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Abstract:- In this paper, we introduce a new form of 

near perfect number where these numbers are the 

product of two numbers that are relatively prime and we 

investigate these results concerning the near perfect 

numbers with fixed redundant divisor. 
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I. INTRODUCTION 
 

Numbers have different classifcation and 

characterization. One of these numbers is the perfect 

number which is a positive number n which is equal to 

the sum of all its positive divisors excluding n itself[1]. 
 

Equivalently, σ(n) = 2n. In 1965, Sierpinski[4] 

defined that near perfect numbers are very special class of 

pseudo perfect numbers. In 2012, Pollack and 

Shevelev[1] introduced and defined the near perfect 

number n as the sum of all its positive divisors(excluding 

n), except for one of them. The missing divisor d is called 

the redundant divisor [1]. Equivalently, n is a near perfect 

number with redundant divisor d if σ(n) = 2n + d, where 

d is a proper divisor of n[1]. 
 

II. MAIN RESULTS 
 

This section consists of new results concerning other 

forms of Near Perfect Number. 
 

A. Lemma 2.1  

If p and 23p − 3 are primes then (23p−1, 23p − 3) = 1. 
 

Proof: Assume to the contrary that (23p−1, 23p − 3) = 

d > 1. Then, d|23p−1 and d|23p − 3. Now, d|23p−1 ⇒ d ∈ {25, 

28, ..., 23p−1} = A and d|23p − 3 ⇒ d ∈ {23p − 3} = B. Thus, 

d ∈ A and d ∈ B ⇒ d ∈ A ∩ B which contradicts the fact 

that A ∩ B = ∅. Hence, (23p−1, 23p − 3) = 1. 
 

B. Theorem 2.2 

If p and 23p − 3 are primes then n = 23p−1(23p − 3) is a 

near perfect number with redundant divisor 2. 
 

Proof: Let n = (23p−1, 23p − 3). Then, 

d = σ(n) − 2n 

= σ(23p−1(23p − 3)) − 2(23p−1(23p − 3)) 

= σ(23p−1)σ(23p − 3) − 2(26p−1 − 3(23p−1)) 

= (23p − 1)(23p − 2) − 26p + 3(23p) 
= 26p − 3(23p) + 2 − 26p + 3(23p) 

= 2. 

 

C. Lemma 2.3 

If 2t − 9 is a prime then (2t−1, 2t − 9) = 1. 
 

Proof: Assume to the contrary that (2t−1, 2t − 9) = 
d > 1. Then, d|2t−1 and 

d|2t − 9. Now, d|2t−1 ⇒ d ∈ {23, 24, ..., 2t−1} = A 

and d|2t − 9 ⇒ d ∈ 

{2t − 9} = B. Thus, d ∈ A and d ∈ B ⇒ d ∈ A ∩ 

B which contradicts the fact that A ∩ B = ∅. Hence, 

(2t−1, 2t − 9) = 1. 
 

D. Theorem 2.4 

 If 2t − 9 is a prime then n = 2t−1(2t − 9) is a near 

perfect number with redundant divisor 8. 
 

Proof: Let n = 2t−1(2t − 9). Then, 

d = σ(n) − 2n 

= σ(2t−1(2t − 9) − 2(2t−1(2t − 9)) 

= σ(2t−1)σ(2t − 9) − 2(22t−1 − 9(2t−1)) 

= (2t − 1)(2t − 8) − 2(22t−1 − 9(2t−1)) 

= 22t − 9(2t) + 8 − 22t + 9(2t) 

= 8. 
 

III. CONCLUSION 
 

This paper is an extension of Xiao-Zhi Ren and Yong-

Gao Chen’s work [3] on the types of near perfect numbers. In 

this result, type 1 construction is considered where k = 1, t = 

3p and k = 3, t with fixed redundant divisor. 
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