
Volume 8, Issue 4, April – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23APR2084 www.ijisrt.com 2323

A Comprehensive Review on Test Case Prioritization

in Continuous Integration Platforms

R.Shankar

Assistant Professor

Department of ICT and Cognitive Systems

Sri Krishna Arts and Science College

Coimbatore, Tamil Nadu, India

Dr. D. Sridhar

Assistant Professor

Department of Computer Science

Sri Krishna Adithya College of Arts and Science

Coimbatore, Tamil Nadu, India

Abstract:- Continuous Integration (CI) platforms enable

recurrent integration of software variations, creating

software development rapidly and cost-effectively. In

these platforms, integration, and regression testing play

an essential role in Test Case Prioritization (TCP) to

detect the test case order, which enhances specific

objectives like early failure discovery. Currently,

Artificial Intelligence (AI) models have emerged widely to

solve complex software testing problems like integration

and regression testing that create a huge quantity of data

from iterative code commits and test executions. In CI

testing scenarios, AI models comprising machine and

deep learning predictors can be trained by using large

test data to predict test cases and speed up the discovery

of regression faults during code integration. But these

models attain various efficiencies based on the context

and factors of CI testing such as varying time cost or the

size of test execution history utilized to prioritize failing

test cases. Earlier research on TCP using AI models does

not often learn these variables that are crucial for CI

testing. In this article, a comprehensive review of the

different TCP models using deep-learning algorithms

including Reinforcement Learning (RL) is presented to

pay attention to the software testing field. Also, the merits

and demerits of those models for TCP in CI testing are

examined to comprehend the challenges of TCP in CI

testing. According to the observed challenges, possible

solutions are given to enhance the accuracy and stability

of deep learning models in CI testing for TCP.

Keywords:- Software Testing, Continuous Integration

Testing, Regression Testing, Test Case Prioritization,

Artificial Intelligence, Deep Learning, Reinforcement

Learning.

I. INTRODUCTION

Agile adoption by software firms is increasing the

popularity of continuous integration (CI) solutions [1]. CI

platforms make it possible to incorporate software upgrades

more frequently, which leads to quicker and more affordable

software testing [2]. They automatically promote functions

including build, test execution, and test results analysis to

address problems and identify faults. Regression testing is a

process that takes up a significant amount of time in a CI

cycle (also known as a build) [3]. Minimization, selection, and
priority are three categories for the techniques that support

regression testing [4-5]. Typically, the test case minimization

method minimizes the test set depending on specific

circumstances and eliminates redundant test cases. The

methods used for test case selection choose a subset of test

cases, leaving just the most crucial ones for software testing.

The TCP approaches make an effort to rearrange a test suite in

order to determine the ideal arrangement of test cases, which

improves some goals, such as early failure detection. A broad

comparison of these three regression testing techniques is

shown in Table 1.

TCP methods, one of three types of approaches, are the

most well-known in the field and the focus of this study. To

deal with the test cost, insufficient resources, and limitations

of CI platforms, most traditional TCP approaches require

adjustments [6]. For instance, due to time constraints and test

cost for a design, the adoption of search-based approaches or

others that need extensive code analysis and coverage may be

unfeasible.

Table 1. Comparison of Different Regression Test Methods in CI Platform

Component
Regression test methods

Minimization Selection Prioritization

Plan Remove the test case. Change-aware test case. Test case permutation by ordering and

prioritizing.

Benefit Useful in decreasing test

cases.

Useful in choosing change-aware

test cases.

Suitable while new test cases can often be

considered in the test case permutation.

Drawback Test cases are not change-

aware.

New test cases might be lost in the

temporary selection, i.e., change-

aware.

Time-consuming, large test suite.

http://www.ijisrt.com/

Volume 8, Issue 4, April – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23APR2084 www.ijisrt.com 2324

A. CONTINUOUS INTEGRATION PLATFORMS

In former times, a small number of developers would
work independently for an extended period of time and

would only integrate their adjustments to the master unit once

they were done. On the other hand, this method includes

drawbacks such a significant time commitment, unneeded

administrative expenses for the projects, and faults that go

undetected over extended periods of time. The quick delivery

of updates to customers was delayed by such factors.

Continuous software engineering practices like CI,

Continuous Deployment (CD), and Continuous Delivery
(CDE) have become popular and accepted by many

industries [7] as a result of the growth of the agile

development model. These practices allow for the regular

combination, testing, deployment, and quick client feedback

in a very short cycle. Figure 1 shows how these behaviors are

related to one another.

Fig.1 Overview of Association between CI, CD, and CDE Practices (Source: [3])

Before CD and CDE, CI is a vital practice to

implement. CI platforms include automated software design
and testing, helping engineering teams scale up personnel and

distribute results while also enabling software designers to

work independently on feature sets concurrently. They can

accomplish this independently and quickly if they are willing

to incorporate such traits into the final result. Buildbot [8],

GoCD [9], Integrity [10], Jenkins [11], and Travis CI [12] are

the most well-known public CI servers.

CDE focuses on packaging an artifact (i.e., the

application's construction-ready state) for distribution for

acceptance testing. The artifact must be ready to be provided
to end-clients (construction) in this manner at any time. A

CD, on the other hand, can autonomously pack, start, and

deliver the software artifact to the building site. Using CI, the

artifact used in CD and CDE was successfully transported to

the integration stage [13].

To evaluate and release new software updates quickly

and affordably, improve error identification and software

performance, integration and regression testing is a critical

task in CI platforms. This is because CI allows for quick test

feedback, which results in test cycles being time-constrained

[14]. The time costs might vary from cycle to cycle, and they
include time for selecting critical tests to run, running the

tests, and reporting test results to designers.

Therefore, using traditional TCP techniques in the CI

platform requires certain modifications. The methods must

take into account specific aspects of CI platforms, such as

parallel test case execution and resource distribution, the

unpredictable nature of test cases, which can be included and

removed in subsequent commits, and the discovery of
numerous errors as quickly as possible.

B. Test Case Prioritization

The TCP issue is described as follows, per Rothermel et

al. [15], for a test suite T, the collection of all promising

prioritizations (orderings) of T (PT), and a function f that

gauges the effectiveness of a certain prioritization from PT to

real number:

T' ∊ PT s.t. (∀T'' ∊ PT) (T''≠T')[f(T')≥f(T'')]

The goal of a TCP issue is to find the best T' possible

while achieving specific goals. Due to insufficient resources,

a full regression test suite cannot be implemented in a

regression testing scenario. TCP approaches can be time-

consuming and require each test location in some

circumstances. The fact that the coverage is maintained,

however, also makes this attribute advantageous.

Additionally, TCP permits failing test cases to be

implemented initially due to the time and cost constraints for

the test activity that delay the execution of each test case.

This ensures that the greatest possible fault coverage is
established while using fewer resources and lowering test

costs.

The following are a few objectives of TCP techniques,

according to Rothermel et al. [15]: (1) raising the test suite's

error recognition rate even before regression test execution

begins, (2) raising the system code coverage under test, (3)

raising the rate at which high-risk errors are identified, and

http://www.ijisrt.com/

Volume 8, Issue 4, April – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23APR2084 www.ijisrt.com 2325

(4) raising the likelihood that errors connected to specific

code modifications will be discovered. Several TCP
approaches have been developed in the literature to achieve

these goals.

Such approaches are divided into cost-aware, coverage-

based, distribution-based, history-based, requirement-based,
model-based, and AI-based categories based on the data used

in the TCP (as shown in Table 2) [16].

Table 2. Different Categories of TCP Methods

Category Description

Cost-aware It prioritizes test cases depending on the test case costs since their costs are not equal.

Coverage-based It prioritizes test cases depending on the code coverage.

Distribution-based It prioritizes test cases depending on the test case profile distribution.

History-based It prioritizes test cases depending on test case execution history data and code modifications.

Requirement-based It prioritizes test cases depending on data extracted from requirements.

Model-based It prioritizes test cases depending on data extracted from models like UML graphs.

AI-based
It prioritizes test cases depending on AI models such as machine learning, deep learning, and

probabilistic theories.

Search-based It prioritizes test cases depending on multiple objectives of TCP or test case execution.

The exploration of AI models incorporating machine

learning, deep learning, reinforcement learning, and

probabilistic theories along with search-based algorithms is a

recent trend that is being explored. Utilizing deep learning

and reinforcement learning models for approaching TCP

techniques in the CI platform has the potential to be a

promising fix.

The deep reinforcement learning-based TCP models

used in the CI platform for software testing are covered in-

depth in this paper. The advantages and disadvantages of
various models are also examined in order to solve the issues

and offer viable options for enhancing TCP in the CI

platform. The remaining paragraphs are organized as follows:

The various AI models for TCP in the CI platform are

reviewed in Section II. The study's conclusion and

recommendations for further research are presented in

Section III.

II. SURVEY ON TEST CASE PRIORITIZATION IN

CONTINUOUS INTEGRATION PLATFORM USING

ARTIFICIAL INTELLIGENCE MODELS

In order to automatically learn test case prioritization

and selection in the CI platform, Spieker et al. [17] presented

a novel approach called Retecs. This shortens the time

between code pushes and developer feedback on failed test

cases. Based on their execution speed, previous final

executions, and failure histories, test cases in Retecs were

chosen and prioritized using RL. Additionally, the Retecs

was taught to recognize earlier CI cycles and rank error-

prone test cases according to reward value.

An improved regression testing technique called CTFF
was created by Ali et al. [18] for CI and agile software

development. Initially, test cases that frequently change were

grouped together and given a priority. In the event of a tie,

test cases were ranked based on the corresponding failure

frequencies and coverage requirements. Then, from all

clusters, test cases with a greater frequency of failure or

coverage requirements were picked for execution.

To independently forecast the initial build in a string of

build failures as well as the residual build failures, Jin &

Servant [19] created a system called SmartBuildSkip. With

the aid of this approach, developers were given the freedom

to decide how much they wanted to sacrifice by storing

numerous builds or waiting until a build had failed. Based on

the automated build-result prediction, it can lower the cost of

CI.

An approach using Combinatorial VOlatiLE Multi-

Armed Bandit (COLEMAN) for TCP in the CI platform was

presented by Lima & Vergilio [20]. Using historical test case
failure data and RL, the MAB was merged with

combinatorial and volatile elements to adaptively discover a

sufficient prioritized test suite for all CI cycles. To prioritize

test cases and improve software privacy, Shi et al. [21]

created a new ReLU (Rectified Linear Unit)-weighted

Historical Execution (RHE) data reward function. Many

historical execution outcomes received weighted rewards

based on previous execution data with varied lengths, hence

weighted reward functions with multiple lengths for

historical outcomes were established.

In order to prioritize DNN testing based on the

statistical view of DNN for classifying high-dimensional

objects, Feng et al. [22] created a method called DeepGini.

With this approach, the problem of assessing set impurity can

be reduced along with the problem of computing

misclassification chance. As a result, the tests that were

presumably misclassified were quickly found, and the DNN's

resilience in various classification tasks was increased.

By implementing a batch update method akin to Monte

Carlo control for automatically ranking test cases,

Rosenbauer et al. [23] enhanced the learning strategy of XCS
as an RL model. Additionally, they investigated if the

prioritized experience reply for the test prioritization problem

has similar favorable impacts on XCS as it does on the neural

network. A scalable strategy for CI and regression testing in

IoT-based systems was created by Medhat et al. [24]. This

model was built using IoT-related TCP and selection criteria.

An optimized prioritized set of test cases was initially

obtained using search-based approaches. In order to

http://www.ijisrt.com/

Volume 8, Issue 4, April – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23APR2084 www.ijisrt.com 2326

periodically ensure the overall dependability of IoT-based

systems, the selection was then based on a trained prediction
model for IoT standard devices using supervised deep-

learning algorithms.

For the purpose of prioritizing hybrid and consensus

regression tests, Mondal & Nasre [25] presented the Hansie

approach. The TCP was represented as a social choice theory

rank aggregation dilemma. Priority-aware hybridization and

priority-blind computation of a consensus ordering from

different prioritizations were two components of the Hansie.

It utilized normal windows in the absence of ties and

irregular windows in the presence of ties to execute the

combined test-case orderings in parallel using several
processes, leading to a high test execution speed.

In order to increase the number of test failures found

while reducing the number of tests, Nguyen & Le [26]

created the RLTCP test prioritizing technique. To represent

the underlying association between test cases for the user

interface testing, a weighted coverage graph was constructed.

The coverage graph and RL for TCP were integrated in the

RLTCP.

For the purpose of prioritizing regression tests in CI,
Sharif et al. [27] created a time-effective deep learning-based

regression system called DeepOrder. The DNN was trained

as a regression approach using historical test data regarding

the timing and status of test cases. As a result, the number of

failed test cases was decreased and the priority of the test

cases inside a particular test suite was determined. By

incorporating the multidimensional properties of the

Extended Finite State Machine (EFSM) under test, Huang et

al. [28] created a new learn-to-rank technique for prioritizing

test cases. In order to train the ranking model for TCP, the

random forest approach included numerous heuristic

prioritization techniques.

Two distinct approaches, including the test suite-based

dynamic sliding window and the individual test case-based

dynamic sliding window for TCP, were presented by Yang et

al. [29]. For all CI tests, a fixed-size sliding window with a

preset length of recent historical data was first implemented.

Following that, techniques for dynamic sliding windows

were created, where the size of the window was constantly

adaptable to all CI testing.

At a conceptual level, Yaraghi et al. [30] proposed a

data model that gathers data sources and their linkages in a
typical CI platform. Then, using this data model, a thorough

set of features was developed, consisting of every feature

previously used by related studies. Additionally, these

attributes were used to appropriately prioritize test cases and

train machine learning models.

A brand-new Black-box TCP (BTCP) model with log

preprocessing, log representation, and TCP modules was

created by Chen et al. [31]. The LogTCP paradigm states that

different log-based BTCP schemes were created by

combining different log representation technologies with
diverse priority techniques. Using various ranking

algorithms, Bagherzadeh et al. [32] analyzed the sequential

interactions between the CI platform and the TCP as an RL

problem. Additionally, the TCP strategy was automatically

and continually learned using RL models with the aim of

getting as close to the optimum strategy as possible.

Table 3 compares all of the aforementioned AI models

for TCP in CI platforms based on their benefits and

drawbacks.

Table 3. Comparison of Different AI Models for TCP in CT Platforms

Ref. No. Models Benefits Drawbacks Dataset Performance

[17] Retecs Time consumption

was less since it did

not need to execute

computationally

intensive tasks

during prioritization.

In this model, only a

few metadata of a test

case and its history

were used.

Paint Control,

IOF/ROL, and

GSDTSR

-

[18] CTFF It achieved a high

error recognition

rate and can detect

more errors fastly.

The results were not

statistically verified

due to the use of

already collected

datasets.

Case A (CA), Case

B (CB), and Case C

(CC) datasets from

already presented

case studies

Precision:

CA=0.92;

CB=0.9;

CC=0.92

Recall:

CA=1;

CB=0.99;
CC=1

F-measure:

CA=0.96;

CB=0.93;

CC=0.96

[19] SmartBuildSkip It can save cost in

CI while

maintaining most of

its value, with the

ability to modify its

It may not be useful

for software projects

that cannot afford a

single delay in

observing failing

TravisTorrent

dataset

Recall=100%;

Saved builds=89%;

Saving efficiency=92%

http://www.ijisrt.com/

Volume 8, Issue 4, April – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23APR2084 www.ijisrt.com 2327

cost-value trade-off. builds.

[20] COLEMAN Better performance

for early fault

recognition.

It needs to learn a

relationship between

the number of test
cases and the

prioritization time for

increasing model

scalability.

Paint Control,

IOF/ROL, and

GSDTSR

Prioritization

period=0.0654sec

[21] RHE reward

function

It can maximize the

number of testing

cases that had

already discovered

faults within the

available time.

The time spent

executing functions

based on the overall

rewards was

relatively longer than

that consumed by the

partial rewards.

Paint Control,

IOF/ROL, and

GSDTSR

Execution

time=595000sec

[22] DeepGini Highly beneficial. It needs more features

to increase scalability.

MNIST, CIFAR-10,

Fashion (Zalando’s
article images), and

Street View House

Numbers (SVHN)

Mean accuracy=0.96

[23] Learning

strategy of XCS

It was a viable

solution to the

adaptive test case

selection problem.

The sample efficiency

and reproducibility

needed to improve

further.

Paint Control,

IOF/ROL, and

GSDTSR

Estimated variances of the

agents=0.019997

[24] Scalable model

using Long

Short-Term

Memory

(LSTM)

classifier

It can ensure the

total reliability of

IoT-based systems.

Advanced deep

learning such as RL

was needed to

increase the accuracy.

IoT device

connection

efficiency

Dataset and MIoT

dataset

Accuracy:

Regression testing=90%;

Integration testing=92%

[25] Hansie It achieved better

performance without
considering the test

execution history

from earlier code

modifications.

It considered only

independent unit test
cases.

12 real-time codes

from
Software-artifact

Infrastructure

Repository and 8

public projects from

GitHub

Effectiveness of change

coverage=1

[26] RLTCP It can be resilient to

drastic and

structural changes in

the test suite

because of using the

weighted coverage

graph.

The performance was

influenced by the

reward policy.

Spectrum_OR, and

Mattermost_OR

Mean ratio of test suite

execution needed for

100% fault

coverage=55.6%

[27] DeepOrder Better flexibility and
time complexity to

efficiently deal with

large-scale datasets.

It needs more features
of test cases or data

such as modification

in source code, etc.,

for increasing

efficiency.

Cisco dataset, Paint
Control, IOF/ROL,

and GSDTSR

Average mean ratio of
errors recognized=0.723

[28] Learn-to-rank

method

Efficient for

prioritizing test

cases.

The performance may

affect the construct

validation of the

experiment because it

does not consider the

time cost of test case

execution and the

fault security level.
Also, it was time-

consuming.

Monitor, INRES,

Class II, OLSR, and

SCP from EFSM

Average mean ratio of

errors recognized=0.884;

Total time cost=3.21

[29] Test suite-based It can effectively The failure rate was 14 different Average normalized mean

http://www.ijisrt.com/

Volume 8, Issue 4, April – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23APR2084 www.ijisrt.com 2328

dynamic sliding

window and the

individual test
case-based

dynamic sliding

window

improve the

prioritization effect

of test cases.

low, resulting in

many test executions

without effective
reward values that

provide slow learning

or complicated

convergence.

industrial datasets ratio of errors

recognized=37.45%;

Mean recall=72.5%

[30] Data model at a

conceptual level

It can achieve

promising results

across most

subjects.

High-quality datasets

were required to

evaluate TCP models.

Four publicly

accessible datasets

Mean accuracy=83.975%

Average mean ratio of

errors recognized=0.82

[31] LogTCP Effective for

detecting faults.

More advanced

techniques were

needed to improve the

efficiency of real-

time TCP.

- Average mean ratio of

errors recognized=0.7884

[32] RL algorithms
like pairwise

ranking, ACER,

and an actor

critic-based RL

It can achieve a
significant accuracy

enhancement to

prioritize test cases.

Hyperparameters of
RL were not

optimized. Only a

limited number of

reward functions

were analyzed, which

influence the RL

efficiency.

Simple and enriched
history datasets.

Average mean ratio of
errors recognized=0.79

III. CONCLUSION

The numerous TCP approaches based on RL and deep

learning in the CI platform were discussed in this article in

detail. Additionally, the pros and shortcomings of each model
were highlighted along with its efficiency. This investigation

revealed that the TSP problem requires the optimum

integration of various data, which deep learning or RL

enables. The TSP problem is a crucial topic in CI platforms,

with regular builds and regression testing activities. On the

other hand, RL-based or deep learning-based TCP models

solve ongoing issues. In the future, more sophisticated deep

learning and RL algorithms will need to be looked into in

order to create extremely reliable TCP models. Furthermore,

because prior RL research mainly used execution history

information for TCP, a more comprehensive feature set may
be taken into consideration for further enhancing RL

performance.

REFERENCES

[1]. I. C. Donca, O. P. Stan, M. Misaros, D. Gota, and L.

Miclea, Method for continuous integration and

deployment using a pipeline generator for agile

software projects. Sensors, 22(12), 1-18, 2022.

[2]. V. K. Makam, Continuous integration on cloud versus

on premise: a review of integration tools. Advances in

Computing, 10(1), 10-14, 2020.
[3]. M. Shahin, M. A. Babar, and L. Zhu, Continuous

integration, delivery and deployment: a systematic

review on approaches, tools, challenges and

practices. IEEE Access, 5, 3909-3943, 2017.

[4]. D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche,

Coverage‐based regression test case selection,

minimization and prioritization: a case study on an

industrial system. Software Testing, Verification and

Reliability, 25(4), 371-396, 2015.

[5]. M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, D. N and

R. Tumeng, Test case prioritization approaches in

regression testing: a systematic literature
review. Information and Software Technology, 93, 74-

93, 2018.

[6]. R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand,

Test case selection and prioritization using machine

learning: a systematic literature review. Empirical

Software Engineering, 27(2), 1-34, 2022.

[7]. O. Cico, L. Jaccheri, A. Nguyen-Duc, and H. Zhang,

Exploring the intersection between software industry

and software engineering education-a systematic

mapping of software engineering trends. Journal of

Systems and Software, 172, 1-28, 2021.
[8]. “Buildbot Basics,” Buildbot. [Online]. Available:

https://www.buildbot.net/. [Accessed: 21-Apr-2023].

[9]. “Open source continuous delivery and release

Automation Server,” GoCD. [Online]. Available:

https://www.gocd.org/. [Accessed: 21-Apr-2023].

[10]. Integrity. [Online]. Available:

https://integrity.github.io/. [Accessed: 21-Apr-2023].

[11]. Jenkins. [Online]. Available: https://www.jenkins.io/.

[Accessed: 21-Apr-2023].

[12]. “Home – travis-ci,” Travis, 29-Nov-2022. [Online].

Available: https://www.travis-ci.com/. [Accessed: 21-

Apr-2023].
[13]. S. Buchanan, J. Rangama and N. Bellavance, CI/CD

with Azure Kubernetes Service. Introducing Azure

Kubernetes Service: A Practical Guide to Container

Orchestration, 191-219, 2020.

http://www.ijisrt.com/

Volume 8, Issue 4, April – 2023 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT23APR2084 www.ijisrt.com 2329

[14]. E. A. Da Roza, J. A. P. Lima, R. C. Silva, and S. R.

Vergilio, Machine learning regression techniques for
test case prioritization in continuous integration

environment. In IEEE International Conference on

Software Analysis, Evolution and Reengineering, pp.

196-206, 2022.

[15]. G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,

Prioritizing test cases for regression testing. IEEE

Transactions on Software Engineering, 27(10), 929-

948, 2001.

[16]. R. Mukherjee, and K. S. Patnaik, A survey on different

approaches for software test case prioritization. Journal

of King Saud University-Computer and Information

Sciences, 33(9), 1041-1054, 2021.
[17]. H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige,

Reinforcement learning for automatic test case

prioritization and selection in continuous integration.

In ACM Proceedings of the 26th International

Symposium on Software Testing and Analysis, pp. 12-

22, 2017.

[18]. S. Ali, Y. Hafeez, S. Hussain, and S. Yang, Enhanced

regression testing technique for agile software

development and continuous integration

strategies. Software Quality Journal, 28, 397-423, 2020.

[19]. X. Jin, and F. Servant, A cost-efficient approach to
building in continuous integration. In Proceedings of

the ACM/IEEE 42nd International Conference on

Software Engineering, pp. 13-25, 2020.

[20]. J. A. P. Lima, and S. R. Vergilio, A multi-armed bandit

approach for test case prioritization in continuous

integration environments. IEEE Transactions on

Software Engineering, 48(2), 453-465, 2020.

[21]. T. Shi, L. Xiao, and K. Wu, Reinforcement learning

based test case prioritization for enhancing the security

of software. In IEEE 7th International Conference on

Data Science and Advanced Analytics, pp. 663-672,

2020.
[22]. Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. Chen,

Deepgini: prioritizing massive tests to enhance the

robustness of deep neural networks. In ACM

Proceedings of the 29th International Symposium on

Software Testing and Analysis, pp. 177-188, 2020.

[23]. L. Rosenbauer, A. Stein, R. Maier, D. Pätzel, and J.

Hähner, Xcs as a reinforcement learning approach to

automatic test case prioritization. In Proceedings of the

Genetic and Evolutionary Computation Conference

Companion, pp. 1798-1806, 2020.

[24]. N. Medhat, S. M. Moussa, N. L. Badr, and M. F. Tolba,
A framework for continuous regression and integration

testing in IoT systems based on deep learning and

search-based techniques. IEEE Access, 8, 215716-

215726, 2020.

[25]. S. Mondal, and R. Nasre, Hansie: Hybrid and consensus

regression test prioritization. Journal of Systems and

Software, 172, 1-42, 2021.

[26]. V. Nguyen, and B. Le, RLTCP: a reinforcement

learning approach to prioritizing automated user

interface tests. Information and Software

Technology, 136, 1-16, 2021.

[27]. A. Sharif, D. Marijan, and M. Liaaen, DeepOrder: Deep

learning for test case prioritization in continuous
integration testing. In IEEE International Conference

on Software Maintenance and Evolution, pp. 525-534,

2021.

[28]. Y. Huang, T. Shu, and Z. Ding, A learn-to-rank method

for model-based regression test case

prioritization. IEEE Access, 9, 16365-16382, 2021.

[29]. Y. Yang, C. Pan, Z. Li, and R. Zhao, Adaptive reward

computation in reinforcement learning-based

continuous integration testing. IEEE Access, 9, 36674-

36688, 2021.

[30]. A. S. Yaraghi, M. Bagherzadeh, N. Kahani, and L.

Briand, Scalable and accurate test case prioritization in
continuous integration contexts. IEEE Transactions on

Software Engineering, 1-27, 2022.

[31]. Z. Chen, J. Chen, W. Wang, J. Zhou, M. Wang, X.

Chen, and J. Wang, Exploring better black-box test case

prioritization via log analysis. ACM Transactions on

Software Engineering and Methodology, 1-33, 2022.

[32]. M. Bagherzadeh, N. Kahani, and L. Briand,

Reinforcement learning for test case

prioritization. IEEE Transactions on Software

Engineering, 48(8), 2836-2856, 2022.

http://www.ijisrt.com/

	I. INTRODUCTION
	A. Continuous Integration Platforms
	II. SURVEY ON TEST CASE PRIORITIZATION IN CONTINUOUS INTEGRATION PLATFORM USING ARTIFICIAL INTELLIGENCE MODELS
	III. CONCLUSION
	REFERENCES

