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Abstract:- Continuous Integration (CI) platforms enable 

recurrent integration of software variations, creating 

software development rapidly and cost-effectively. In 

these platforms, integration, and regression testing play 

an essential role in Test Case Prioritization (TCP) to 

detect the test case order, which enhances specific 

objectives like early failure discovery. Currently, 

Artificial Intelligence (AI) models have emerged widely to 

solve complex software testing problems like integration 

and regression testing that create a huge quantity of data 

from iterative code commits and test executions. In CI 

testing scenarios, AI models comprising machine and 

deep learning predictors can be trained by using large 

test data to predict test cases and speed up the discovery 

of regression faults during code integration. But these 

models attain various efficiencies based on the context 

and factors of CI testing such as varying time cost or the 

size of test execution history utilized to prioritize failing 

test cases. Earlier research on TCP using AI models does 

not often learn these variables that are crucial for CI 

testing. In this article, a comprehensive review of the 

different TCP models using deep-learning algorithms 

including Reinforcement Learning (RL) is presented to 

pay attention to the software testing field. Also, the merits 

and demerits of those models for TCP in CI testing are 

examined to comprehend the challenges of TCP in CI 

testing. According to the observed challenges, possible 

solutions are given to enhance the accuracy and stability 

of deep learning models in CI testing for TCP. 
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I. INTRODUCTION 

 

Agile adoption by software firms is increasing the 

popularity of continuous integration (CI) solutions [1]. CI 

platforms make it possible to incorporate software upgrades 

more frequently, which leads to quicker and more affordable 

software testing [2]. They automatically promote functions 

including build, test execution, and test results analysis to 

address problems and identify faults. Regression testing is a 

process that takes up a significant amount of time in a CI 

cycle (also known as a build) [3]. Minimization, selection, and 
priority are three categories for the techniques that support 

regression testing [4-5]. Typically, the test case minimization 

method minimizes the test set depending on specific 

circumstances and eliminates redundant test cases. The 

methods used for test case selection choose a subset of test 

cases, leaving just the most crucial ones for software testing. 

The TCP approaches make an effort to rearrange a test suite in 

order to determine the ideal arrangement of test cases, which 

improves some goals, such as early failure detection. A broad 

comparison of these three regression testing techniques is 

shown in Table 1. 
 

TCP methods, one of three types of approaches, are the 

most well-known in the field and the focus of this study. To 

deal with the test cost, insufficient resources, and limitations 

of CI platforms, most traditional TCP approaches require 

adjustments [6]. For instance, due to time constraints and test 

cost for a design, the adoption of search-based approaches or 

others that need extensive code analysis and coverage may be 

unfeasible. 

 

 

 

Table 1. Comparison of Different Regression Test Methods in CI Platform 

Component 
Regression test methods 

Minimization Selection Prioritization 

Plan Remove the test case. Change-aware test case. Test case permutation by ordering and 

prioritizing. 

Benefit Useful in decreasing test 

cases. 

Useful in choosing change-aware 

test cases. 

Suitable while new test cases can often be 

considered in the test case permutation. 

Drawback Test cases are not change-

aware. 

New test cases might be lost in the 

temporary selection, i.e., change-

aware. 

Time-consuming, large test suite. 
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A. CONTINUOUS INTEGRATION PLATFORMS 

In former times, a small number of developers would 
work independently for an extended period of time and 

would only integrate their adjustments to the master unit once 

they were done. On the other hand, this method includes 

drawbacks such a significant time commitment, unneeded 

administrative expenses for the projects, and faults that go 

undetected over extended periods of time. The quick delivery 

of updates to customers was delayed by such factors. 

Continuous software engineering practices like CI, 

Continuous Deployment (CD), and Continuous Delivery 
(CDE) have become popular and accepted by many 

industries [7] as a result of the growth of the agile 

development model. These practices allow for the regular 

combination, testing, deployment, and quick client feedback 

in a very short cycle. Figure 1 shows how these behaviors are 

related to one another. 

 

 
Fig.1 Overview of Association between CI, CD, and CDE Practices (Source: [3]) 

 

Before CD and CDE, CI is a vital practice to 

implement. CI platforms include automated software design 
and testing, helping engineering teams scale up personnel and 

distribute results while also enabling software designers to 

work independently on feature sets concurrently. They can 

accomplish this independently and quickly if they are willing 

to incorporate such traits into the final result. Buildbot [8], 

GoCD [9], Integrity [10], Jenkins [11], and Travis CI [12] are 

the most well-known public CI servers. 

 

CDE focuses on packaging an artifact (i.e., the 

application's construction-ready state) for distribution for 

acceptance testing. The artifact must be ready to be provided 
to end-clients (construction) in this manner at any time. A 

CD, on the other hand, can autonomously pack, start, and 

deliver the software artifact to the building site. Using CI, the 

artifact used in CD and CDE was successfully transported to 

the integration stage [13]. 

 

To evaluate and release new software updates quickly 

and affordably, improve error identification and software 

performance, integration and regression testing is a critical 

task in CI platforms. This is because CI allows for quick test 

feedback, which results in test cycles being time-constrained 

[14]. The time costs might vary from cycle to cycle, and they 
include time for selecting critical tests to run, running the 

tests, and reporting test results to designers. 

 

Therefore, using traditional TCP techniques in the CI 

platform requires certain modifications. The methods must 

take into account specific aspects of CI platforms, such as 

parallel test case execution and resource distribution, the 

unpredictable nature of test cases, which can be included and 

removed in subsequent commits, and the discovery of 
numerous errors as quickly as possible. 

 

B. Test Case Prioritization 

The TCP issue is described as follows, per Rothermel et 

al. [15], for a test suite T, the collection of all promising 

prioritizations (orderings) of T (PT), and a function f that 

gauges the effectiveness of a certain prioritization from PT to 

real number: 

 

T' ∊ PT s.t. (∀T'' ∊ PT) (T''≠T' )[f(T' )≥f(T'' )]  
 

The goal of a TCP issue is to find the best T' possible 

while achieving specific goals. Due to insufficient resources, 

a full regression test suite cannot be implemented in a 

regression testing scenario. TCP approaches can be time-

consuming and require each test location in some 

circumstances. The fact that the coverage is maintained, 

however, also makes this attribute advantageous. 

Additionally, TCP permits failing test cases to be 

implemented initially due to the time and cost constraints for 

the test activity that delay the execution of each test case. 

This ensures that the greatest possible fault coverage is 
established while using fewer resources and lowering test 

costs. 

 

The following are a few objectives of TCP techniques, 

according to Rothermel et al. [15]: (1) raising the test suite's 

error recognition rate even before regression test execution 

begins, (2) raising the system code coverage under test, (3) 

raising the rate at which high-risk errors are identified, and 
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(4) raising the likelihood that errors connected to specific 

code modifications will be discovered. Several TCP 
approaches have been developed in the literature to achieve 

these goals.  

 

Such approaches are divided into cost-aware, coverage-

based, distribution-based, history-based, requirement-based, 
model-based, and AI-based categories based on the data used 

in the TCP (as shown in Table 2) [16]. 

 

Table 2. Different Categories of TCP Methods 

Category Description 

Cost-aware It prioritizes test cases depending on the test case costs since their costs are not equal. 

Coverage-based It prioritizes test cases depending on the code coverage. 

Distribution-based It prioritizes test cases depending on the test case profile distribution. 

History-based It prioritizes test cases depending on test case execution history data and code modifications. 

Requirement-based It prioritizes test cases depending on data extracted from requirements. 

Model-based It prioritizes test cases depending on data extracted from models like UML graphs. 

AI-based 
It prioritizes test cases depending on AI models such as machine learning, deep learning, and 

probabilistic theories. 

Search-based It prioritizes test cases depending on multiple objectives of TCP or test case execution. 

 

The exploration of AI models incorporating machine 

learning, deep learning, reinforcement learning, and 

probabilistic theories along with search-based algorithms is a 

recent trend that is being explored. Utilizing deep learning 

and reinforcement learning models for approaching TCP 

techniques in the CI platform has the potential to be a 

promising fix. 

 

The deep reinforcement learning-based TCP models 

used in the CI platform for software testing are covered in-

depth in this paper. The advantages and disadvantages of 
various models are also examined in order to solve the issues 

and offer viable options for enhancing TCP in the CI 

platform. The remaining paragraphs are organized as follows: 

The various AI models for TCP in the CI platform are 

reviewed in Section II. The study's conclusion and 

recommendations for further research are presented in 

Section III. 

 

II. SURVEY ON TEST CASE PRIORITIZATION IN 

CONTINUOUS INTEGRATION PLATFORM USING 

ARTIFICIAL INTELLIGENCE MODELS 
 

In order to automatically learn test case prioritization 

and selection in the CI platform, Spieker et al. [17] presented 

a novel approach called Retecs. This shortens the time 

between code pushes and developer feedback on failed test 

cases. Based on their execution speed, previous final 

executions, and failure histories, test cases in Retecs were 

chosen and prioritized using RL. Additionally, the Retecs 

was taught to recognize earlier CI cycles and rank error-

prone test cases according to reward value. 

 

An improved regression testing technique called CTFF 
was created by Ali et al. [18] for CI and agile software 

development. Initially, test cases that frequently change were 

grouped together and given a priority. In the event of a tie, 

test cases were ranked based on the corresponding failure 

frequencies and coverage requirements. Then, from all 

clusters, test cases with a greater frequency of failure or 

coverage requirements were picked for execution. 

To independently forecast the initial build in a string of 

build failures as well as the residual build failures, Jin & 

Servant [19] created a system called SmartBuildSkip. With 

the aid of this approach, developers were given the freedom 

to decide how much they wanted to sacrifice by storing 

numerous builds or waiting until a build had failed. Based on 

the automated build-result prediction, it can lower the cost of 

CI. 

An approach using Combinatorial VOlatiLE Multi-

Armed Bandit (COLEMAN) for TCP in the CI platform was 

presented by Lima & Vergilio [20]. Using historical test case 
failure data and RL, the MAB was merged with 

combinatorial and volatile elements to adaptively discover a 

sufficient prioritized test suite for all CI cycles. To prioritize 

test cases and improve software privacy, Shi et al. [21] 

created a new ReLU (Rectified Linear Unit)-weighted 

Historical Execution (RHE) data reward function. Many 

historical execution outcomes received weighted rewards 

based on previous execution data with varied lengths, hence 

weighted reward functions with multiple lengths for 

historical outcomes were established. 

 
In order to prioritize DNN testing based on the 

statistical view of DNN for classifying high-dimensional 

objects, Feng et al. [22] created a method called DeepGini. 

With this approach, the problem of assessing set impurity can 

be reduced along with the problem of computing 

misclassification chance. As a result, the tests that were 

presumably misclassified were quickly found, and the DNN's 

resilience in various classification tasks was increased. 

 

By implementing a batch update method akin to Monte 

Carlo control for automatically ranking test cases, 

Rosenbauer et al. [23] enhanced the learning strategy of XCS 
as an RL model. Additionally, they investigated if the 

prioritized experience reply for the test prioritization problem 

has similar favorable impacts on XCS as it does on the neural 

network. A scalable strategy for CI and regression testing in 

IoT-based systems was created by Medhat et al. [24]. This 

model was built using IoT-related TCP and selection criteria. 

An optimized prioritized set of test cases was initially 

obtained using search-based approaches. In order to 
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periodically ensure the overall dependability of IoT-based 

systems, the selection was then based on a trained prediction 
model for IoT standard devices using supervised deep-

learning algorithms. 

 

For the purpose of prioritizing hybrid and consensus 

regression tests, Mondal & Nasre [25] presented the Hansie 

approach. The TCP was represented as a social choice theory 

rank aggregation dilemma. Priority-aware hybridization and 

priority-blind computation of a consensus ordering from 

different prioritizations were two components of the Hansie. 

It utilized normal windows in the absence of ties and 

irregular windows in the presence of ties to execute the 

combined test-case orderings in parallel using several 
processes, leading to a high test execution speed. 

 

In order to increase the number of test failures found 

while reducing the number of tests, Nguyen & Le [26] 

created the RLTCP test prioritizing technique. To represent 

the underlying association between test cases for the user 

interface testing, a weighted coverage graph was constructed. 

The coverage graph and RL for TCP were integrated in the 

RLTCP. 

 

For the purpose of prioritizing regression tests in CI, 
Sharif et al. [27] created a time-effective deep learning-based 

regression system called DeepOrder. The DNN was trained 

as a regression approach using historical test data regarding 

the timing and status of test cases. As a result, the number of 

failed test cases was decreased and the priority of the test 

cases inside a particular test suite was determined. By 

incorporating the multidimensional properties of the 

Extended Finite State Machine (EFSM) under test, Huang et 

al. [28] created a new learn-to-rank technique for prioritizing 

test cases. In order to train the ranking model for TCP, the 

random forest approach included numerous heuristic 

prioritization techniques. 
 

Two distinct approaches, including the test suite-based 

dynamic sliding window and the individual test case-based 

dynamic sliding window for TCP, were presented by Yang et 

al. [29]. For all CI tests, a fixed-size sliding window with a 

preset length of recent historical data was first implemented. 

Following that, techniques for dynamic sliding windows 

were created, where the size of the window was constantly 

adaptable to all CI testing. 

 

At a conceptual level, Yaraghi et al. [30] proposed a 

data model that gathers data sources and their linkages in a 
typical CI platform. Then, using this data model, a thorough 

set of features was developed, consisting of every feature 

previously used by related studies. Additionally, these 

attributes were used to appropriately prioritize test cases and 

train machine learning models. 

 

A brand-new Black-box TCP (BTCP) model with log 

preprocessing, log representation, and TCP modules was 

created by Chen et al. [31]. The LogTCP paradigm states that 

different log-based BTCP schemes were created by 

combining different log representation technologies with 
diverse priority techniques. Using various ranking 

algorithms, Bagherzadeh et al. [32] analyzed the sequential 

interactions between the CI platform and the TCP as an RL 

problem. Additionally, the TCP strategy was automatically 

and continually learned using RL models with the aim of 

getting as close to the optimum strategy as possible.   

 

Table 3 compares all of the aforementioned AI models 

for TCP in CI platforms based on their benefits and 

drawbacks. 

 

Table 3. Comparison of Different AI Models for TCP in CT Platforms 

Ref. No. Models Benefits Drawbacks Dataset Performance 

[17] Retecs Time consumption 

was less since it did 

not need to execute 

computationally 

intensive tasks 

during prioritization. 

In this model, only a 

few metadata of a test 

case and its history 

were used. 

Paint Control, 

IOF/ROL, and 

GSDTSR 

- 

[18] CTFF It achieved a high 

error recognition 

rate and can detect 

more errors fastly. 

The results were not 

statistically verified 

due to the use of 

already collected 

datasets. 

Case A (CA), Case 

B (CB), and Case C 

(CC) datasets from 

already presented 

case studies 

Precision: 

CA=0.92; 

CB=0.9; 

CC=0.92 

Recall: 

CA=1; 

CB=0.99; 
CC=1 

F-measure: 

CA=0.96; 

CB=0.93; 

CC=0.96 

[19] SmartBuildSkip It can save cost in 

CI while 

maintaining most of 

its value, with the 

ability to modify its 

It may not be useful 

for software projects 

that cannot afford a 

single delay in 

observing failing 

TravisTorrent 

dataset 

Recall=100%; 

Saved builds=89%; 

Saving efficiency=92% 

http://www.ijisrt.com/


Volume 8, Issue 4, April – 2023                               International Journal of Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165  

 

IJISRT23APR2084                                                            www.ijisrt.com                   2327 

cost-value trade-off. builds. 

[20] COLEMAN Better performance 

for early fault 

recognition. 

It needs to learn a 

relationship between 

the number of test 
cases and the 

prioritization time for 

increasing model 

scalability. 

Paint Control, 

IOF/ROL, and 

GSDTSR 

Prioritization 

period=0.0654sec 

[21] RHE reward 

function 

It can maximize the 

number of testing 

cases that had 

already discovered 

faults within the 

available time. 

The time spent 

executing functions 

based on the overall 

rewards was 

relatively longer than 

that consumed by the 

partial rewards. 

Paint Control, 

IOF/ROL, and 

GSDTSR 

Execution 

time=595000sec 

[22] DeepGini Highly beneficial. It needs more features 

to increase scalability. 

MNIST, CIFAR-10, 

Fashion (Zalando’s 
article images), and 

Street View House 

Numbers (SVHN) 

Mean accuracy=0.96 

[23] Learning 

strategy of XCS 

It was a viable 

solution to the 

adaptive test case 

selection problem. 

The sample efficiency 

and reproducibility 

needed to improve 

further. 

Paint Control, 

IOF/ROL, and 

GSDTSR 

Estimated variances of the 

agents=0.019997 

[24] Scalable model 

using Long 

Short-Term 

Memory 

(LSTM) 

classifier 

It can ensure the 

total reliability of 

IoT-based systems. 

Advanced deep 

learning such as RL 

was needed to 

increase the accuracy. 

IoT device 

connection 

efficiency 

Dataset and MIoT 

dataset 

Accuracy: 

Regression testing=90%; 

Integration testing=92% 

[25] Hansie It achieved better 

performance without 
considering the test 

execution history 

from earlier code 

modifications. 

It considered only 

independent unit test 
cases. 

12 real-time codes 

from 
Software-artifact 

Infrastructure 

Repository and 8 

public projects from 

GitHub 

Effectiveness of change 

coverage=1 

[26] RLTCP It can be resilient to 

drastic and 

structural changes in 

the test suite 

because of using the 

weighted coverage 

graph. 

The performance was 

influenced by the 

reward policy. 

Spectrum_OR, and 

Mattermost_OR 

Mean ratio of test suite 

execution needed for 

100% fault 

coverage=55.6% 

[27] DeepOrder Better flexibility and 
time complexity to 

efficiently deal with 

large-scale datasets. 

It needs more features 
of test cases or data 

such as modification 

in source code, etc., 

for increasing 

efficiency. 

Cisco dataset, Paint 
Control, IOF/ROL, 

and GSDTSR 

Average mean ratio of 
errors recognized=0.723 

[28] Learn-to-rank 

method 

Efficient for 

prioritizing test 

cases. 

The performance may 

affect the construct 

validation of the 

experiment because it 

does not consider the 

time cost of test case 

execution and the 

fault security level. 
Also, it was time-

consuming. 

Monitor, INRES, 

Class II, OLSR, and 

SCP from EFSM 

Average mean ratio of 

errors recognized=0.884; 

Total time cost=3.21 

[29] Test suite-based It can effectively The failure rate was 14 different Average normalized mean 
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dynamic sliding 

window and the 

individual test 
case-based 

dynamic sliding 

window 

improve the 

prioritization effect 

of test cases. 

low, resulting in 

many test executions 

without effective 
reward values that 

provide slow learning 

or complicated 

convergence. 

industrial datasets ratio of errors 

recognized=37.45%; 

Mean recall=72.5% 

[30] Data model at a 

conceptual level 

It can achieve 

promising results 

across most 

subjects. 

High-quality datasets 

were required to 

evaluate TCP models. 

Four publicly 

accessible datasets 

Mean accuracy=83.975% 

Average mean ratio of 

errors recognized=0.82 

[31] LogTCP Effective for 

detecting faults. 

More advanced 

techniques were 

needed to improve the 

efficiency of real-

time TCP. 

- Average mean ratio of 

errors recognized=0.7884 

[32] RL algorithms 
like pairwise 

ranking, ACER, 

and an actor 

critic-based RL 

It can achieve a 
significant accuracy 

enhancement to 

prioritize test cases. 

Hyperparameters of 
RL were not 

optimized. Only a 

limited number of 

reward functions 

were analyzed, which 

influence the RL 

efficiency. 

Simple and enriched 
history datasets. 

Average mean ratio of 
errors recognized=0.79 

 

III. CONCLUSION 

 

The numerous TCP approaches based on RL and deep 

learning in the CI platform were discussed in this article in 

detail. Additionally, the pros and shortcomings of each model 
were highlighted along with its efficiency. This investigation 

revealed that the TSP problem requires the optimum 

integration of various data, which deep learning or RL 

enables. The TSP problem is a crucial topic in CI platforms, 

with regular builds and regression testing activities. On the 

other hand, RL-based or deep learning-based TCP models 

solve ongoing issues. In the future, more sophisticated deep 

learning and RL algorithms will need to be looked into in 

order to create extremely reliable TCP models. Furthermore, 

because prior RL research mainly used execution history 

information for TCP, a more comprehensive feature set may 
be taken into consideration for further enhancing RL 

performance. 
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