
Volume 7, Issue 9, September – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22SEP122 www.ijisrt.com 366

Optimizing Multi-Dimensional Data-Index

Algorithms for Mic Architectures

Seid Mehammed1, Demeke Getaneh1, Md Nasre Alam1, Getachew Worku1, Tizazu bayih2

1Department of computer science, Woldia University
2Department of Information Technology, Woldia University

Abstract:- A data structure for geographical partitioning

called multi-dimensional data-indexing enables effective

CPU-based nearest-neighbor searches. Despite not being a

natural match for Many-Integrated Core Architecture

(MIC) implementation, depth-first search Multi-

Dimensional Data-Indexing can nevertheless be successful

with the right engineering choices.

We suggested a technique that minimizes data

structure memory trace by limiting the maximum height of

the DFS Multi-Dimensional Data-Indexing.

With tens of thousands to tens of millions of points in

the MIC kernel code, we optimize the multi-core MIC NN

search. In comparison to a single-core CPU of equivalent

power, it is 20–40 times quicker. NN uses the knowledge

obtained from improving MIC code to find ways to rewrite

CPU code.

As a consequence, the initial level of CTA and

engineering choices to make the Multi-Dimensional Data-

Indexing search algorithm on CPU and MIC simpler

account for the bulk of the parallel performance in this

study. Threads inside each thread warp split onto several

search pathways for the second level of CTA using Multi-

Dimensional Data-Indexing.

Thread divergence removes the majority of the

performance benefit of employing multiple threads per

thread-block. Experiments in this article reveal that small

thread block sizes produce the best results.

Keyword:- Multi-Dimensional Data-Indexing, MIC, depth-first

search, Thread-block size.

I. INTRODUCTION

The NN issue is crucial in several fields of computer

science, including computer graphics, machine learning, pattern

recognition, statistics, and data mining, among others. It

determines which point in a point cloud is nearest to a given
query point. . [1].

There are a number of issues with NN search despite its

significance and widespread use. n search points, S, and m

query points, Q, as well as a distance measure in d dimensions,

make up each NN search's input. The Euclidean distance

between search point p ∈ S and query point q∈Q is dist (p, q)

= √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 + ⋯ + (𝑞𝑑 − 𝑝𝑑)2. The output

consists of the km nearest points, where k is the number of

requested nearest points in the search set S for each query point

in Q.

Finding the closest point (k=1) in the search set S for each

query point in Q under the distance metric dist results in the
output set R comprising m result points for the query nearest

neighbor (QNN) search.

Generalize QNN to find the k closest points in the search

set S for each query point in Q for the 'k' nearest neighbor (kNN)

search (producing R containing km points). We assume that the

query set Q and the search set S are the same (Q=S) for all

nearest neighbor searches (NN and kNN). We suppose that Q=S

introduces a new problem in which zero-distance results must

be carefully excluded; otherwise, each query point would

appear in the search results.

A few other NN searches can be supported by Multi-

Dimensional Data-Indexing. Find all points from the search set

S contained in each query region belonging to the query set QR

using the range query closest neighbor (RNN) search (region).

With this method, each region receives a different quantity of

result points. [2].

II. RELATED WORK

In this section, we briefly discuss NN solutions, Multi-

Dimensional Data Indexing s, and related NN work on the MIC.

 NN Solutions

A brute force QNN exploration could directly compare

query point to all 𝑛 point in search set.

For our NN search solution, focus on the Multi-

Dimensional Data Indexing, generalized binary tree invented

[4] and improved by several researcher in the year. According

to [2] detail an efficient nearest neighbor (NN) algorithm using

a depth-first search (DFS) balance Multi-Dimensional Data

Indexing, a priority queue, and a trim optimization to avoid
unproductive search paths. This approach result in

O(log 𝑛) expected search times for each query point on well-

distributed point sets. In [5] author implemented a fast and

efficient version of NN search in his book.

http://www.ijisrt.com/

Volume 7, Issue 9, September – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22SEP122 www.ijisrt.com 367

 Multi-Dimensional Data Indexing Review

Multi-Dimensional Data-Indexing is hierarchical spatial
partitioning data structure that to organize objects in d-

dimensional space. Multi-Dimensional Data-Indexing partitions

points and more complicate objects into axis-align cells called

nodes. This cutting plane partitions all points at each parent

node into left and right child nodes.

Variations on Multi-Dimensional Data-Indexing s differ

in how cutting plane is pick. Multi-Dimensional Data-Indexing

for search set S of n d-dimensional points takes O(d∙n) storage

and can be built in O(𝑑. 𝑛 log 𝑛)time. Build Multi-Dimensional

Data-Indexing on the CPU and then transfer the kd-nodes onto
the MIC.

To perform a nearest neighbor search in a Multi-

Dimensional Data-Indexing, one can imagine traversing the

entire tree, computing the distance of the query to the search

points stored at each node while keeping track of the nearest

neighbor point found thus far. Search queries (QNN, kNN , and

RNN) that return t results have been show to take worst-case

O(𝑑. 𝑛(1−1
𝑑⁄) + 𝑡) time for all search point sets and expected

O(log2(𝑛) + 𝑡)time for well-distributed search point sets.

For the 2D All-NN and All-𝑘NN searches, multiply the

theoretical cost of a single point query by the number of points

(n) in our search set, giving O(n√𝑛+tn) worst-case time and

O(log2(𝑛) + 𝑡𝑛) expected time using a balance Multi-

Dimensional Data-Indexing implementation[3]. In addition to

performing NN search, Multi-Dimensional Data-Indexing s can

also solve point location, range search, and partial key retrieval

problems [6].

 Related NN work on the MIC

The initial NN search solutions for MIC solutions were

carried out by brute force, comparing each of the m points in Q

to each of the n points in S. It takes O (n/p) time for each query

point qi to compute the n query to search point distances using

p threads. This is followed by a parallel reduction to determine

the shortest distance for that query point, which also takes O

(n/p) time. implemented a bucket sort to divide 3D points into

fixed-size grid cells, followed by a brute force search in each

query point's 333 cell vicinity. [6].

Implement a brute force NN algorithm in Intel VTune

Amplifier XE for MIC with a 100+ to 1 speedup compared to

the equivalent algorithm in MATLAB.

According to [8] built a breadth-first search MIC Multi-

Dimensional Data-Indexing in Intel VTune Amplifier XE for

MIC with splitting metric that combine empty space splitting

and median splitting. SAH Multi-Dimensional Data-Indexing

accelerate ray tracing, while VVH Multi-Dimensional Data-

Indexing accelerated NN search.

NN search iterate using a range region search and by

increasing fixed radius of the search region on each iteration.
The Multi-Dimensional Data-Indexing built about 9-13 times

faster than the CPU kd-tree. The MIC kNN search ran 7-10

times faster than the CPU kNN search. Developed a MIC ANN

search based on the [2] approach with a kd-tree to assist in

solving a 3D registration problem on the MIC[9]. The Multi-

Dimensional Data-Indexing is built on the host CPU and then

transfer to the MIC before running ANN. ANN search

backtracks to candidate nodes using small fixed-length queue.

According to [6], MIC registration was 88 times faster

than CPU registration. Inappropriately, performance

comparison between MIC and CPU ANN search was not broken
out from overall results.

 The Multi-Dimensional Data-Indexing Data Structure

Our NN search algorithm is adapted from [2]. It uses

minimal Multi-Dimensional Data-Indexing, a search stack, and

trims optimization. Demonstrate this solution for 2D points,

although later in the paper, also do performance experiments on

3D and 4D points.

 Multi-Dimensional Data-Indexing Search Concepts

To help the reader understand the Multi-
Dimensional Data-Indexing search, briefly enumerate the

following six concepts: Each kd-node contains a search point

‹x, y, ..›. Best distance variable tracks the closest solution found

so far

When doing a depth-first search (DFS), onside nodes are

explored first, and overlapping offside nodes are stored for

further inspection in a search stack. A kd-node index,

onside/offside status, split axis, and split value are all attributes

of each element kept on the search stack.

 Multi-Dimensional Data-Indexing NN Search
Our iiMulti-Dimensional iData-Indexing isearch

ialgorithm iworks ias ifollows. iThe iroot isearch ielement

i(root iindex, ionside, ix-axis) iis ipush ionto istack. i

If ithe inode iis ionside, ithe icurrent ikd-node

iloads ifrom ithe inode iindex. iNext, iif idistance

ibetween iquery ipoint iand ithe icurrent inode isearch

ipoint iis ismaller ithan icurrent ibest I our imethod

iupdates ithe ibest idistance iand ibest iindex.

The iinterval icontaining ithe iquery ipoint iis ithe
ionside inode, iand ithe iremaining iinterval iis ithe

ioffside inode. iIf ikept, ian ioffside isearch ielement

iis ipush ionto ithe isearch istack. iThe ionside isearch

ielement iis ialways ipush ionto ithe isearch istack.

iWhen ithe isearch istack I becomes iempty, ithe ibest

idistance iand ibest iindex iindicate I nearest ineighbor.

http://www.ijisrt.com/

Volume 7, Issue 9, September – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22SEP122 www.ijisrt.com 368

III. OUR PROPOSED SOLUTION

 MIC Hardware Considerations

Consider the following seven concepts: memory hierarchy

access speeds, floating-point, memory hierarchy capacities,

memory alignment, coalescence, thread-block size, and

divergent branching in our proposed approach.

 Memory Hierarchy:

Registers, shared memory, constant memory, and global

memory are the quickest to slowest access speeds in the MIC

memory hierarchy (RAM). Local variables should be kept in

registers, simple indexed data structures should be kept in

shared memory, and points and Multi-Dimensional Data-
Indexing nodes should be kept in global memory for better

performance. The number of data transfers from slower RAM

to quicker shared memory has been reduced.

A single read per loop is used in the NN search code. In a

1 million search and query point QNN search, for example, each

query visits roughly 40-80 kd-nodes (one read per node) to

locate the exact response.

 Floats:

MIC architecture support both 32-bit and 64-bit floating-
point data. Focus only on 32-bit floating-point data. In handful

of queries, our MIC and CPU NN search return slightly different

neighbors.

 Memory Capacity:

For 2D points, reduce kd-nodes from eight to two fields.

To store query points, kd-nodes, and final search results, the 2D

QNN search requires just seven 32-bit components per 2D

point. The QNN search was able to process up to 36 million 2D

points on the MIC using this method.

 Memory Alignment:
Data structures aligned on 4, 8, or 16-byte memory

boundary perform faster than unaligned data.

 Coalescence:

Only sequential memory accesses are coalesced by MIC.

All threads within a thread-warp start their searches at the root

node with NN depth-first search (DFS) through Multi-

Dimensional Data-Indexing, but shortly diverge to distinct

unanticipated sub-trees within the Multi-Dimensional Data-

Indexing and therefore different portions of memory. NN

searches on DFS Multi-Dimensional Data Indexing don't
always result in consecutive scans across the data warp,

therefore coalescence isn't possible.

 Latency:

The MIC programmer hides latency via TLP by

scheduling a massive grid of thread blocks, but block

performance is still constrained by the slowest thread in each

block. The grid can hold up to 65,536 thread blocks in any

dimension. Each thread-block can hold a maximum of 5128

threads. For MIC, the thread manager distributes thread-blocks

across 16 SMs, each with 16 SPs. Create a thread for each query
point in our NN search. We may use padded access to pad our

query up to the next multiple of the thread-block size by

repeating the first query until it reaches that multiple. This

method eliminates the range check contrast that would increase
the gap between the first and second query results.

 Divergent Branching:

All threads in a thread block must follow both the "if" and

"else" branch routes if at least two threads diverge at a

conditional branch. Correct conduct, which accepts the

performance impact brought on by divergence, necessitates the

conditional logic that is still in place. Process the All-NN and

All-kNN searches in a sequential Multi-Dimensional Data-

Indexing order to improve the coherence of all threads in the

thread block. As a result, the All-NN search outperforms the

QNN search by 5–6%. As a trade-off, All-kNN search performs
somewhat worse than kNN search.

Thread-Block Size (TBS): There are 16 KB of shared

memory and 8 K of 32-bit registers that can be used by each

MIC core. Our present NN search limits the maximum number

of threads per SM to 2565 since temporary variables use roughly

24-32 registers. 192–240 bytes of shared memory are needed for

QNN and All-NN searches on data structures like 20–28

element deep stacks. Depending on the search type and the size

of the input data, our performance trials showed that an optimal

thread-block size for our DFS Multi-Dimensional Data-
Indexing NN search is between 8 and 16 threads per block.

 Multi-Dimensional Data-Indexing Design Choice

Based on the MIC hardware limits, sought to efficiently

use MIC memory resource. Such a goal suggests bounding the

Multi-Dimensional Data-Indexing height and reducing size of

data structure in memory.

 Bounding Multi-Dimensional Data-Indexing

Height:

Shared memory is target for our NN search stack Each

MIC core only has 16KB of shared memory available to all
threads. Have no more than 256 bytes available for all data if

employing 64 threads per thread-block.

Give the following examples of balanced, static, and

efficient array layouts:

 Balanced Multi-Dimensional Data-Indexing:

A balanced Multi-dimensional Data-Indexing of

maximum height⌈(log2 𝑛)⌉, with a difference of at most one

level across all leaf nodes, is built by setting the cutting plane
through median point of each sub-tree.

 Reducing Memory Foot print:

To increase the number of points in MIC memory, reduce

the size of the Multi-Dimensional Data-Indexing data structure.

kd-node fields include child pointers, parent pointers, split-axis,

split-value, cell bounding-box, and stored-point.

 Array Layout:

Store the kd-nodes in an array as a left-balanced binary

tree for faster indexing. The Kd-node is initially constructed as

a left-balanced median. As part of the build process, Multi-
Dimensional Data-Indexing converts to a left balance binary

tree.

http://www.ijisrt.com/

Volume 7, Issue 9, September – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22SEP122 www.ijisrt.com 369

 D-Dimensionality:

In these NN searches, use points with 2-4 dimensions x,
y,... to decrease the amount of data saved on the MIC. Search

can also be expanded to include more dimensions.

 Eliminating fields:

The parent pointer can be avoided by using the search

stack in NN search to go backward. The split axis and split value

are implied if a cyclic multi-dimensional data indexing tree

splits x, y, x, y, etc. The split value is implied by the store d-

dimensional-point. Cell bounding boxes are not required for the

NN search.

 Final Design:

As a 2D, 3D, and 4D static balance cyclic data structure,

utilize our DFS Multi-Dimensional Data-Indexing data
structure. For multi-dimensional data indexing, a single left-

balance median point store is employed at each node. The nodes

of Multi-Dimensional Data-Indexing are stored in a left-

balanced binary tree array. In order to implement NN search,

deep-first search with stack for backtracking is used. With this

multidimensional data indexing design, predictable stack sizes

are constrained by height. reduces the memory footprint of the

Multi-Dimensional Data-Indexing and search nodes.

 Building the Multi-Dimensional Data-Indexing

As we show in

, (left panel), compute the minimum and maximum bound

of search-points. The root of Multi-Dimensional Data-Indexing

is conceptually associate with these min-max bound and

sequence [1, n] of original point. Split-value is pick along one

of dimensional axes. All points are partition into two smaller

left and right boxes based on splitting value. Each child node

has a bounding box and a partitioned sequence of points

associated with it. Up until specific halting requirements are

met, Multi-Dimensional Data-Indexing is iteratively refined by

dividing each child sub-tree, associated box, and associated

point sequences.

The quick median algorithm uses the same partition sub-

routine as the quicksort method, which is utilized for sorting.

There are two stages to each iteration of a selection:

 Pivot phase:

An algorithm chooses a potential pivot value p by

averaging three different methods.

 Partition Phase:

The pivot value is use to partition point into three data set.

Left: points less than p, Middle: all points equal to the pivot

value, and Right: all points greater than or equal to p. Construct

the Multi-Dimensional Data-Indexing on the CPU and then
transfer it to the MIC for the MIC NN search. A high-level

overview is found in

 (left-panel).

Multi-Dimensional Data-Indexing builds an algorithm

from a list of search point (left-panel).

A single query point's perspective on the Multi-

Dimensional Data-Indexing search method (right-panel).

 Searching the Multi-Dimensional Data-Indexing
Our NN search solutions are based on the Multi-

Dimensional Data-Indexing search solution, already

described in Section 2.1. This same search solution

can be simplified and adapt to solve the Point

Location problem as described in section 3.4.1. Give

more details on a CPU Host function for the QNN and

All-NN search solutions in section 3.4.2. kNN and

All-kNN search solutions must track k closest points,

so introduce more details on how to handle these k

points in 3.4.3. The data structure use to track the k

closest point also use shared memory.

 Point Location Problem:

May easily locate objects in a Multi-Dimensional Data-

Indexing by moving down the tree until the interest cell is

identified, and then searching for the point of interest inside

that cell.

 NN Search Remapping Issue:

Directly translate the kd-tree NN search algorithm into

code to tackle any NN search problem, including QNN.

http://www.ijisrt.com/

Volume 7, Issue 9, September – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22SEP122 www.ijisrt.com 370

Fig 1: Build & Search Methods

 Performance Results

In this section, we compare parallel NN search
performance on the MIC to serial NN search performance on

the CPU. As we show below all performance tests, were

conducts on Intel MIC using a desktop computer configures.

CPU Hardware: CPU = i7-920@2.67 GHz, RAM=12

GB MIC Hardware:2× MIC(30 SMs, 240 total SPs, 1.0 GB

RAM, 159.0 GB/s peak throughput)

Software: MIC API= C++, IDE = Intel VTune

Amplifier XE, OS =LINUX, Pointers= 64-bit
Data: Input size, n=[100 – 107], in increasing powers

of ten

 NN Search Experiment Environment
For each NN search type, TLP tests identify the optimal

thread block size (TBS), and experiments to demonstrate the

performance for growing input sizes (n) and growing search

sizes are conducted as part of these performance trials (k).

 Multidimensional Data Indexing Construction on the

CPU.

As we, show Error! Reference source not

found. shows the CPU cost of building the Multi-

Dimensional Data-Indexing for different numbers of

2D-points.

Table 1: CPU Build Performance

𝒏, # of points 1 10 102 103 104 105 106 107

Build Time (in ms) 0.019 0.045 0.151 2.43 22.74 192.52 2,165.31 24,491.28

Time/Pnt (ms/pnt) 0.014 0.0043 0.00165 0.00165 0.00214 0.00163 0.00179 0.00202

http://www.ijisrt.com/
mailto:i7-920@2.67

Volume 7, Issue 9, September – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22SEP122 www.ijisrt.com 371

Amortize time per point to build Multi-Dimensional

Data-Indexing initially decreases and then surprisingly levels
off after 100 points. Expect time per point to increase,

matching theoretical O(n∙log n) performance. Our best guess

for this surprising result is that some CPU caching effects

came into play.

 Finding optimal thread-block size

For each of our NN searches, manually try thread-block

sizes containing between 1 and 80 threads to discover the best

thread-block size on Intel MIC. Table 1 (panels a-c) shows

the results of 2D QNN, All-NN, kNN, and All-kNN for data

sets with 1 million and 10 million search points, respectively.

Optimal thread-block 10x1 with a speedup of 46.4 for

QNN 1 million search points. It was 7x1 with a speedup of

43.6 for 10 million points. The ideal thread block for All-NN

of 1 million points was 10x1 with a speedup of for 10 million

points; it was 10x1 with a speedup of 36.8. The best thread-

block for kNN with 1 million search points and k=32 was

4x1, with a speedup of 18.1. The optimum thread-block for

an All-kNN search with 1 million points and k = 32 was 4x1,

with a speedup of 15.7.

As we show Fig depict a) The graph plots MIC or CPU
speedup for 2Ds QNN, All-NN search for increasing thread

block-size with fixed-size search and query data set of one

million point. b) Graph is the same but for 2D kNN and All-

kNN searches. c) The graph plots the 2D QNN, All-NN

speedup for 10 million points. d) Graph track 2D kNN and

All-kNN speedups for increasing values of n. e) Graph tracks

2D QNN and All-NN speedups for increasing values of n. f)

The graph tracks 2D kNN and All-kNN speedups for

increasing values of k from 1-32.

In panels, d-f in Fig, increase n, total number of search

point across MoreThan few order of magnitude using optimal

thread-block size for each type of NN search.

 Increasing n:

The largest speed-up is achieved for n=10 million for

2D QNN; speed-ups range from [20 - 41.5]. See comparable

outcomes for All-NN: the increases in the range of [20 -

36.8]; maximum again at 10 million points. For both search,

if n≤100 points, it is better to use brute force solution.

For 2D kNN and All-kNN, set k=32. For kNN, see

speedups in the range [14-18] with the maximum at 1 million

points. There is enough memory to run a query with 10

million points, but then have to decrease k = 8 for both the

search stack and closest heap to fit into shared memory.

When decrease, see speedup of 23.4. For All-kNN, see speed-

up in the range [12-15.7] with the maximum again at 1

million points.

 Increasing k:

Set n=106 for the 2D searches, and change k between
1-32. The speed-up appears to follow a shallow inverse

quadratic curve in both instances. . All the speedups for the

kNN search are in the range [17.9 - 22.7] with k=6 as the

maximum. The outcomes are comparable for the All-kNN

search, with speedups in [15.7 - 18.4] with the maximum at

k=3.

http://www.ijisrt.com/

Volume 7, Issue 9, September – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22SEP122 www.ijisrt.com 372

Fig 2: Multi-Dimensional Data-Indexing Search Results

IV. CONCLUSION

QNNs, kNNs, All-NN, and All-kNN search algorithms

are validated using DFS minimal Multi-Dimensional Data

Indexing. Each node in the static, balanced, cyclical Minimal

Multi-Dimensional Data-Indexing architecture stores a single

point that corresponds to the left-balance median split along

the current axis. Our Multi-Dimensional Data-Indexing

architecture can handle more points with better speed because
of the efficient memory use.

Serial NN search on the CPU takes longer than parallel

NN search on the MIC, which can handle up to 38 million 2D

points. Multi-core MIC QNN searches are 25–40 times

quicker than single-core CPU QNN searches. In comparison

to the All-NN search on the CPU, the All-NN search on the

MIC is 10–40 times quicker. The kNN search is 14–20 times

quicker on the MIC than on the CPU. The MIC all-kNN

search is 9–18 times quicker than the CPU all-kNN search.

The CPU serial NN search process is considerably
slower than the MIC parallel NN search method, which can

handle up to 22 million 3D points. Ten to thirty times quicker

than a single-core CPU QNN search is a multi-core MIC

QNN search. In comparison to the All-NN search on the CPU,

the All-NN search on the MIC is 12–30 times quicker. The

speed of the MIC kNN search is 8–18 times quicker than the

CPU kNN search.

MIC CPU ALL-kNN searches are 8–16 times quicker

than GPU ALL-kNN searches. MIC Parallel NN searches are

quicker than serial NN searches on the CPU and can handle
up to 22 million 4D points. 8 to 22 times quicker than single-

core CPU QNN searches are multi-core MIC QNN searches.

MIC In comparison to the GPU All-NN search, the CPU All-

NN search is 11–21 times quicker. The CPU-based kNN

search is 6–14 times slower than the MIC kNN search. MIC

Compared to the GPU All-kNN search, the CPU ALL-kNN

search is 6–13 times quicker.

REFERENCES

[1]. G. Shakhnarovich, T. Darrell, and P. Indyk, "Nearest-

neighbor methods in learning and vision", in Neural

Information Processing, 2005.

[2]. S. Arya, G. D. Da Fonseca, and D. M. Mount, "A unified

approach to approximate proximity searching", in

European Symposium on Algorithms, 2010: Springer,

pp. 374-385.
[3]. H. Samet. "Foundations of multidimensional and metric

data structures". Morgan Kaufmann, 2006.

[4]. J. L. Bentley, "Multidimensional binary search trees

used for associative searching", Communications of the

ACM, vol. 18, no. 9, pp. 509-517, 1975.

[5]. M. Jensen, "Value maximization, stakeholder theory,

and the corporate objective function", European

financial management, vol. 7, no. 3, pp. 297-317, 2001.

[6]. D. Qiu, S. May, and A. Nüchter, "GPU-accelerated

nearest neighbor search for 3D registration", in

International conference on computer vision systems,

2009: Springer, pp. 194-203.
[7]. T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen,

and P. Hanrahan, "Photon mapping on programmable

graphics hardware," in ACM SIGGRAPH 2005

Courses, pp. 258-es, 2005.

[8]. K. Zhou, Q. Hou, R. Wang, and B. Guo, "Real-time kd-

tree construction on graphics hardware", ACM

Transactions on Graphics (TOG), vol. 27, no. 5, pp. 1-

11, 2008.

[9]. S. S. Skiena. "The algorithm design manual". Springer

International Publishing, 2020.

http://www.ijisrt.com/

	Optimizing Multi-Dimensional Data-Index Algorithms for Mic Architectures
	Abstract:- A data structure for geographical partitioning called multi-dimensional data-indexing enables effective CPU-based nearest-neighbor searches. Despite not being a natural match for Many-Integrated Core Architecture (MIC) implementation, depth...
	 MIC Hardware Considerations
	 Building the Multi-Dimensional Data-Indexing
	 Searching the Multi-Dimensional Data-Indexing
	 Point Location Problem:

	 Performance Results
	QNNs, kNNs, All-NN, and All-kNN search algorithms are validated using DFS minimal Multi-Dimensional Data Indexing. Each node in the static, balanced, cyclical Minimal Multi-Dimensional Data-Indexing architecture stores a single point that corresponds ...
	Serial NN search on the CPU takes longer than parallel NN search on the MIC, which can handle up to 38 million 2D points. Multi-core MIC QNN searches are 25–40 times quicker than single-core CPU QNN searches. In comparison to the All-NN search on the ...
	The CPU serial NN search process is considerably slower than the MIC parallel NN search method, which can handle up to 22 million 3D points. Ten to thirty times quicker than a single-core CPU QNN search is a multi-core MIC QNN search. In comparison to...
	MIC CPU ALL-kNN searches are 8–16 times quicker than GPU ALL-kNN searches. MIC Parallel NN searches are quicker than serial NN searches on the CPU and can handle up to 22 million 4D points. 8 to 22 times quicker than single-core CPU QNN searches are m...
	REFERENCES

