 
bottlenecks by augmentation process.  

 

 
Fig 7 Yolo Model Mean Average Precision (mAP) Performance Data based on our Dataset. 
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Fig 8 Validation Set Results for Average Precision, 

Compactly Conveying the Model's Performance. 

 
Fig 9 Test Set Results for Average Precision are Depicted, 

Showcasing the Model's Performance. 
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Fig 10 Training Graphs for the YOLO Model, Presenting its Learning Progress and Performance. 

 

 
Fig 11 The Reduction of Object Detection Precision Losses via Improved Labeling of Boxes, Classes, and Objects 

 

 
Fig 12 Visually Outlines Dataset Preprocessing, Highlighting Steps taken to Prepare the Data before it's used for Model Training 
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Fig 13 The Specifics of Image Augmentation Techniques applied to the Dataset for Enhanced Training Diversity 

 

 
Fig 14 Train, Valid, and Test Views of the Image Dataset, Delineating Data Distribution Across Different sets. 
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Fig 15 Image Augmentation Variations, Including Skew, Flip, and Contrast Transformations,  

Enhancing Dataset Diversity for Training. 

 

 
Fig 16 Image Augmentation Effects: Skew, Flip, and Contrast Variations,  

Enhancing Dataset Diversity and Training Robustness. 
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Fig 17 Views of Object Detection Bounding Boxes, Contributing to a Comprehensive Understanding of Detection Accuracy. 

 

 
Fig 18 Dataset's Images, Annotations, and Average Image Sizes, Offering Insight into its Composition and Characteristics 

 

 
Fig 19 Distribution of Image Sizes within our Dataset, Highlighting Variations in Dimensions Across the Data. 
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Fig 20 Annotation Heatmap, Providing a Visual Representation of the Density of Object Annotations within Images 

 

 
Fig 21 Histogram Illustrating how the Number of Objects per Image is Distributed Across the Dataset 
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This resulting model which we have developed for this 

research study can also be applied to different other 

manufacturing processes where the sequence of operations 

is crucial and requires human involvement such as 

Aerospace manufacturing, Tire assembly, Automotive body 

assembly line, Suspension system assembly and Printed 

circuit board (PCB) manufacturing where the risk of human 

errors can be reduced, ensuring consistent and accurate 
execution of tasks at each stage of the process. 

 

IV. CONCLUSION 

 

Modern AI plays a crucial role in the automobile 

manufacturing manual clamping process, monitoring and 

timely alerting the human errors so that we achieve the 

nearest zero human error in the truck body parts assembling 

stage. This will speed up the manufacturing process, nullify 

repetitive tasks, and boost production efficiency.  
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