
Volume 7, Issue 5, May – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAY955 www.ijisrt.com 1144

Securing Client and Server Connections from

Parameter Tampering Using Time-Based

Hash Encryption

1Chandra Yogatama, 1*Oktoberty, 1Rita Hariningrum, 1Sri Pramono, 1Riyanto Wibowo

1Maritime Faculty, Universitas Ivet, Semarang, Central Java, Indonesia

Tjokro Hadi.

2Politeknik Negeri Semarang, Central Java, Indonesia

Abstract:- This paper proposes a method to prevent

parameter tampering on web services. Time based hash

encryption is able to give unpredictable output which

changes periodically ac-cording to input. The proposed

method uses different parts of function output as

authenti-cation key and parameter order. The

presented method has several characteristics. Each

encryption and decryption needs to be able to generate

the same VST. Vst used must have a periodic record so

that it is pos-sible to get Vs (t-1).Each used Vst works

without trouble on both time variants (tests 1-3) and

invariant (tests 3-5). From the Decrypt column, we can

see that, as a side effect, each pass parameter is

decrypted and cut off. To evaluate proposed work, we

make software to encrypt and decrypt a request. We

limit the test to having no delay.

Keywords:- Securing Client, Server Connections,

Tampering, Encryption.

I. INTRODUCTION

Online software is software that needs an internet

connection. Each operation uses a request package sent
from online software to the server and replied with data.

This process often uses unsafe connections prone to attacks.

Online software attacks require four steps [1], which are

information gathering, assessing vulnerability, launching an

attack, and cleaning up. Information gathering is collecting

transported data in a network, TLS (Transport Layer

Security) is able to avert this [2]. Unfortunately, TLS is not

reliable and needs a secure endpoint [3]. Encryption can

prevent assessment of vulnerability [4]–[6]. Launching an

attack and cleaning up is avertable by authentication [7].

One of the known attacks is parameter tampering [8].

It works by assessing package vulnerabilities and then

launching attacks by modifying or creating packages able

to bypass the rules [9].

II. PARAMETER TEMPERING PREVENTION

Tampering prevention by requiring connection divides
authentication into the following.

A. single line authentication

This method uses one line for requests and
authentication. A season key is given after the login

process. A later request will be made using the received

season key, [10], prone to hijacking.

B. double line authentication
This method uses a separate connection for the request

and authentication.

a) Token generator.

This method uses a separate device to generate

tokens that were previously synchronized with the

server before being handed to the user [7]. This

method uses one line that serves as a connection

between software and the server, as the token

connection has already been severed when the user

receives the token.

b) SIM card

With SIM cards, the system could use different

communication lines to exchange token information

[11]. It limits It is used in some devices that run SIM

cards, such as mobile phones, and will only be
usable if the SIM card is able to receive a signal.

c) RFID

An authentication token using RFID or other

verification objects that can emulate RFID is also
viewable. Any device that hosts a client must have

an RFID reader. And because the token is always

the same, if an attacker knows it, a new request from

an attacker using this token will always be accepted

by the server.

C. Common vulnerability

Each method presented is prone to hijacking executed

on the information gathering step of an online software

attack [1]. This vulnerability is caused by each data

package having a common form, which means the attacker

only needs to fill in the authentication parameters [8], [12]

either by interjects or guessing [13]. Guessing includes

repeatedly entering possible text strings, commonly known

as brute force attacks [12].

http://www.ijisrt.com/

Volume 7, Issue 5, May – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAY955 www.ijisrt.com 1145

In this paper, we propose a method to prevent

hijacking and brute-forcing by making the package’s
format randomly generated. It will serve as encryption,

which will be decrypted when the package arrives. A time

hash is a time-input hash encryption capable of generating

random numbers on a regular basis [14], [15]. A key and

package format will be generated using the output [9]. The

server will be able to understand it if it knows the exact

time it was encrypted. A time zone was chosen and

implemented on both the online software and the server to

do this. The next section will cover the design and testing

of our proposed method.

III. PROPOSED WORK

This section describes our proposed method and how

to put it into action on a package.

A. Design

The main objective of our method is to create dynamic

keys that change from time to time. Our aim isn’t fully

random but di-rected randomness, so it is able to be used

for authentication.

From above, we conclude that we should use hash

encryption with time-based varia-bles as input. Where Cdh
denotes dark hash cryptography, Vst denotes a time-based

variable, and HAs denotes output..

HAs = Cdh(Vst) (1)

Dark hash cryptography (Cdh) is multi-ple hashes

combined into a function. A time-based variable (Vst) is a

variable that changes according to time. This variable can

be called a time-synch variable as this variable is needed to

generate the same output if calculated at the same time in
dif-ferent locations. If the same VST is used, the function's

output (HAs) will always be the same.We use hash because

it’s irre-versible, hence the input will always be un-known.

The server needs to process re-quests at the same time to

use the same in-put (Vst). HAs are used as a base to decide

parameter order and authentication key. Pa-rameter order is

decided by the LSB (less significant bit) and the

authentication key by the MSB (most significant bit). This

pro-cedure encrypts the package before it is re-quested by

the server, also calculates HAs to decrypt received

packages.

Table 1: Test result

Here are the 5 steps of the proposed en-cryption.

 Change the parameter name

 Add HAs as a new parameter

 Add fake parameter

 Reduce the LSB of parameters that aren't as important.

 Shuffle parameters using the LSB of Has

Step 1 is used to disguise the purpose of each

parameter. Step 2 is adding the authentication key as a

parameter for authentication. Step 3 is used to make each

operation have the same number of parameters to

camouflage the type of service. The parameter added is

randomly generated as it is not needed later and must be

inserted between the required parameter and authentication

key. Step 4 is used to equate less important parameters with

fake parameters by likening their length.

The designer must understand which pa-rameters are

not allowed to be cut. Step 5 is used to change the

parameter order periodi-cally.

Here is the required step to decrypt the encryption above.

 Calculate HAs

 Validation

 Extract parameters

 Try to process it

 If there is an error, go back to step 1 and use Vs (t-1)

Step 1's goal is to get the parameter’s or-der and

authentication key. Step 2 is check-ing the authentication

key before com-municating with the server for further
package processing. Step 3 is to get the oth-er parameters

from the received package. Step 4 is to try to execute the

request using variables extracted from the package. Step 5

is to accommodate the delay in transportation time.

B. Testing

In this section, we will apply the above method to

secure a simple get request. The encryption begins with the

requested form and proceeds for every 5 steps of encryp-

tion, which is decrypted later. Each encryption step output

is shown on Table 1 with explanations given below.

 Step 0 is a simple Get request serving as encryption

target.

 Step 1 is output after changing the pa-rameter name

 Step 2 is after adding HAs which become parameter 4.

HAs calculated using GMT hour-minute (HH:MM) as
Vst and MD5 is used as Cdh.

 Step 3 is adding fake parameter between real parameter

and HAs. parameter 4 be-come fake parameter and HAs

is moved to parameter 5.

 Step 4 is removing the LSB of other pa-rameters so they

have the same length as the most important parameter,

which is "us-er" or parameter 2.

 Step 5 is reordering parameters using the LSB of HAs.

Then, this request is sent to the server to be decrypted

later.

Step Output

0 www.website.com/api.php?service=01&user=0001&pass=3342...E

1 www.website.com/api.php?1=01&2=0001&3=3342...E

2 www.website.com/api.php?1=01&2=0001&33342...E &4=DDDD…54321

3 www.website.com/api.php?1=01&2=0001&3=3342...E&4=FFFF...0&5=DDDD... 54321

4 www.website.com/api.php?1=01&2=0001&3=3342&4= FFFF &5= DDDD
5 www.website.com/api.php?1=DDDD&2=FFFF&3=3342&4=0001&5=01

http://www.ijisrt.com/

Volume 7, Issue 5, May – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAY955 www.ijisrt.com 1146

We follow decryption design to process encrypted

request. Which is the output of step 5.

 Step 1 calculates HAs using the current time, which is

DDDD... 54321. As the au-thentication key, take the

MSB part by the mode of length of the parameter while

the order takes the LSB part. So, authentication key =
DDDD and order = 54321. Authenti-cation keys are on

the highest number of orders where service is the lowest,

followed by user and pass.

 Step 2 is validation. We can see that the highest number is

on the first digit, so the authentication key is on the first

parameter. The request is valid if we both have the same

key. Step 3 is extraction. We get 3 parameters: service =

01, user = 0001, and pass = 3342.

 Step 4 is executing the parameters. Any service that uses

cut parameters must modi-fy its process so it is capable of

using that parameter.

 If a process is unable to execute using cut parameters,

then those parameters must not be cut on step 4.

 Step 5, if there is a problem faced on step 2, 3, or 4,

repeat from step 1 with Vs (t-1) accommodating a
possible delay re-sulting in wrong HAs.

We can see from the table that our meth-od is able to

encrypt a simple GET request and decrypt it to successfully

receive each parameter with one parameter received cut.

IV. RESULTS AND DISCUSSION

To evaluate proposed work, we make software to

encrypt and decrypt a request. We limit the test to having

no delay. The results are given in Table 2.

From table 2, our proposed work suc-cessfully

encrypts and decrypts on any Vst, which in this case means

GMT current time. Each used Vst works without trouble on

both time variants (tests 1-3) and invari-ant (tests 3-5).

From the Decrypt column, we can see that, as a side effect,

each pass parameter is decrypted and cut off. To ac-

commodate this, we need to modify the service on the
server side to be able to work with it.

Table 2: Experimental results

V. CONCLUSION

This paper proposes a method to prevent parameter

tampering on web services. Time based hash encryption is

able to give un-predictable output which changes periodi-

cally according to input. The proposed method uses

different parts of function output as authentication key and

parameter order. Unpredictable authentication keys and

parameter orders that are only active for a limited time will

prevent hijacking and brute force attacks, effectively

preventing parameter tampering.

The presented method has several char-acteristics.

Each encryption and decryption needs to be able to

generate the same VST. Vst used must have a periodic

record so that it is possible to get Vs (t-1). Each pa-rameter

must be analyzed first to determine whether cutting it is

possible or not. The presented method encrypts sent

package parameter wise, so it is able to be used in

conjunction with another package encryp-tion method that

targets package.

REFERENCES

[1.] N. Hoque, M. H. Bhuyan, R. C. Baishya, D. K.

Bhattacharyya, and J. K. Kalita, “Network attacks:
Taxonomy, tools and systems,” J. Netw. Comput.

Appl., vol. 40, no. 1, pp. 307–324, 2014, doi:

10.1016/j.jnca.2013.08.001.

[2.] F. De Backere et al., “Design of a security mechanism

for RESTful web service communication through

mobile clients,” IEEE/IFIP NOMS 2014 - IEEE/IFIP

Netw. Oper. Manag. Symp. Manag. a Softw. Defin.

World, 2014, doi: 10.1109/NOMS.2014.6838308.

[3.] E. Ronen, R. Gillham, D. Genkin, A. Shamir, D.

Wong, and Y. Yarom, “The 9 Lives of

Bleichenbacher’s CAT: New Cache ATtacks on TLS

Implementations,” Proc. - IEEE Symp. Secur. Priv.,

 Test Request Encrypted Decrypt Vst (GMT)

 1

 service=01

 user=0001

 pass=d321aa

 1=01 2=3a13

 3=d321 4=0001

 5=a3d3

 s=01

 Key=a3d3 u=0001

 pass=d321

 20:00

 2

 service=01

 user=0001

 pass=d321aa

 1=27ac 2=01

 3=d321 4=0001

 5=9e34

 s=01

 Key=9e34 u=0001

 pass=d321

 20:01

 3

 service=01

 user=0001

 pass=d321aa

 1=01 2=341e

 3=d321 4=0001

 5=7871

 s=01

 Key=7871 u=0001

 pass=d321

 20:03

 4

 service=01

 user=0001

 pass=d321aa

 1=01 2=c2a8

 3=d321 4=0001

 5=7871

 s=01

 Key=7871 u=0001

 pass=d321

 20:03

 5

 service=01

 user=0001

 pass=d321aa

 1=01 2=17ea

 3=d321 4=0001

 5=7871

 s=01

 Key=7871 u=0001

 pass=d321

 20:03

http://www.ijisrt.com/

Volume 7, Issue 5, May – 2022 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT22MAY955 www.ijisrt.com 1147

vol. 2019-May, pp. 435–452, 2019, doi:

10.1109/SP.2019.00062.
[4.] A. Solichin, M. Andika Putra, and K. Diniari,

“RESTful Web Service Optimization with

Compression and Encryption Algorithm,” in

Proceedings - 2018 International Seminar on

Application for Technology of Information and

Communication: Creative Technology for Human

Life, iSemantic 2018, 2018, no. January, pp. 333–337,

doi: 10.1109/ISEMANTIC.2018.8549727.

[5.] Palanivel Rajan D and Dr. S. John Alexis,

“Comparative Study on Data Encryption Algorithms

in Cloud Platform,” Int. J. Eng. Res., vol. V6, no. 10,

pp. 126–129, 2017, doi: 10.17577/ijertv6is100070.
[6.] P. Princy, “a Comparison of Symmetric Key

Algorithms Des , Aes , Blowfish ,” Int. J. Comput.

Sci. Eng. Technol., vol. 6, no. 05, pp. 328–331, 2015,

[Online]. Available:

http://www.ijcset.com/docs/IJCSET15-06-05-055.pdf.

[7.] A. Abdellaoui, Y. I. Khamlichi, and H. Chaoui, “A

Novel Strong Password Generator for Improving

Cloud Authentication,” Procedia Comput. Sci., vol.

85, no. Cms, pp. 293–300, 2016, doi:

10.1016/j.procs.2016.05.236.

[8.] M. E. Korstanje, Advances in Information Security,
Privacy, and Ethics (AISPE), no. February. Argentina:

University of Palermo, 2017.

[9.] Y. Liu, R. Zhang, and Y. Zhou, “Predicate encryption

against master-key tampering attacks,” Cybersecurity,

vol. 2, no. 1, 2019, doi: 10.1186/s42400-019-0039-6.

[10.] T. Kivisaari and others, “Providing Secure Web

Services for Mobile Applications,” 2015.

[11.] M. Le, S. Clyde, and Y. W. Kwon, “Enabling multi-

hop remote method invocation in device-to-device

networks,” Human-centric Comput. Inf. Sci., vol. 9,

no. 1, 2019, doi: 10.1186/s13673-019-0182-9.

[12.] S. Salamatian, W. Huleihel, A. Beirami, A. Cohen,
and M. Medard, “Why botnets work: Distributed

brute-force attacks need no synchronization,” IEEE

Trans. Inf. Forensics Secur., vol. 14, no. 9, pp. 2288–

2299, 2019, doi: 10.1109/TIFS.2019.2895955.

[13.] R. Amin, S. H. Islam, G. P. Biswas, M. K. Khan, and

X. Li, “Cryptanalysis and Enhancement of Anonymity

Preserving Remote User Mutual Authentication and

Session Key Agreement Scheme for E-Health Care

Systems,” J. Med. Syst., vol. 39, no. 11, 2015, doi:

10.1007/s10916-015-0318-z.

[14.] C. Yogatama, R. R. Isnanto, and A. Triwiyanto,
“Aplikasi Algoritma Hash Dalam Pengacakan

Pertemuan Dan Pertarungan Dinamis Pada Perangkat

Lunak Permainan Dengan Sistem Operasi Android,”

Transient, vol. 3, no. 3, pp. 301–308, 2014, [Online].

Available:

https://ejournal3.undip.ac.id/index.php/transient/articl

e/view/6347.

[15.] F. Maqsood, M. Ahmed, M. Mumtaz, and M. Ali,

“Cryptography: A Comparative Analysis for Modern

Techniques,” Int. J. Adv. Comput. Sci. Appl., vol. 8,

no. 6, 2017, doi: 10.14569/ijacsa.2017.080659.

http://www.ijisrt.com/

