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l. INTRODUCTION

Let E be a normed linear space, K < E. A self-mapping T on K is said to be Lipschitzian if 3 L = 0 such that

ITx — Tyl < LlIx — ylLVx,y € K. (D)

If L = 1then Tis called non-expansive, and if L < 1 then the mapping T is called a contraction.
A point x, € K iscalled a fixed point of a mapping T : K - K if Tx, = x,. We denote the set of fixed points

of T by Fix(T), that is, Fix(T) = {x € K|Tx = x} .
nonexpansive.

If in (1) y € Fix(T), and L = 1 then T is called quasi-

A mapping T with domain D(T ) and range R(T ) in E is called total asymptotically non-expansive if and only if there
exist two sequences {i,}ns1, Mntne1 € [0, +0), with lim p, = 0 = lim n,, and non decreasing continuous function ¢ :
n—-oo n—oo

[0,4+) — [0,400) with ¢(0) = 0 such that for all x,y € D(T),

IT"x =Tyl < [lx =yl +upe(lx=yID+n, n = 1. 2

Clearly, total asymptotically nonexpansive mapping is a generalization of nonexpansive maps.
Let K be a nonempty, closed and convex subset of a smooth Banach space E and let n and p be real numbers such that

nE(—xo,0)and 1 < p < +oo.

AmapT: K — E with Fix(T ) not equal 0 is called n — demietric if, for any x € K and x* € Fix(T ), wehawe,

(x = xR (e = Ty 2 52 || = Tx| P
And thus in a Hilbert space we have,

(x —x*,x —Tx) = =2 ||x — Tx||P
2

@)

(4)

Let T : K — K be a mapping and | be the identity mapping of K, we say that (I — T ) is demiclosed at zero if for

any sequence {x,},>1 in Ksuch that {x,, },.51

Converges weakly to x and x,,

— Tx, » 0,asn — oo, we have that x = Tx.

Let D; and D, be nonempty closed convex subsets of real Hilbert spaces Hi and Ha, respectively. The split feasibility

problem is formulated as finding a point x satisfying
X € Ds such that Ax € Dy,
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Where A is bounded linear operator from H, to Hz. A split feasibility problem in finite dimensional Hilbert spaces
was first studied by Censor and Elfving [7] for modeling inverse problems which arise in medical image reconstruction, image
restoration and radiation therapy treatment planning (see e.g [5], [6], [7]), It is clear that x € D; is a solution of the split
feasibility problem (5) if and only if Ax—Pp2 Ax = 0, where Pp> is the metric projection from H; onto D».

Let K be a closed convex nonempty subset of a real Hilbert space H. Let f: K X K — Rbeabifunction. The
classical equilibrium problem (abbreviated EP) for f is to find u* € K suchthat

f(uny)>0 VyekK (6)

The set of solutions of the classical equilibrium problem is denoted by EP (f), where EP (f ) = {u €K :
f (w,y) = 0 vye K}. The classical equilibrium problem (EP) includes, as special cases, the monotone inclusion
problems, saddle point problems, variational inequality problems, minimization problems, optimization problems, vector
equilibrium problems, Nash equilibria in noncooperative games. Furthermore, there are several other problems, for
example, the complementarity problems and fixed point problems, which can also be written in the form of the classical
equilibrium problem. In other words, the classical equilibrium problem is a unifying model for several problems arising from
engineering, physics, statistics, computer science, optimization theory, operations research, economics and countless other
fields. For the past 20 years or so, many existence results have been established for various equilibrium problems (see e.g.Blum
and Oettli(1994), Flam and Antipin (1997), Mouda (2003), Chang et al (2010), Zegeye et al (2010), Ofoedu and Malonza
(2011) andthe references therein).

A bifunction f : K X K — R is said to satisfy Condition C, if it satisfies the following conditions:
(Cl) f (x,x) = 0Vx € K;
(C2) fis monotone, in the sensethat £ (x,y) + f (,x) < 0V x,y €K,

(C3) tlir(r)l+ sup f(tz+ (1 —O)x,y) < flx,y)Vx,y,z€ K

(C4) the function y »— (X, y) is convex and lower semicontinuous for all x € K

Let ®: K — Rbe aproper extended real valued function, where R denotes the real numbersandlet ®: K —» H be a
nonlinear monotone mapping. The gen- eralised mixed equilibrium problem (abbreviated GMEP) for f, ® and ® is to find
u* € K suchthat

f W,y + &(y) — d(u") + Ou,y —u") =2 0Vy € K @)
Observe that if we define T: K x K — Rby

Fxy) = f (xy) + () — @(x) + (Ox,y — x) (8)

Then it could be easily checked that I' is a bi-function and satisfies properties (C1) to (C4). Thus, the so called
generalized mixed equilibrium problem reduces to the classical equilibrium problem for the bifunction T'.

The Split Equilibrium Fixed Point Problem (SEFPP) for T and S is to find
x* € Fix(T),y* € Fix(S) such that Ax* = By*,

Where T and S are nonlinear self maps defined on linear spaces, E; and E; respec-tively. A and B are bounded linear
operators defined respectively from E; and E, to another linear space Es. A lot of research works have focused on the Split
Equilib- rium Fixed Point Problem (SEFPP) in recent time, Mouda (2014), proposed an al- gorithm in Hilbert spaces,
involving quasi-nonexpansive Mappings and provedweak convergence of his Scheme to a solution of (SEFPP). Zhao (2015)
solved a SEFPP of quasi-nonexpansive mappings without prior knowledge of operator norms. Moti- vated by the result of
Zhao (2015), Shehu et al (2017), proposed a scheme which does not require prior knowledge of the operator norm for quasi-
nonexpansive mappings in real Hilbert spaces. Wang and Kim (2017) gave a modified Mann iteration and proved a strong
convergence result in Hilbert for demicontractive mappings. Ofoedu and Araka (2019), proposed an iterative Scheme for
simultaneous approximation of common solution of equilibrium, fixed point and split equal ity problem involving some
n—demimetric and finite family of quasi-noexpansive mappings.
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Let D; be a nonempty closed convex subset of a linear space X; (i = 1,...,k) and let D be a nonempty closed
convex subset of another linear space X. Let A4;:X; = X be a bounded linear operator Vi = 1,...,k. The Multiple
Split Feasibility Problem (MSFP) is to find x; € D; such that A;x; € DV i, that is, find (x,,...,x,) € [I<,D; c

K X;such that A,X; € DVi = 1,...,k; k> 1. The Multiple Split Equality Problem (MSEP) consists in finding
(X1,..,x;) € [, D; T, X; suchthat Aix; = Ajxj; i,j = 1,...,k,ij. Itiseasy to observe thatif m = 1,
then the Multiple Split Feasibility Problem (MSFP) reduces to Split Feasibility Problem (SFP) and if m = 2, Multiple Split
Equality Problem (MSEP) reduces to Split Equilibrium Problem (SEP).

In this paper, we focus on obtaining a common solution to a Multiple Split Equality problem, a finite family of
simultaneous equilibrium problems, and a common fixed Point of a finite collection of a finite families of nonlinear
mappings. We develop an algorithm and establish sufficient condition for its strong convergence to such a common solution.

We shall make use of the following lemmas in the sequel.

Lemma 1.1 [26] Let E,, E, be uniformly smooth, uniformly gonvexggal Banach spaces. Let E = E; X E,
and 1 < p < oo. For arbitrary x = (x,x,) € E, define the mapping J3: E — E* by JEx :=(J§ x;,Jp,x;) S0 that
for arbitrary w;, = (uy,u,),w, = (v4,v,) € E. The generalized duality pairing (.,.) is given by

(Wi, JE(W2)) = (ug, JE (u2)) + (vi, JE (V2))
Then JP is single valued generalized duality mapping on E.
Lemma 1.2 [24] LetK beanonempty closed convex subset of a real smooth, strictly convex and reflexive Banach
space E. Let f : K X K — R beabifunction satisfying condition C. Letp : K — E* be a monotone mapping and let

® : K — R be alower semi-continuous convex function. For » > 0 and any x € E, define a map Gf: E - 2K as
follows,

GE(X) = {ZzEK: f(zy) + D) — P(x) +(y — z,px) +~(y — 2]z — Jix) = 0V y € K} (9)
Then the following hold:

> GF
> GF

Is single-valued
Is firmly nonexpansive-type mapping, that is, for any x, y € E,
(GFx = Gfy, JRGEx = JRGly) < (G x — GFy,JRx — J§y)

> Fix(GF) = GMEP(f, ®, p)
» GMEP(f,®,p) isclosed and convex

Where F: E X E - Risdefinedby F(x,y) = f (x,y) + ®(y) — ®(x) + {y — z, px)
Remark 1.1 Let K be a nonempty closed convex subset of a Hilbert space H. Let f: K X K - R bea
bifunction satisfying condition C. Let p: K — H be a Monotone mapping and let ® : K — R be a lower semi-

continuous convex function.

For r > 0 andany x € H, the map Gf:H — 2X is nonexpansive. Recall that for an equilibrium problem(EP), ® =
0,p = 0.

Lemma 1.3 (compare with Lemma 2.4 of Chang et al(2010)) Let K be a nonempty closed convex subset of a
real HilbertspaceH. Let f; : K X K — R be finite family of bifunction satisfying conditions (C1) - (C4) foreachi €
I = {1,2,...,m}thenforall r > 0and x € H, there exists u € K such that

fwy) +3y—wu-x)20vyeKiel (10)
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Moreover, if for all x € H we define G,.: H - 2X by
Gi;(x) = {u € K: fi(x,y)+%(y—u,u—x)ZOVy€K} (11)

Then the following hold:
» G, issingle-valued forallr = 0i € I
» Fix(G,) = EP(f;)forallr > 0
» EP(f;) isclosed and convex

Lemma 1.4 (seeeg[19]) Let K beanonempty closed convex subset of a real smooth, strictly convex and reflexive
Banach space E. Let £ : K X K — R beabifunction satisfying condition C. Let p : K — E* be a monotone mapping

and let ® : K — R be alower semi-continuous convex function. For r > 0, defineamap GF : E — 2Xasin Lemma
1.2, then for all s,t > 0 and for all x€K;

[s—t|

IGEx — GfxI| < =— (WG x|l + [UgxID) (12)

Lemma 1.5 Let E be a real normed linear space with single valued generalized duality mapping and let 1 <
p < co.Then forall x,y € E the following inequality holds.

l1x + 1P < [|x]1P + p{y, JE (x + ¥))

LetE = H for x,y,z € H, the following also holds
> |lx—y+z||? = 2(zx—y) = |[x —y||?
> Ix+yll? = 11x]1? + 2¢y, x) + [lylI?
Lemma 1.6 Forany x,y,z in areal Hilbert space H and a real number 2 € [0, 1],
MMx+ (1 =Dy —zIZ=2A|x —z||>?+ A = D]y —z||? =21 = D||x —y||?.
Lemma 1.7 [24] Let K be a closed convex nonempty subset of a real Hilbert space
H. Let x € H, then x, = Pgx if and only if

(z—%0,X—Xg)<0Vz €K

Lemma 1.8 (see [8]) Let E be a reflexive Banach space with weakly continuous normalised duality mapping. Let K

be a closed convex subset of E and let T be a uniformly continuous total asymptotically nonexpansive mapping from K into

itself with bounded orbit, then (1 — T) is demiclosed at zero.

Lemma 1.9 [16] Let {I',} be sequence of real numbers that does not decrease at infinity in the sense that
there exists a subsequence {r‘n]_} of {T",} which satisfies Ih <Thj+1 VjEN. Define the sequence {t(n)}sn,of

integers as follows
t(n) = max{k < ng: [ < [}
Where n, € N and that the set {k < n,: [ < I},,} is not empty, then the following hold (i) 7 (ny) < t(ny+ 1) and
T(n) - was n - oo (i) Iy < Typyqy and T, < Tpyqy V7 € N
Lemma 1.10 (seeeg[9]) Let a,, be sequence of nonegative real numbers satisfying the following relation:
apny1 < ap, —aya, + 6,,n =n,,

Where {a,},-1 © (0,1)and{8,},-; < R satisfyingthe following conditions:
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=0 &y = 0, lim a, = 0 and limsup §,, < 0 then lima,, =0
n—oo n-ooo n—-oo
. MAIN RESULT
Theorem 2.1 Let H;: (i = 1,...,k) be Hilbert spaces, S;: H; = H; (i = 1,. k) be n;-demimetric; n; €
(—o,1) such that I —S; is demiclosed at 0V i. Let T;; : H; — H; (1 =0,1,....m;; i = 1,...,k) be a finite

collection of finite families of uniformly continuous quasi nonexpansive maps such that I =T is demlclosed at 0 for

each i and each j. Letf;; : H—> H; (t =0,1,...,n; i = 1,...,k) be bifunctions satisfying condition C. Let E be a
smooth, strictly convex and reflexwe real Banach space, 4; H - E(i = 1,...,k) be bounded linear operators with
adjoint operators A7,

2y ={(x1,%5..., %) € [Ifoy Fix(S) : Ayx; = Ajxj; (i, = 1,..., k)3,

k m;
0, = {(x1,%5,..., %) € HHi 1x; € ﬂFix(Tij)}
i=1 j=1

Q3 = {(x,%3,..., %) €[, Hy:x; € N1, EP(f;)} and

3
Q=ﬂﬂl

1=1
Starting with an arbitrary x;, € H;;i = 1,..., k, define the iterative sequence {x; ,} by
Xint1 = X0 + (1 — ) Yin
Yin = Zin = Bn(Zin — SiZin)
Zin = Wi — A (A0, — Ajwj,n)»f F1
Win=au, + (1 - a)Gf‘”
Uin = aXin + (1 — )T i (13)
Suppose Q # @, and that

e a€(0,1),
o {1 }nso {rn}:xo is a sequence in (0, o0) such that lim inf r,, =1, > 0,
n—oo

o {ay}nso € (0,1) such that lim a, =0and XX, a, = ®
n—-oo
Then {x;,} isbounded Vi € {1,2,...,k}

Proof Let (xi,x3,...,x;) € Q, from (13), Lemma 1.6 and our conditions on T;;, we have

* 2 - * *
Mgy — 271" = aCen —x7) + (1= @) (Tipxin — x|

= allxg,—xx i |12+ (1 = |Tipxin — %7112
—a(l — O)|[xin — TinXinll?
< oflxgn =X |12 + (1 — )llx, — %712
—a(l — )||xin — TinXinll?
=|lxin =% 1 —a(l — @)||xin — TinXinll? (14)

Also, by Remark 1.1 and hypothesis,
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2
lw;, — x;‘II2 = Ha(ui’n —x)+(1-a) ( Grfnl'"ul-‘n - x{‘)

2 2
+ g, — TipXinll) (15)

fi,
< Ilxin = 117 = @t = @[ — 6"

|zn = %11 < llwin — 1A s (Awin — Ajwy) = xi || #
= lwin = mdie(Aiwin — Ajoya) | = 205, @)
21, (Aix], Jp (A — Ajw; ) + N1 112
= [lwinll” = 20¢5, @i ) + 12 + R2NANP] T2 (Aiwi — Aj0p0) ||
=21, (A0 — Ajx}, T (Awin — Ajw; )
= [|win = xi*"2 + 121417 Je (A — Aj“)j,n)”2
~2r (A = Aix Jp (Aiwin = Ajwjn))

*

< |len = % 1° + 720402 Je (Asi = Aj0;0) ||

—21,(A; Wiy — A;fx?']E(Aiwi.n - Aj“’j.n))
) 2
—a(l- a)(”ui.n - Grj:ll'nui'" || + ”xi.n - Ti.nxi.nnz) (16)

Also by 1.5, (16) and hypothesis

2

”yi,n - xi*llz = ”Zi.n - :Bn(zi.n - Sizi.n) - xl'*

*

= ”Zi,n —X; ‘4 ﬁrzl”Zi,n - Sizi,nHZ

_Zﬁn((zl’.n - SiZi,nJZi,n - xl*))
Since S; is n; —demimetric,

*

”yi,n - xf”z < ”Zi.n —X; ‘o Bn(1—1n; — ﬁn)”zi,n - Sizi,nHZ

*

= ”xi.n - X

L2142 Jp (Aiwin — Ajep) |
_Zrn(Aiwi,n - A;x;']E (Aiwi.n - Aiwf.n))

Gfi,n

™

2
| + ”xi.n - Ti,nxi,nnz)

—a(1 = &)([|uin — 6L u

2
~Ba (1 =i = B)l|Zin = Sizia (17)
More so, using Lemma 1.5, (17) and hypothesis

2 2
= ”(ani_o + (1 - an)yi,n - X;

*

”xi,n+1 - X

2

= ”an(xi,o - X:) + (1 - an)(yi,n - xl*)

= an”xi,o - x;”z + (1 - an)”yi,n - x;”z - an(l - an)“yi,n - xi,O”z
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*

< an”xi,o — X;

‘4 a- a’n)”)’i,n —x; ’

< apllxio = xi|° + A = @l — %+ r204:012]| Jp (Agwip — A0

=21, (4w — Ajx}, T (Aiwiy — Ajwj,n))
fi,n
—a(1 = &) ([|un — G ui

™

2
| + ”xi,n - Ti,nxi,n”Z)

_,Bn (1 /[ .Bn)”Zi,n - Sizi,n“Z]
< ap|xi0 — x?”2 + (1 —a)||xin — xi*"Z + (1= a)r2 Al T (A — Aj‘“j,n)”2

=21,(1 — ap ) ){Aw; , — A;xi*']E(Aiwi,n - Ajwj.n)>

2
| + ”xi,n - Ti,nxi,nnz)

~(1 = @a(1 = ap)(||un = 6wy

~(1 = B =y = B ||z — Sizinll” (18)

Define

2

k
D, (x3, %5, .., x3) = Z”xi,n —x;
i=1

So that

k
e ) [ xl’
i=1

k
Dpaa G613, 23D < @t Y [0 = i
i=1
k k
2
_(1 - an)rn(Zk —Th Z”Aillz )Z”Aiwi,n - A]'w]'.n”
i=1 i=1

k
X 2
—(1 — (l)a(l - an)Z(”uim - Gé:;'nul"n” + ”xiﬂ - Ti’nxi’nnz)
i=1

—(1 = @) T =1y = B)|2im = Sizinl” (19)

Since 2k — 1, XX N4> =0and 1 —n; — B, =0 Vi=1,...,k, then

* * * * * 2
Dn+1(lex;' ""xk) < (1 - an)Dn(xllXZ' ""xk) + an Zf:lllxi,ﬂ - X ” (20)

Using mathematical induction, we show that the sequence {D,,,(x{,x3,...,x;)}n=1 IS bounded. Let M =
pOLIN [ E —xf‘”z for n =0, Dy(x3,...,xx) = M so that

K
2
Dy (x5, o xp) < (1 — a)Do(xy, ooy x) + anZ”xi‘O — x|
i=1

=1-a, )M+a,M=M

Suppose Dy(x3, ..., x3) <M for n = s = 1 then,

2

k
Doy (x5, o, x3) < (1 — ap,)Dy (g, ooy x3) + anz:”xL0 —x;
i=1
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<A-a )M+a,M=M
Which says, {D,,(x%, ..., x3)}n=1 is bounded and hence {xi_n}n>1 is bounded v i, ..., k.

Theorem 2.2 Let H;: (i = 1,...,k) beHilbertspaces, S;: H;—>H; (i = 1,...,k)
be n;-demimetric; n; € (—oo,1) such that I —S; is demiclosed at 0 V i.

LetT;; : H; » H;(j = 0,1,...,my; i = 1,...,k) bea finite collection of finite families of uniformly continuous
quasi-nonexpansive maps such that I -T; is demiclosed at 0 for each i and each j. Let f;, : H;—> H; (t =
0,1,...,n;; i = 1,..., k) be bifunctions satisfying condition C. Let E be a smooth, strictly convex and reflexive real

Banach space.

Let A;:H; - E (i = 1,...,k) be bounded linear operators with adjoint operators A;. Let Q be as in theorem 2.1.
Let {x;,} be defined by (13), then {x;,,} _ i €{12,..,k} converges strongly to an element (%%, ..,%) €

Pq (xl_o,xz_o, ...,xk_o).

where 1 —n; — B, > 0, 2k — 1, X, 14117 > 0, Ty, = T, 3 moq my» @nd

fin = finmoamy Yi=1,..k

Proof From Theorem 2.1, we have that {x;,} _ isbounded Vi=1,.. k.

Let (%;,%5,..., %) € Pﬂ(xllo,leo, ...,xk,o),

From Lemma 1.7

(1, Y20 s Vi) = (&1, X, o0, X, (x1,0:x2,0: ---:xk,o) — Ry, %2, o) X))
=1 =20, y2 = Rpp 0, Vi — i), (x1,0 = X1, %20 = X2 s Xio — 551(,)) SOV(y1, Y2 s Vi) € Q
From Lemma 1.5, Theorem 2.1, Definition 4 and hypothesis, we have that
[E finz = [lanxio + (1 — @)yin — fiHZ
< |lanxio + (1 = a)yin — £ — a0 — fi)Hz + 2, (X0 = Xy Xy g1 — Xy)
= [lan®; + A — @)yin — fi”Z + 20 (0 = £y, Xy i1 — X)
= (1= a)?*|lyin — fi”Z + 2, (xi0 — Xy Xinir — Xi)
< (1 —a)|yin - fi”Z + 20 (0 = Xy Xy 1 — X)
< (1—ap)|lxin — fi”Z + 20 (0 = Xy Xy 1 — Xi)
+(1 = )R NANP]| s (A — Ay
—(1 — )21, (A win — AR e (Ajw iy — Ajw; )

. 2
Uin — Gr];mui,n || + ”xi,n - Ti,nxi,nnz)

~(1 - a)a(1 - a)(|

-1 -a)p,(1—1n;— ﬁn)”zi,n - Sizi,nHZ
Now,

k
Dy (R, 2 s 2) < (1= @)Dy (Re, Ry o) Ri) + 261, Z(;cm Ry Xinas — R0)
i=1
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k
~(1 - a)a( =) Y [ltin = Tonxinl”
i=1

fin 2
ui,n - Grn, ui,n ||

k
(1 -aai-a) ) |

k

-1 —ay)p, Z(l /i .Bn)”Zi,n - Sizi,n”Z

i=1

k k
_(1 - an)rn(Zk —Th Z”Ai”2 ) Z ”Aiwi,n - Ajwj.n||2
i=1

i=1,i#j
k
< (1= a)D, Ry, %y, %) + 2, Z(xw Ry Xin — R0
i=1
k
+ 2a, Z ”xi,o - 9?1” ”xi,n+1 - xi,n”
i=1
k
~(1 - a0 = @) ) [ = Tinxinl’

i=1

k
-1 - ay)a(l - “)z ||ul"n =Gy " “2
i=1

k
-1 —ay)pBn Z(l —ni— ﬁn)”zi,n - Sizi,nHZ
i=1

2
—(1 = a )k =15 T AN ) 25 il A0 — Ajew; || (21)
Hence,
k
Dy Ry, gy e, 2) < (1= @)Dy Ry, g s B0 + 2 ) [[xig = Rill 01 — 2l
i=1
+2a, X (X0 — Ry, Xy — X;) (22)

Furthermore, we show that {D,, (X1, ..., X;)},=1 COnverges strongly to zero.
We discern two possible cases

Case 1: Suppose the real sequence {D,,(%;, ..., X;)},>1 IS nonincreasing for n = n,, for some n, € N, this implies that
{D, (%4, ..., Xx)}n>1 IS monotone and bounded and hence converges. Moreover, using (21) and the fact that a,, » 0 as n — oo,
we have that vi € {1,2, ..., k}

an _
Uijn — Grn Uin|| =

rlll_r)rgO”Zln - Sizi,n“ Vi

Tlll_l;l;lo”xln - Ti,nxi,n" =0 :1111_1;1;10 |
rlLiIE‘o”Aiwi.n —Ajwj,| =0 visj =i

rllijEO||Yi,n - Zi,n” = rlll_r)glo ﬁn”zi,n - Sizi,n“ =0Vvi
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lim[|z;, — w;n|| = lim 1,14l Ajwn — Ajwja|| =0V isj =i
n-oco n—oo
lim ||w; 5 — uin|| = (1 —a)lim | U, — Grfi'"uin” =0Vi
n-—-oo ’ ’ n—-oo 4 n ’
1111_1;1;10”ui,n - xi,n” = (1 - a)ii_{’go”xi,n - Ti,nxi,n” =0Vi
1111_1;1;10”xi,n+1 - yi,n” = ii_rgoan"xi,o - yi,n” =0Vi

Now, since
||xi,n+1 - xi,n” < I|xi,n+1 - yi,n” + ”yi,n - Zi,n” + ”Zi,n - wi,n” + ”wi,n - ui,n” + ”ui,n - xi,n”
We have that

lim ||xi,nJr1 - xi,n" =0Vi

] n-oco
Claim 1
K
limsup ) (x;0— X, x;p — %) <0

n—-oo
i=1

Proof of Claim: Let {x; 5, %5 5, Xk n, },_ b€ @ Subsequence of {xx; n, 5 n, .., Xn },,, SUCh that

K K
limsup ) (x;0 — X, x;, — X;) = limsup Z(xw — Xy Xip, — %)
n—-oo -0
i=1 =1
So, Vi
lim sup(x; o — £;, x;n — £;) = limsup(x; o — £, x;n, — X;) (23)
n—-oo -0

More so, since H = [T, H; is a Hilbert space and so reflexive, and {xl‘nl,xz‘nl‘. ..,xk,nl} 1is a bounded sequence in H, 3

(&

a subsequence {xl,nzt'xz,nzt.'"'xk.nzt} of {xl.nlrxz,nl."'lxk.nl} which converges weakly to (%,,...,%;) € H i.e,

t=1 =1
X1y, =" i as t > oo. Hence, the subsequences {ui.nzt} < {un, b {wi.nzt} < {win}i {Zi,nzt} c {z;,}; and {yi’nlt} c
{yi,nl} converge weakly to x; V i. Since I — S; is demiclosed at 0 V i, we have that X; € fix(S;)V i. That is (X, ...,X;) €
k .
i=1 fix(5).

Now, Viandj #i

2
*

2
- ||Aixi Alwl,nlt +Alwl.nlt +A]w].nlt Ajwj.nlt Ajx

”Aix? — Ajx;

2

= —Aw; x5 W; Wi —Ax;
= ”Ai“)i.nzt Ajwjn,, + Aixi + Ay + Ajwjn, — AjX;

2
* * * *
< ||Aia)i’nlt A}"‘)}'mzt” + 2 (A;x; + A, + Ajwjn, — Ax], Aix] Aix;)

But Wiy, -WY x/ast — oo. SO, Aiwi,nlt —% A;x; as t — o0 so that taking limits
on both sides and using the fact that lim ||4;w;, — Ajw; || = 0 Vi;j # i
n—-oo ’ !
we have that A;x; = A;jx; (j # i)
Thus, (x5, x3, ..., x;) € Q.
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Observe that lim |

n—-oo

xivnlt+1 - xi,‘nlt || =0Vi SO that

lim ”xi.nzﬁr — Xiny, ” =0vi;z=012,...,m

t—o

Now

<

+ ||«

+ ||Ti,8jxi,nlt+j — Tis;Xin,,

Xin, — Xin, .- iny i — Ting o Xin, o
"'nlt l,nlt+] l,‘nlt+] l'nlt+j l'nlt+j

. _T. )
||‘X"l,‘n.ltL l,nlt+rxl,nlt

So that by uniform continuity of T; ;, we have

g

lim

t—- oo

||xi,nlt - Ti,nlmxi,nlt” =0;j=01...mVie€{012,..,k}.

* mi . * * *
Hence, x; € nj:lofzx(Ti_]-). Thus (x7, x5, ..., x;) € Q,.

Next is to show that (x7, x3, ..., x;) € Q5.

Observe that

li Vi =0Vi

lim ;o Ty, || T i
And by Lemma 1.4

fimy fim To — Ty fin
Tl _ e I 4 o .
GT() ui'nlt Gr‘nlt l'nlt - rnl ( G?"nlt l’nlt + ||ul'nlt ||>.
t

Since {ui,nzt} 0is bounded for each i and L!l—p;l) Ty, = To, WE havethatvi € {1,2,...,k}

t=

fi,nlt fi,nlt

lim (|G =0

t—>oo

To ui'nlt N Grnlt ui’nlt

Observe thatv i € {1,2, ..., k}

Gfi'nll: < Gfi'nlt Gfi,nlt Gfi'nlt
10 ui,nlt - ui,nlt —_ 70 ui,nlt - rnlt ui,nlt + rnlt ui,nlt - ui,nlt
And hence
l' Gfi'nlt 0
e || 7o Wiy, T Wiy, '
Note also that
P_}rg Uing, = Xim, || = 0= }1_{2) Ximg 41 ~ Ximy, || Vi

Now, V i € {1,2, ..., k}

||ui,nlt+1 - ui,nlt S | ui,nlt+1 - xi,nlt+1 || + | xi,nlt+1 - xi,nlt + ||xi,nlt - ui,nlt )
So that
lim ||y, —u; ” =0
00 l,Tth+1 l,Tth )

AndsoVvieE{1,.2,..,k}
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glm Ui, 41— Uin ” =0,7=0,12,.. m
—00 t t
Now, for = 0,1,2, ..., m;
fin fin
T He+T
”ul'nlt To Ll — ||u"nlt ul'nlt” + ”ul’nlt” o Llip+r
+ Gfi'nlt+‘r _ fi'nlt+‘r
10 LNy +T 0 Lng,
fin
e+t .
< . — U . — t .
- 2 ||ul'nlt+‘r ul'nlt || + ‘|ul'nlt+‘5 To l'nlt+‘r v L
So that
fin
. e+ T _ _
tlLrg ”u,-,nltﬂ G, Uim, || = 0,t=012,..m

Now {fi,j};n:0 is a finite set of mappings and f;,, = f; n moa m;
Thenvj € {0,1,...,m;}36; € {0,1,...,m;} such that n,, + §; = j mod m,,

SothatVvi

fi'nltﬂij,
T0 l,nlt

. fij
lim ||Xl"nlt - GTO xl"nlt

t—>oo

= 0, (] = 0,1, ...,mi).

= lim ||xl' n;, G
e

t—oo

So,

. fij .
lim ”xi,nzt -G, Xim, =0;(G =0,1,..,m).

t—>oo

Thus, {(xl.nzt'xz,nzt.'"'xk.nzt)} 1converges weakly to (x7,x3, ..., xg), so that (x3, x5, ..., x;) € Q.

t=

Therefore, by Lemmas 1.1, 1.7 and (23)

K
limsup ) {x;o — x/, x;, — x7)
t—oo ! ’

i=1

= tli_f?o((xl.nz'xlnz.' . .,xk‘nl) — (5,25, 0, X3, (X100 X000 e 0 Xpe o) — (61,25, e, X))

= (x5, x5, o, x5) — (x5, %3, o0, X5), (xl‘o,xz‘o‘...,xk‘o) —(x5,%3, ., xp)) <0

Now, from (21), (22), we have

Dy (x5, 55, x5) < (1 — @)Dy (X7, x5, ., x1) + 2,

k
(X0 — X7, Xin — x;)

i=1

K
+2“nZ”xi,o - x;””xi,n+1 - xi,n”
=1

So that by Lemma 1.10

{Dn (x5, %5, ., X3 ) a0 CONVerges strongly to zero as n— oo. Hence, (xy,,%X,. -, Xcy) CONVerges strongly to
(x3,x5, ..., x1) € Q. This completes the proof of Case 1.
1 X2 k p p
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> CASE 2
Suppose there exists a subsequence {D, (%;,..,%)} of  {D,(%;,..,%)} such that D, (%,..,%) <
Dy 1(%4,...,%) Vs €N, then by lemma 1.9 there exists a non-decreasing sequence {q,},>; € N such that (i) lim q, =
n—oo

© (il) Dy (Ry, ..., %) < Dy 11(Ry, ..., %) V 7 € N. Since the sequence {xizqr}r>1 i =1,..,k are bounded, we obtain from

(21) and using the arguments earlier as r - o ||x;, — yiq |, |Vig, = Zig, || ”Zi,q; —wig || [|wig, —uig,|| > 0as r> o0 vi
and

”xi.qr+1 - xi,qr” - 0asr - oo,

*

s k * — 1 k * *
Moreover, }Lrgsup Yicalxio —xi, % —x7) = ‘rl'l—>n;3 Yitalxio —xi,x;q —x{) <0

Since Dy (%1, ..., %) < Dg 41(X4, ..., %) 7 € N, such that

k
ty Dy (R, s R4) < Dy (R, s Ri) — Dy 41 R, o) i) + Zaqr2<xw — Ruxig — R
i=1

k
205, D 0 = 2illl%ig, 01 = %10,
i=1

Dividing through by «,_and taking limits as r — oo then we would have D, (%4, ...,%;) = 0 as r — oo and so
Dg +1(X4, ..., %) > 0as r > oo

Since D,(Ry, ..., %) < Dy 11(Ry, ..., %), then D.(%,,...,%) - 0 as r — co. This implies that }im”xi,r - %] =
oVvi

Sothatx;, — X;as r — oo. Thus, (xlln,len, ...,xk,n) converges to (%4, ..., ;) as n — oo. This completes the proof.
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