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Abstract:- A data structure for geographical partitioning 

called multi-dimensional data-indexing enables effective 

CPU-based nearest-neighbor searches. Despite not being a 

natural match for Many-Integrated Core Architecture 

(MIC) implementation, depth-first search Multi-

Dimensional Data-Indexing can nevertheless be successful 

with the right engineering choices. 

 

We suggested a technique that minimizes data 

structure memory trace by limiting the maximum height of 

the DFS Multi-Dimensional Data-Indexing. 

 

With tens of thousands to tens of millions of points in 

the MIC kernel code, we optimize the multi-core MIC NN 

search. In comparison to a single-core CPU of equivalent 

power, it is 20–40 times quicker. NN uses the knowledge 

obtained from improving MIC code to find ways to rewrite 

CPU code. 

 

As a consequence, the initial level of CTA and 

engineering choices to make the Multi-Dimensional Data-

Indexing search algorithm on CPU and MIC simpler 

account for the bulk of the parallel performance in this 

study. Threads inside each thread warp split onto several 

search pathways for the second level of CTA using Multi-

Dimensional Data-Indexing. 

 

Thread divergence removes the majority of the 

performance benefit of employing multiple threads per 

thread-block. Experiments in this article reveal that small 

thread block sizes produce the best results. 

 

Keyword:- Multi-Dimensional Data-Indexing, MIC, depth-first 

search, Thread-block size. 

 

I. INTRODUCTION 

 

The NN issue is crucial in several fields of computer 

science, including computer graphics, machine learning, pattern 

recognition, statistics, and data mining, among others. It 

determines which point in a point cloud is nearest to a given 
query point. . [1]. 

 

There are a number of issues with NN search despite its 

significance and widespread use. n search points, S, and m 

query points, Q, as well as a distance measure in d dimensions, 

make up each NN search's input. The Euclidean distance 

between search point p ∈ S and query point q∈Q is dist (p, q)  

= √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 + ⋯ + (𝑞𝑑 − 𝑝𝑑)2. The output 

consists of the km nearest points, where k is the number of 

requested nearest points in the search set S for each query point 

in Q.  

 

Finding the closest point (k=1) in the search set S for each 

query point in Q under the distance metric dist results in the 
output set R comprising m result points for the query nearest 

neighbor (QNN) search.  

 

Generalize QNN to find the k closest points in the search 

set S for each query point in Q for the 'k' nearest neighbor (kNN) 

search (producing R containing km points). We assume that the 

query set Q and the search set S are the same (Q=S) for all 

nearest neighbor searches (NN and kNN). We suppose that Q=S 

introduces a new problem in which zero-distance results must 

be carefully excluded; otherwise, each query point would 

appear in the search results. 

 
A few other NN searches can be supported by Multi-

Dimensional Data-Indexing. Find all points from the search set 

S contained in each query region belonging to the query set QR 

using the range query closest neighbor (RNN) search (region).  

With this method, each region receives a different quantity of 

result points. [2]. 

 

II. RELATED WORK 

 

In this section, we briefly discuss NN solutions, Multi-

Dimensional Data Indexing s, and related NN work on the MIC. 
 

 NN Solutions 

A brute force QNN exploration could directly compare 

query point to all 𝑛 point in search set.  

 

For our NN search solution, focus on the Multi-

Dimensional Data Indexing, generalized binary tree invented 

[4] and improved by several researcher in the year. According 

to [2] detail an efficient nearest neighbor (NN) algorithm using 

a depth-first search (DFS) balance Multi-Dimensional  Data 

Indexing, a priority queue, and a trim optimization to avoid 
unproductive search paths. This approach result in 

O(log 𝑛) expected search times for each query point on well-

distributed point sets. In [5] author implemented a fast and 

efficient version of  NN search in his book.  
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 Multi-Dimensional Data Indexing Review 

Multi-Dimensional Data-Indexing is hierarchical spatial 
partitioning data structure that to organize objects in d-

dimensional space. Multi-Dimensional Data-Indexing partitions 

points and more complicate objects into axis-align cells called 

nodes. This cutting plane partitions all points at each parent 

node into left and right child nodes.  

 

Variations on Multi-Dimensional Data-Indexing s differ 

in how cutting plane is pick. Multi-Dimensional Data-Indexing 

for search set S of n d-dimensional points takes O(d∙n) storage 

and can be built in O(𝑑. 𝑛 log 𝑛)time. Build Multi-Dimensional 

Data-Indexing on the CPU and then transfer the kd-nodes onto 
the MIC.  

 

To perform a nearest neighbor search in a Multi-

Dimensional Data-Indexing, one can imagine traversing the 

entire tree, computing the distance of the query to the search 

points stored at each node while keeping track of the nearest 

neighbor point found thus far. Search queries (QNN, kNN , and 

RNN) that return t results have been show to take worst-case 

O(𝑑. 𝑛(1−1
𝑑⁄ ) + 𝑡) time for all search point sets and expected 

O(log2(𝑛) + 𝑡)time for well-distributed search point sets. 
 

For the 2D All-NN and All-𝑘NN searches,  multiply the 

theoretical cost of a single point query by the number of points 

(n) in our search set, giving O(n√𝑛+tn) worst-case time and 

O(log2(𝑛) + 𝑡𝑛) expected time using a balance Multi-

Dimensional  Data-Indexing implementation[3]. In addition to 

performing NN search, Multi-Dimensional Data-Indexing s can 

also solve point location, range search, and partial key retrieval 

problems [6]. 
 

 Related NN work on the MIC 

The initial NN search solutions for MIC solutions were 

carried out by brute force, comparing each of the m points in Q 

to each of the n points in S. It takes O (n/p) time for each query 

point qi to compute the n query to search point distances using 

p threads. This is followed by a parallel reduction to determine 

the shortest distance for that query point, which also takes O 

(n/p) time. implemented a bucket sort to divide 3D points into 

fixed-size grid cells, followed by a brute force search in each 

query point's 333 cell vicinity. [6].  
 

Implement a brute force NN algorithm in Intel VTune 

Amplifier XE for MIC with a 100+ to 1 speedup compared to 

the equivalent algorithm in MATLAB.  

 

According to [8] built a breadth-first search MIC Multi-

Dimensional Data-Indexing in Intel  VTune Amplifier XE for 

MIC with splitting metric that combine empty space splitting 

and median splitting. SAH Multi-Dimensional Data-Indexing 

accelerate ray tracing, while VVH Multi-Dimensional Data-

Indexing accelerated NN search.  

 
 

 

 

 

 

NN search iterate using a range region search and by 

increasing fixed radius of the search region on each iteration. 
The Multi-Dimensional Data-Indexing built about 9-13 times 

faster than the CPU kd-tree. The MIC kNN search ran 7-10 

times faster than the CPU kNN search. Developed a MIC ANN 

search based on the [2] approach with a kd-tree to assist in 

solving a 3D registration problem on the MIC[9]. The Multi-

Dimensional Data-Indexing is built on the host CPU and then 

transfer to the MIC before running ANN. ANN search 

backtracks to candidate nodes using small fixed-length queue.  

 

According to [6], MIC registration was 88 times faster 

than CPU registration. Inappropriately, performance 

comparison between MIC and CPU ANN search was not broken 
out from overall results. 

 

 The Multi-Dimensional Data-Indexing Data Structure 

Our NN search algorithm is adapted from [2]. It uses 

minimal Multi-Dimensional Data-Indexing, a search stack, and 

trims optimization. Demonstrate this solution for 2D points, 

although later in the paper, also do performance experiments on 

3D and 4D points. 

 

 Multi-Dimensional Data-Indexing Search Concepts 

To help the reader understand the Multi-
Dimensional Data-Indexing search, briefly enumerate the 

following six concepts: Each kd-node contains a search point 

‹x, y, ..›. Best distance variable tracks the closest solution found 

so far 

 

When doing a depth-first search (DFS), onside nodes are 

explored first, and overlapping offside nodes are stored for 

further inspection in a search stack. A kd-node index, 

onside/offside status, split axis, and split value are all attributes 

of each element kept on the search stack.  

 

 Multi-Dimensional Data-Indexing NN Search 
Our   iiMulti-Dimensional   iData-Indexing   isearch   

ialgorithm   iworks   ias   ifollows. iThe   iroot   isearch   ielement   

i(root   iindex,   ionside,   ix-axis)   iis   ipush   ionto   istack.   i 

 

If   ithe   inode   iis   ionside,   ithe   icurrent   ikd-node   

iloads   ifrom   ithe   inode   iindex.   iNext,   iif   idistance   

ibetween   iquery   ipoint   iand   ithe   icurrent   inode   isearch   

ipoint   iis   ismaller   ithan   icurrent   ibest   I our   imethod   

iupdates   ithe    ibest   idistance   iand   ibest   iindex.    

 

The   iinterval   icontaining   ithe   iquery   ipoint   iis   ithe   
ionside   inode,   iand   ithe   iremaining   iinterval   iis   ithe   

ioffside   inode.   iIf   ikept,   ian   ioffside   isearch   ielement   

iis   ipush   ionto   ithe   isearch   istack.   iThe   ionside   isearch   

ielement   iis   ialways   ipush   ionto   ithe   isearch   istack.   

iWhen  ithe   isearch   istack   I becomes   iempty,   ithe   ibest   

idistance   iand   ibest   iindex   iindicate    I nearest     ineighbor. 
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III. OUR PROPOSED SOLUTION 

 
 MIC Hardware Considerations 

Consider the following seven concepts: memory hierarchy 

access speeds, floating-point, memory hierarchy capacities, 

memory alignment, coalescence, thread-block size, and 

divergent branching in our proposed approach. 

 

 Memory Hierarchy:  

Registers, shared memory, constant memory, and global 

memory are the quickest to slowest access speeds in the MIC 

memory hierarchy (RAM). Local variables should be kept in 

registers, simple indexed data structures should be kept in 

shared memory, and points and Multi-Dimensional Data-
Indexing nodes should be kept in global memory for better 

performance. The number of data transfers from slower RAM 

to quicker shared memory has been reduced. 

 

A single read per loop is used in the NN search code. In a 

1 million search and query point QNN search, for example, each 

query visits roughly 40-80 kd-nodes (one read per node) to 

locate the exact response. 

 

 Floats:  

MIC architecture support both 32-bit and 64-bit floating-
point data. Focus only on 32-bit floating-point data. In handful 

of queries, our MIC and CPU NN search return slightly different 

neighbors.  

 

 Memory Capacity:  

For 2D points, reduce kd-nodes from eight to two fields. 

To store query points, kd-nodes, and final search results, the 2D 

QNN search requires just seven 32-bit components per 2D 

point. The QNN search was able to process up to 36 million 2D 

points on the MIC using this method. 

 

 Memory Alignment:  
Data structures aligned on 4, 8, or 16-byte memory 

boundary perform faster than unaligned data.  

 

 Coalescence:  

Only sequential memory accesses are coalesced by MIC. 

All threads within a thread-warp start their searches at the root 

node with NN depth-first search (DFS) through Multi-

Dimensional Data-Indexing, but shortly diverge to distinct 

unanticipated sub-trees within the Multi-Dimensional Data-

Indexing and therefore different portions of memory. NN 

searches on DFS Multi-Dimensional Data Indexing don't 
always result in consecutive scans across the data warp, 

therefore coalescence isn't possible. 

 

 Latency:  

The MIC programmer hides latency via TLP by 

scheduling a massive grid of thread blocks, but block 

performance is still constrained by the slowest thread in each 

block. The grid can hold up to 65,536 thread blocks in any 

dimension. Each thread-block can hold a maximum of 5128 

threads. For MIC, the thread manager distributes thread-blocks 

across 16 SMs, each with 16 SPs. Create a thread for each query 
point in our NN search. We may use padded access to pad our 

query up to the next multiple of the thread-block size by 

repeating the first query until it reaches that multiple. This 

method eliminates the range check contrast that would increase 
the gap between the first and second query results.  

 

 Divergent Branching:  

All threads in a thread block must follow both the "if" and 

"else" branch routes if at least two threads diverge at a 

conditional branch. Correct conduct, which accepts the 

performance impact brought on by divergence, necessitates the 

conditional logic that is still in place. Process the All-NN and 

All-kNN searches in a sequential Multi-Dimensional Data-

Indexing order to improve the coherence of all threads in the 

thread block. As a result, the All-NN search outperforms the 

QNN search by 5–6%. As a trade-off, All-kNN search performs 
somewhat worse than kNN search.  

 

Thread-Block Size (TBS): There are 16 KB of shared 

memory and 8 K of 32-bit registers that can be used by each 

MIC core. Our present NN search limits the maximum number 

of threads per SM to 2565 since temporary variables use roughly 

24-32 registers. 192–240 bytes of shared memory are needed for 

QNN and All-NN searches on data structures like 20–28 

element deep stacks. Depending on the search type and the size 

of the input data, our performance trials showed that an optimal 

thread-block size for our DFS Multi-Dimensional Data-
Indexing NN search is between 8 and 16 threads per block. 

 

 Multi-Dimensional Data-Indexing Design Choice 

Based on the MIC hardware limits, sought to efficiently 

use MIC memory resource. Such a goal suggests bounding the 

Multi-Dimensional Data-Indexing height and reducing size of 

data structure in memory. 

 

 Bounding Multi-Dimensional Data-Indexing 

Height:  

Shared memory is target for our NN search stack Each 

MIC core only has 16KB of shared memory available to all 
threads. Have no more than 256 bytes available for all data if 

employing 64 threads per thread-block.  

 

Give the following examples of balanced, static, and 

efficient array layouts:  

 

 Balanced Multi-Dimensional Data-Indexing: 

A balanced Multi-dimensional Data-Indexing of 

maximum height⌈(log2 𝑛)⌉, with a difference of at most one 

level across all leaf nodes, is built by setting the cutting plane 
through median point of each sub-tree. 

 

 Reducing Memory Foot print:  

To increase the number of points in MIC memory, reduce 

the size of the Multi-Dimensional Data-Indexing data structure. 

kd-node fields include child pointers, parent pointers, split-axis, 

split-value, cell bounding-box, and stored-point. 

 

 Array Layout:   

Store the kd-nodes in an array as a left-balanced binary 

tree for faster indexing. The Kd-node is initially constructed as 

a left-balanced median. As part of the build process, Multi-
Dimensional Data-Indexing converts to a left balance binary 

tree. 
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 D-Dimensionality:   

In these NN searches, use points with 2-4 dimensions x, 
y,... to decrease the amount of data saved on the MIC. Search 

can also be expanded to include more dimensions. 

 

 Eliminating fields:  

The parent pointer can be avoided by using the search 

stack in NN search to go backward. The split axis and split value 

are implied if a cyclic multi-dimensional data indexing tree 

splits x, y, x, y, etc. The split value is implied by the store d-

dimensional-point. Cell bounding boxes are not required for the 

NN search.  

 

 Final Design:  

As a 2D, 3D, and 4D static balance cyclic data structure, 

utilize our DFS Multi-Dimensional Data-Indexing data 
structure. For multi-dimensional data indexing, a single left-

balance median point store is employed at each node. The nodes 

of Multi-Dimensional Data-Indexing are stored in a left-

balanced binary tree array. In order to implement NN search, 

deep-first search with stack for backtracking is used. With this 

multidimensional data indexing design, predictable stack sizes 

are constrained by height. reduces the memory footprint of the 

Multi-Dimensional Data-Indexing and search nodes. 

 

 Building the Multi-Dimensional Data-Indexing  

As we show in 

, (left panel), compute the minimum and maximum bound 

of search-points. The root of Multi-Dimensional Data-Indexing 

is conceptually associate with these min-max bound and 

sequence [1, n] of original point. Split-value is pick along one 

of dimensional axes. All points are partition into two smaller 

left and right boxes based on splitting value. Each child node 

has a bounding box and a partitioned sequence of points 

associated with it. Up until specific halting requirements are 

met, Multi-Dimensional Data-Indexing is iteratively refined by 

dividing each child sub-tree, associated box, and associated 

point sequences.  
 

The quick median algorithm uses the same partition sub-

routine as the quicksort method, which is utilized for sorting. 

There are two stages to each iteration of a selection:  

 

 Pivot phase:  

An algorithm chooses a potential pivot value p by 

averaging three different methods.  

 

 Partition Phase:  

The pivot value is use to partition point into three data set. 

Left: points less than p, Middle: all points equal to the pivot 

value, and Right: all points greater than or equal to p. Construct 

the Multi-Dimensional Data-Indexing on the CPU and then 
transfer it to the MIC for the MIC NN search. A high-level 

overview is found in 

 (left-panel). 

 

Multi-Dimensional Data-Indexing builds an algorithm 

from a list of search point (left-panel). 

 

A single query point's perspective on the Multi-

Dimensional Data-Indexing search method (right-panel). 

 

 Searching the Multi-Dimensional Data-Indexing  
Our NN search solutions are based on the Multi-

Dimensional Data-Indexing search solution, already 

described in Section 2.1. This same search solution 

can be simplified and adapt to solve the Point 

Location problem as described in section 3.4.1. Give 

more details on a CPU Host function for the QNN and 

All-NN search solutions in section 3.4.2. kNN and 

All-kNN search solutions must track  k closest points, 

so introduce more details on how to handle these k 

points in 3.4.3. The data structure use to track the k 

closest point also use shared memory. 

 

 Point Location Problem: 

May easily locate objects in a Multi-Dimensional Data-

Indexing by moving down the tree until the interest cell is 

identified, and then searching for the point of interest inside 

that cell.  

 
 NN Search Remapping Issue:  

Directly translate the kd-tree NN search algorithm into 

code to tackle any NN search problem, including QNN.  
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Fig 1:  Build & Search Methods 

 

 Performance Results 

In this section, we compare parallel NN search 
performance on the MIC to serial NN search performance on 

the CPU. As we show below all performance tests, were 

conducts on Intel MIC using a desktop computer configures. 

 

CPU Hardware: CPU = i7-920@2.67 GHz, RAM=12 

GB MIC Hardware:2× MIC(30 SMs, 240 total SPs, 1.0 GB 

RAM, 159.0 GB/s peak throughput) 

Software: MIC API= C++, IDE = Intel  VTune 

Amplifier XE, OS =LINUX, Pointers= 64-bit 
Data: Input size, n=[100 – 107], in increasing powers 

of ten 

 

 NN Search Experiment Environment 
For each NN search type, TLP tests identify the optimal 

thread block size (TBS), and experiments to demonstrate the 

performance for growing input sizes (n) and growing search 

sizes are conducted as part of these performance trials (k).   

 

 Multidimensional Data Indexing Construction on the 

CPU. 

As we, show Error! Reference source not 

found. shows the CPU cost of building the Multi-

Dimensional Data-Indexing for different numbers of 

2D-points. 

 
Table 1:  CPU Build Performance 

𝒏, # of points 1 10 102 103 104 105 106 107 

Build Time (in ms) 0.019 0.045 0.151 2.43 22.74 192.52 2,165.31 24,491.28 

Time/Pnt (ms/pnt) 0.014 0.0043 0.00165 0.00165 0.00214 0.00163 0.00179 0.00202 
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Amortize time per point to build Multi-Dimensional 

Data-Indexing initially decreases and then surprisingly levels 
off after 100 points. Expect time per point to increase, 

matching theoretical O(n∙log n) performance. Our best guess 

for this surprising result is that some CPU caching effects 

came into play. 

 

 Finding optimal thread-block size 

For each of our NN searches, manually try thread-block 

sizes containing between 1 and 80 threads to discover the best 

thread-block size on Intel MIC. Table 1 (panels a-c) shows 

the results of 2D QNN, All-NN, kNN, and All-kNN for data 

sets with 1 million and 10 million search points, respectively. 

 
Optimal thread-block 10x1 with a speedup of 46.4 for 

QNN 1 million search points. It was 7x1 with a speedup of 

43.6 for 10 million points. The ideal thread block for All-NN 

of 1 million points was 10x1 with a speedup of for 10 million 

points; it was 10x1 with a speedup of 36.8. The best thread-

block for kNN with 1 million search points and k=32 was 

4x1, with a speedup of 18.1. The optimum thread-block for 

an All-kNN search with 1 million points and k = 32 was 4x1, 

with a speedup of 15.7. 

 

As we show Fig depict a) The graph plots MIC or CPU 
speedup for 2Ds QNN, All-NN search for increasing thread 

block-size with fixed-size search and query data set of one 

million point. b) Graph is the same but for 2D kNN and All-

kNN searches. c) The graph plots the 2D QNN, All-NN 

speedup for 10 million points. d) Graph track 2D kNN and 

All-kNN speedups for increasing values of n. e) Graph tracks 

2D QNN and All-NN speedups for increasing values of n. f) 

The graph tracks 2D kNN and All-kNN speedups for 

increasing values of k from 1-32.  
 

In panels, d-f in Fig, increase n, total number of search 

point across MoreThan few order of magnitude using optimal 

thread-block size for each type of NN search. 

 

 Increasing n:  

The largest speed-up is achieved for n=10 million for 

2D QNN; speed-ups range from [20 - 41.5]. See comparable 

outcomes for All-NN: the increases in the range of [20 - 

36.8]; maximum again at 10 million points. For both search, 

if n≤100 points, it is better to use brute force solution. 

 
For 2D kNN and All-kNN, set k=32. For kNN, see 

speedups in the range [14-18] with the maximum at 1 million 

points. There is enough memory to run a query with 10 

million points, but then have to decrease k = 8 for both the 

search stack and closest heap to fit into shared memory. 

When decrease, see speedup of 23.4. For All-kNN, see speed-

up in the range [12-15.7] with the maximum again at 1 

million points.  

 

 Increasing k:  

Set n=106 for the 2D searches, and change k between 
1-32. The speed-up appears to follow a shallow inverse 

quadratic curve in both instances. . All the speedups for the 

kNN search are in the range [17.9 - 22.7] with k=6 as the 

maximum. The outcomes are comparable for the All-kNN 

search, with speedups in  [15.7 - 18.4] with the maximum at 

k=3. 
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Fig 2: Multi-Dimensional Data-Indexing Search Results 

IV. CONCLUSION 

 

QNNs, kNNs, All-NN, and All-kNN search algorithms 

are validated using DFS minimal Multi-Dimensional Data 

Indexing. Each node in the static, balanced, cyclical Minimal 

Multi-Dimensional Data-Indexing architecture stores a single 

point that corresponds to the left-balance median split along 

the current axis. Our Multi-Dimensional Data-Indexing 

architecture can handle more points with better speed because 
of the efficient memory use. 

 

Serial NN search on the CPU takes longer than parallel 

NN search on the MIC, which can handle up to 38 million 2D 

points. Multi-core MIC QNN searches are 25–40 times 

quicker than single-core CPU QNN searches. In comparison 

to the All-NN search on the CPU, the All-NN search on the 

MIC is 10–40 times quicker. The kNN search is 14–20 times 

quicker on the MIC than on the CPU. The MIC all-kNN 

search is 9–18 times quicker than the CPU all-kNN search. 

 

The CPU serial NN search process is considerably 
slower than the MIC parallel NN search method, which can 

handle up to 22 million 3D points. Ten to thirty times quicker 

than a single-core CPU QNN search is a multi-core MIC 

QNN search. In comparison to the All-NN search on the CPU, 

the All-NN search on the MIC is 12–30 times quicker. The 

speed of the MIC kNN search is 8–18 times quicker than the 

CPU kNN search. 

 

MIC CPU ALL-kNN searches are 8–16 times quicker 

than GPU ALL-kNN searches. MIC Parallel NN searches are 

quicker than serial NN searches on the CPU and can handle 
up to 22 million 4D points. 8 to 22 times quicker than single-

core CPU QNN searches are multi-core MIC QNN searches. 

MIC In comparison to the GPU All-NN search, the CPU All-

NN search is 11–21 times quicker. The CPU-based kNN 

search is 6–14 times slower than the MIC kNN search. MIC 

Compared to the GPU All-kNN search, the CPU ALL-kNN 

search is 6–13 times quicker. 
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