
Volume 7, Issue 10, October – 2022                 International Journal of Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165 

 

IJISRT22OCT077                                                                www.ijisrt.com                     390 

A Rigorous Experimental Technique to Measure the 

Thermal Diffusivity of Metals in Different 3D Forms 
 

Dr. Ismail Abbas 

Senior lecturer at MTC, Cairo 

 

Abstract:- This present work is a continuation and 

validation of the results explained in a previous paper 

titled A Rigorous Experimental Technique for Measuring 

the Thermal Diffusivity of Metals and goes further to 

describe the notion of dimensionless time tD practical for 

solving the energy-density field distribution in 4D space. 

Moreover, the notion of dimensionless time and statistical 

characteristic length of the 3D material object is 

introduced, defined and proved effective. 

 

We have carried out a preliminary experimental 

investigation and a theoretical analysis on five 3D 

geometric objects of different shapes in aluminum and 

steel and the results obtained for the thermal diffusivity 

are in good agreement with the thermal tables. 

 

I. INTRODUCTION 

 

This article is a generalization to non-cubic forms of the 

theory and experiment explained in a previous article entitled 

A rigorous experimental technique for measuring the thermal 

diffusivity of metals [1,2] and goes further by describing the 

notion of dimensionless time tD practical for solving energy 

density distribution in 4D space (x, y, z, t). 

 

In reference 1 we limited the proposed experimental 

technique to experimental measurements of thermal 
diffusivity in aluminum and steel in cubic shapes, while in the 

present work we go further in other shapes. Regular shapes 

such as cylinders, hemispheres and pyramidal shapes have 

been studied. 

 

To be precise, the previous works [1,5,6] are based on 

the numerical statistical method called Cairo technique which 

predicts an exponential decay of the energy density in a 

bounded medium and relates the exponent to the physical and 

geometric properties of the object, under test. 

 

Moreover, we assume that the general heat diffusion 
PDE (Eq 1) cannot practically be solved numerically in real 

time. Finite difference computation (FDM) methods of real-

time numerical solutions are extremely time-consuming and 

prone to instability and inaccuracy, while the same in 

dimensionless time tD are short, fast, and the stability and 

accuracy are assured. 

 

In the present experimental technique proposed to 

measure the thermal diffusivity of metals in different 3D 

forms, we assume that, The spatio-temporal average of the 

energy density called the center of the energy density field 
U(x,y,z,t)  in the object under test coincides with its center of 

mass CM along the time evolution of its cooling curve. In 

other words, the total thermal energy stored in an object 

during its cooling curve is equal to the temperature at its CM 

multiplied by the total number of free nodes in the grid (n). 

 
This suggests the extension of the proposed experimental 

technique from cubic shaped objects to other regular shapes 

such as cylinders, hemispheres, pyramids, etc. by finding the 

cooling curve of the tested object at its CM and by relating its 

exponent to the thermal diffusivity as explained in the 

theoretical part. 

 

Recall that the so-called Cairo numerical technique 

transforms continuous real time t into dimensionless discrete 

time tD. tD is equal to N f where N is the number of iterations 

performed on the transition matrix B through its chain and f 

is a statistical factor. 

 

The dimensionless diffusive time is equal to the number of 

iterations N multiplied by a statistical factor f. 

The transformation from real continuous time to the 

dimensionless discrete time domain via the matrix B and vice 

versa requires the introduction of four parameters depending 

on the geometric shape of the body and its thermal diffusivity. 

 

II. THEORY 

 

Below is the general form of the partial differential 
equation for the time evolution of the energy density U in 3D 

geometric space, 

d / dt (partial) U (x,y,z,t) = D Nabla2 U (x,y,z,t) + S 

(x,y,z,t) .. . . . . . . (1) 

 

In normal conventions. Equation (1) is subjected to 

Dirichlet boundary conditions BC and arbitrary initial 

conditions IC. 

 

In fact, equation (1) characterizes the time evolution of 

the energy density in real time t and in the 3D geometric space 

x,y,z where in the SI system (MKS) the unit of t is the second 
(s), that of x,y,z is meter (m) and that of thermal diffusivity is 

m^2/s. 

 

Our task is to show how to describe the solution in 

dimensionless time tD. In the proposed numerical method 

called Cairo technique, this is done via B-Matrix strings 

where the real time t is completely lost. 

 

The notion of dimensionless time tD was recently 

introduced and described in signal processing theory [7]. 

 
In the phenomena of diffusion in bounded objects, the 

dimensionless time is defined equal to f N where N is the 
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whole number of operations or time step iterations carried out 

on the transition matrix B 1,2,3 . .. N and f is a scalar quantity 

depending on the physical and geometric properties of the 

tested object. 

 

The proposed experimental technique itself is not 

complicated and can be summarized in the following five 

consecutive steps, 
i-Perform the experimental results of the temperature cooling 

curve at the center of mass CM of the tested object and thus 

find the real time - half-time decay value, i.e. T1/2, T1/4, T1/8  

etc [1,2]. 

 

ii- Calculate the statistical characteristic length of the tested 

object Lc via the semi-imperial formula (2), [1,2] 

Lc = {6*Volume of object V / Area of object A} . . . .(2) 

The statistical factor f emerges from another semi-imperial 

formula, 

f = Pie /2. = 1.571 

 
In fact, the characteristic length is of great importance 

in itself since the experimental temperature of the real-time 

cooling curve at the center of mass CM is described by, 

T(t)=T(0).Exp (- D . f . t /Lc^2)         . . . . . (3) 

 

Equation 3 is simply a consequence of defining the exponent 

of the cooling curve as the heat left per second dU/dt divided 

by the heat stored U. 

 

Equations 2 and 3 suggest an important geometric 

physical rule, 

 

Two 3D bodies of different shapes cannot have the same 

volume to area ratio (V/A) unless both have exactly the 

same volume and area. 

It is simple to show that the half-time decay interval is given 

by, 

T1/2= Log 2. Lc^2/D f . . . (4) 

Obviously Log 2. = 0.693 

 

In other words, the required thermal diffusivity will be given 

by, 

D= 0.693 *Lc^2 / (T1/2 * f ) . . . (5) 
 

Note that the statistical characteristic length Lc can be found 

mathematically or experimentally as explained in references 

1,2. 

iv- Plot the experimental real-time cooling curve 

T(t)=T(0) .Exp(- D f t /Lc^2), 

 

Know the value of T1/2 and therefore calculate the 

equivalent thermal diffusivity D using formula 5. 

v- Also plot the dimensionless cooling time curve 

proposed by the transition matrix B chains by choosing the 
appropriate value of RO and compare their fit with the 

experimental results. 

 

In this paper, we have arbitrarily chosen to apply the B 

27X27 transition matrix as the transition to the dimensionless 

time domain. The statistical transition matrix B which 

contains all the information to solve Equation 1 in the time-

dependent 3D geometry of the cube in Figure 1 is specified 

via a procedure similar to that followed in previous work 

where the entries in the matrix B27X27 must be expressed in 

the following form [1,2,5,6], 

 

27X27 B-Matrix inputs 
Line1: RO 1/6-RO/6 0.0000 1/6- RO 1/6-RO/6 0.0000 0.0000 

0.0000 0.00001/6-RO/6 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 0.00000.0000 0.0000 0.00000.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 

Line 2: 1/6-RO/6 RO 1/6-RO/6 0.0000 1/6-RO/6 0.0000 

0.0000 0.0000 0.0000.0000 1/6-RO/6 0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.00000.00000.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 0.0000 

Line 3: 0.0000 1/6-RO/6 RO 0.0000 0.0000 1/6RO/6 0.0000 

0.0000 0.00000.00000.0000 1/6-RO/6 0.0000 0.0000 0.0000 

0.0000 0.0000 0.00000.0000 0.00000.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 0.0000 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .\ 

Line 14: 0.0000 0.0000 0.0000 0.0000 1/6-RO/6 0.0000 

0.0000 0.00000.00000.0000 1/6-RO/6 0.0000 1/6-RO/6 RO 

1/6-RO/6 0.0000 1/6-RO/60.00000.0000 0.0000 0.0000 

0.0000 1/6-RO/6 0.0000 0.0000 0.0000 0.0000. . . . . .. . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . 

Line 25: 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.00000.00000.0000 0.0000 0.0000 0.0000 0.0000 

1/6-RO/6 0.0000 0.00000.0000 0.00000.0000 1/6-RO/6 

0.0000 0.0000 RO 1/6-RO/6 0.0000 
Line 26: 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.00000.00000.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 1/6-RO/6 0.00000.0000 0.00000.0000 0.0000 1/6-

RO/6 0.0000 1/6-RO/6 RO 1/6-RO/6 

Line 27: 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.00000.00000.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 0.0000 1/6-RO/60.0000 0.00000.0000 0.0000 0.0000 

1/6-RO/6 0.0000 1/6-RO/6 RO 

with RO = 0.22 for steel and 0.13 for aluminum as shown in 

references 1 and 2.  

In order not to worry too much about the details of the theory, 

let us present the following five illustrative experimental 
applications with their experimental setups and experimental 

results. 

 

III. EXPERIMENTAL SETUP AND 

EXPERIMENTAL RESULTS 

 

We move on to five different applications on different 

3D shapes, cubic and non-cubic, Al and steel where the tank 

cold water temperature is zero centigrade. 

 

The experimental setup is described in detail in 
Reference 1 along with the composition  of steel and 

aluminum used as the test material. 

 

In all five experiments, the hot water reservoir was 

maintained at 76 C and the cold reservoir at 0 C. 
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III(a)- Steel cube of 10 cm side Fig 1. 

 

 
Fig 1. Steel cube with sides of 10 cm with holes and resistance thermometers. 

 

The results of temperature T in centigrade at CM vs time in seconds is presented in Table III-a. 

 

Table III-a , Cooling curve for steel cube 10 cm side length 

t(sec) 0    30   60   90   120  150  180    210    240    300   360   420  480  540   600 

T(c)   76   58   48   39      31  25.2   20.2   15.8   12.9   10.9  9.1   8.4   7.9   7.4  --- 

            

We conclude from table III-a that T1/2 is close to  100 s. 

Eq 2 yields Lc =10 cm for steel cube ie, equal to its side length 

Finally , using  Eq 5,  ,then the value of the thermal diffusivity for steel equals 

D= Lc^2. Log 2/ (T1/2.*Pie/2) 
D=1 E-2*0.693 / (100*1.57) =44.2 E-6 m^2/s in good agreement with the thermal    tables [8]. 
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III(b)-Aluminum cube of 10 cm side Fig 2. 

 
Fig 2. Aluminum Cube of side length 10 cm. 

 

The results of temperature T in centigrade at CM vs time in 

seconds is presented in Table III-b. 

 

               Table III-b , Cooling curve for Aluminum cube 

10 cm side length 

t(sec) 0    30   60   90   120  150  180    210    240    300   360   

420  480  540   600 

T(c)   76   45   33   26.5   23   20   17.6   15.5   13.8   11.9   10.   

8.2   7.95   7.4   6.95 

            

We conclude from table III-b that T1/2 is close to  45 s. 

Equation 2 gives Lc = 10 cm for an aluminum cube, i.e. equal 

to the length of its side. 

Finally , using  Eq 5,  ,then the value of the thermal diffusivity 

for Aluminum equals 

 

D= Lc^2. Log 2/ (T1/2.*Pie/2) 

D=1 E-2*0.693 /(45*1.57) =98 E-6 m^2/s  

in good agreement with thermal tables[7]. 

 
 

III(c). Aluminum cylinder of mass 2.61 Kg, a radius R of 

14.8 and a length L of 14.8 cm.Fig.3 

 

 
Fig.3 Regular cylinder with circular base of radius R and 

length L. 
 

http://www.ijisrt.com/


Volume 7, Issue 10, October – 2022                 International Journal of Innovative Science and Research Technology                                                 

                                        ISSN No:-2456-2165 

 

IJISRT22OCT077                                                                www.ijisrt.com                     394 

The results of temperature T in centigrade at CM vs time 

in seconds is presented in Table III-c 

 

Table III-c , Cooling curve for Aluminum cylinder 14.0 

cm diameter and 6.5 cm  length. 

t(sec) 0    30   60     90   120  150  180   210    240     300   360   

420  480  540   600 

T(c)   76   44   32    26.   23   20   17.2   15.6   13.8    11.6    

9.8     8.6    7.9   7.4   6.9 

 

We conclude from table III-c that T1/2 is close to  45 s 

close to that of the Aluminum cube as expected. 

Easy to calculate the surface area of the cylinder as 

nearly 600 cm^2 and  

 

Volume of the cylinder is nearly 1000 cm^3 which are 

the same as those of the preceding cube  of 10 cm side length. 

Cooling curve for Aluminum cylinder (Table III-c)14.0 

cm diameter and 6.5 cm  length is similar to that of the cube 

(Table III-b) as Equation 3  predicts.  
 

Obviously the calculated thermal diffusivity D is the same , 

D Alumium= 0.98 E-4 m^2/s. 

 

III(d). Aluminum pyramid with a mass of 6.5 Kg, a square base of 20 cm and a height of 19 cm.Fig.4 

 
Fig.4 Regular pyramid with square base 
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The results of temperature T in centigrade at CM vs time 

in seconds is presented in Table III-d. 

 

Table III-d , Cooling curve for Aluminum pyramid with 

a square base of 20 cm and a height of 19 cm.Fig.4 

t(sec) 0    30   60    90   120   150   180   210    240     300    

360   420   480  540   600 

T(c)   76   49   38.5  28   26   22.6   18.3   16.8   15.7  13.5   

12.6   8.6   12   11.3   9.9 

 

We conclude from table III-d that T1/2 is close to  62 s  

Easy to calculate the surface area of the pyramid as nearly 

1160 cm^2 and  

Volume of the pyramid is nearly 2500 cm^3 . 

The characteristic length for the pyramid is 6 V/A=13.6 cm. 

Cooling curve for Aluminum pyramid (Table III-d) at its CM 

is similar to that of an equivalent cube of side length 13.6 as 

Equation 3 predicts.  

 
It is simple to calculate thermal diffusivity D from Eq. 5, 

D= 0.693 *Lc^2 /(T1/2*f)       = 132 E-6 m^2/s 

 which is slightly higher than that of thermal tables. 

 

III(e). Aluminum half-sphere with a mass of 1.8 Kg and a diameter of 14.5 cm.Fig.5   
 

 
Fig.5 Regular aluminum hemisphere with circular base 
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The results of temperature T in centigrade at CM vs time 

in seconds is presented in Table III-e. 

 

 Table III-e , Cooling curve for Aluminum hemisphere 

with a mass of 1.8 Kg and circular base of 14.5 cm.  

t(sec) 0    30   60    90   120   150   180   210    240     300    

360   420   480  540   600 

T(c)   76   36   25.5  20.5   17   14.6   12.5   11   9.7    8.7     7.6    

6.6    5.9    4.9    4.3 

 

We conclude from table III-e that T1/2 is close to  29 s  

Easy to calculate the area of the hemisphere to nearly 495 

cm^2 and 

its volume is nearly 700 cm^3.The characteristic length Lc 

for the hemisphere is, 

Lc= 6 V/A=8.48 cm. 

Cooling curve for Aluminum halfsphere (Table III-e) at its 

CM is similar to that of an equivalent cube of side length 8.48 

as Equation 3  predicts.  

 
It is simple to calculate thermal diffusivity D from Eq. 5, 

D= 0.693 *Lc^2 /(T1/2*f)   = 109 E-6 m^2/s 

 which is close to that given by thermal tables [8]. 

 

IV. CONCLUSION 

 

The presented experimental results and mathematical 

calculations provide a rigorous experimental basis for 

measuring the thermal diffusivity of metals and thus prove 

the accuracy and usefulness of the numerical method called 

the Cairo technique. 

 

The introduction of the so-called characteristic length 

Lc has proven to be useful in predicting the time dependence 

of temperature in the cooling phase of regularly shaped 
objects and, therefore, in finding their thermal diffusivity.  

 

The dimensionless time tD inherent in the B-Matrix 

chain solution of time-dependent energy density scattering in 

3D geometric objects has been shown to be consistent, stable, 

fast, and accurate. 

 

The theoretical and experimental results produced in 

this article are consistent and suggest to introduce and 

develop a generalized or unified theory to solve the problems 

of energy density diffusion (thermal energy, electric potential 
energy, sound kinetic energy, etc.) in 4D bounded media. 

 

NB. All calculations in this article were produced 

through the author's double precision algorithm to ensure 

maximum accuracy, as followed by Ref. 10 for example 
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