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Abstract:- The purpose of this study is to produce an 

”adaptive Ant Colony System” in order to establish a 

balance between exploitation and exploration in terms of 

solving the Travel salesman problem. First we do a 

detailed investigation of several Ant Colony System 

Algorithm’s parameters. Second we will incorporate into 

the algorithm a Fuzzy Logic Controller, which will be 

utilized to alter the settings based on the algorithm’s 

reliable performance metrics. The parameter 

customization will proceed throughout the execution of 

the algorithm, providing for a dynamic parameter 

settings depending on the algorithm’s current 

performance. The adaptive algorithm will be examined on 

a set of TSP problems of varying sizes, and the results will 

be compared to those obtained using the standard 

algorithm and other studies in the same manner.   
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I. INTRODUCTION 

 

Since its inception in 1800, the Travel Salesman Problem 

(TSP) has attracted the interest of several researchers in 

mathematics, operations studies, computational intelligence, 

and various branches of engineering, resulting in the focus of 

multiple research approaches. Consciously, the TSP has 
evolved into a standard metric for evaluating the search 

capability of optimization algorithms [1]. A series of 

techniques to solve TSP have been proposed that produce 

either an exact or an approximate solution. Algorithms such as 

branch-and-bound and dynamic programming are used to 

provide an accurate solution to the TSP with a limited number 

of cities. For a large number of cities, however, identifying an 

inexact answer may be sufficient. Numerous metaheuristic 

methods based on swarm and evolutionary methodologies 

estimate optimal solutions to the given TSP[2]. The ant colony 

optimization method (ACO) is a metaheuristic algorithm that 

is based on the behavior of ant colonies during their mutual 
search for food. In 1992, Dorigo developed ACO, an approach 

based on the behavior of ant colonies that use their collective 

intelligence and the pheromone trail left by actual ants to 

locate food; the population in ACO is referred to as artificial 

ants, and Each ant symbolizes a possible solution to the 

problem[3]. Over the years, ACO has established itself as a 

successful metaheuristic for combinatorial optimization issues 

(COPs)[4]. The ACO algorithm’s significance stems from its 

ability to discover high-quality solutions quickly. As a result, 

ACO algorithms are increasingly being used for problems 

involving continuous and multi-objective optimization[5]. 

Intuitively, the core concept of ACO optimization algorithms 

is the balance between intensification and diversification. 

However, an overemphasis on intensification can drive ants to 

a local optimum, whereas an overemphasis on diversity can 
result in an unstable state[6] . The parameters setup of swarm 

algorithms has a significant impact. Significant involvement 

in defining behavior, leading the search, and biasing the 

quality of final solutions throughout resulted in an appropriate 

balance of intensification and diversification. Additionally, an 

ideal parameter value may vary during the optimization 

process, complicating this task[7]. In ACO, additional 

research is needed into the sensitivity of parameter selection 

and its relationship to convergence. Existing research on the 

behavior of state-of-the-art parameter adaption algorithms 

focused on only a few ACO variants and neglected the 

others[8]. The use of fuzzy logic to metaheuristics has lately 
become a significant area of research, as evidenced by several 

publications. A Fuzzy Dynamic Adaptation of Parameters is 

one of these instances when fuzzy logic is used to dynamically 

make a parameter of an algorithm fuzzy[9]. We suggest a 

dynamic parameter adaption strategy for ACO in this paper, 

utilizing a fuzzy logic controller (FLC), in order to establish a 

balance between exploitation and exploration in terms of 

solving the TSP problem. By adjusting the settings over time, 

while taking into consideration certain metrics concerning the 

ACO algorithm’s performance. We do a detailed investigation 

of several ACO parameters. The suggested algorithm’s 
efficacy is compared to[10]  and [11] and other recent 

literature related works. 

  

II. IMPROVEMENT TECHNIQUES IN 

METAHEURISTICS 

 

The TSP is based on the notion of a traveling salesman 

visiting a specified number of cities (nodes) and determining 

the shortest path between them. A TSP has a maximum of C 

nodes linked by edges E. The edge Eij that connects nodes i 

and j has a cost nij and is frequently equal to the Euclidean 

distance between nodes [12]. The TSP is useful in a variety of 
practical applications, including transportation (by air, land, or 

sea), vehicle routing work scheduling , logistics planning, 

motherboard drilling, collision avoidance in robotics 

engineering, industrial robot control, layout of computer 

motherboard components, manufacturing microchips, DNA 

sequencing and more recently, automotive vehicle 

engineering science[13]. TSP is characterized as NP-hard 

problems that cannot be solved in a finite amount of time. 

Unless NP equals P, a polynomial time area exists. 
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Researchers considered alternative workarounds 

(approximation approaches) that may produce a satisfactory 
result in an acceptable amount of time; these methods are 

classified as heuristics and metaheuristics. The critical 

distinction between the two is that heuristics are problem-

dependent, but metaheuristics are not. There have been an 

immense number of metaheuristics developed to date for 

adapting to varied issue kinds (continuous, discrete, 

unconstrained, multi-objective, etc.). Although the 

fundamental metaheuristics may be rather efficient, additional 

transformations and improvements are periodically presented 

to boost the algorithm’s and solution’s convergence[14].  

presented a hybrid Artificial Bee Colony ABC to solve the 

scheduling problem for identical parallel batch processing 
machines. The authors assert that the time required to solve 

the scheduling problem is reduced[15]. suggested a hybrid 

discrete Grey Wolf Optimizer GWO, Crow Search Algorithm 

(CSA) and Extreme Learning Machine (ELM) to solve the 

multi-objective and multi-constraint scheduling problem for 

casting manufacturing.[16] Developed a novel hybrid 

Teaching-Learning-Based Optimization TLBO method 

combined with Extreme Learning Machines (ELM) for 

solving data categorization issues. On a collection of UC 

Irvine (UCI) benchmark datasets, the suggested approach is 

evaluated. [17] Describes a hybrid Iterated Local Search and 
Ant Colony Optimization technique. The ILS-AntMiner rules-

based method is for increasing classification accuracy and 

model size. By enhancing the benefit of neighborhood 

structures in the exploitation mechanism, this hybridization 

intends to improve the classification performance in terms of 

accuracy and simplicity. For the Dynamic Traveling Salesman 

Problem DTSP,[18] presented a novel a hybrid metaheuristic 

algorithm for the DTSP . This approach is hybrid of two 

metaheuristic principles: ant colony optimization (ACO) and 

simulated annealing (SA). [10] Proposed a self-adaptive ACO 

with novel strategies to improve the algorithm’s uncertain 

convergence time and random decisions The proposed 
technique (DEACO) dynamically adjusts the ACO 

parameters. The main idea behind this mechanism is to 

determine the first city (start point) in order to find the shortest 

path using clustering. DEACO uses this method to find the 

cheapest/shortest path for each cluster. [11] proposed a 

method for dynamically adapting the responsible parameters 

for the decay of pheromone trails xi and rho using a fuzzy 

logic controller (FLC) in the travelling salesman problems 

(TSP). The goal of this method is to understand the effect of 

both parameters xi and rho on the performance of the ACS in 

terms of solution quality and convergence speed to the best 
solutions by studying the ACS algorithm’s behavior during 

this adaptation.  [19]Proposed a parallel cooperative hybrid 

algorithm (PACO-3Opt) based on ant colony optimization To 

avoid local minima, the 3-Opt algorithm is used. PACO-3Opt 

has multiple colonies and a master–slave paradigm. [20] 

suggested a new algorithm for the TSP that combines 

gravitational particle swarm optimization (PSOGSA) and 

ACO and is known as PSOGSA-ACO-LS (ant supervised by 

gravitational particle swarm optimization with a local search). 

On the other hand, [21] and [22] stated that metaheuristics’ 

performance is dependent on parameter setting and may allow 
for more flexibility and resilience. Since the turn of the 

twentieth century, the literature has progressively emphasized 

the need of systematic methodologies for metaheuristic 

parameter setting. The following subsections explore and 
summarize several parameter tweaking procedures. 

 

A. Overview of parameter adaptation approaches 

It is not straightforward to determine the parameter 

settings. Actually there is no such thing as an ideal values of 

parameters for a particular metaheuristic. There are two 

distinct methodologies for parameter tuning, according to [23] 

which are off-line parameter initialization (or meta-

optimization) and the online parameter tuning strategy: Off-

Line Parameter Initialization: where appropriate parameter 

settings are determined prior to the method being applied to 

the situation at hand. In this situation, the parameter tuning 
results, i.e. the ideal parameter setting determined during the 

tuning process, are utilized to solve problems, and these 

parameter values remain constant throughout the run. Online 

Parameter Initialization: Where the values of the algorithm’s 

controlled parameters change in real time as a result of various 

techniques (i.e., during the run). In this case, startup values and 

suitable control techniques for controlled parameters are 

provided, which update or adjust the values of relevant 

parameters during the run. The following are examples of 

possible control strategies: 

 deterministic or pre-scheduled, If the problem is viewed 
from an offline standpoint: Depending on the computing 

time or the number of algorithm iterations, static 

parameters are updated by (deterministic or randomized) 

functions. 

 adaptive parameter settings, where the strategy for 

parameter adjustment is described in terms of certain 

statistics about the algorithm’s behavior. This online 

adaptation may employ a variety of measures.  

 self-adaptation, This consists in the algorithm modifying 

the parameters at run time. More precisely, dimensions 

representing parameters of exploration methods are added 
to the problem’s search space. After that, the optimization 

procedure is carried out in this new space.  

 search-based adaptation, which uses a different search 

method for parameter adaptation than the underlying 

algorithm. Local search and EAs for parameter adaptation 

are examples of this type of strategy. 

 

B. Ant Colony System (ACS) 

Ant Colony Optimization (ACO) was first introduced by 

Dorigo in 1992 as part of his doctoral thesis. Ant Colony 

Optimization is a pure meta-heuristic approach that is capable 

of solving a broad variety of issues and resulting in several 
optimizations in the disciplines of science and engineering. 

Numerous variations of the ACO algorithms have been 

developed in recent years, including the Elitist ant system, the 

Rank-based ant system, the Max–min ant system, and the Ant 

colony system (ACS). We will focus our efforts in this study 

on the last-mentioned form of the ACO algorithm. Following 

is a brief description of the algorithm for the ant colony 

system: To begin, randomly place m ants in n cities, with each 

edge containing an initial pheromone ij (0) among two cities. 

Each ant’s tabu list’s initial entry is set to be equal to its 

beginning town. Following that, each ant migrates from town 

i to town j. Ants choose the next city using the following 

probability formula[24].  
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where: 

 τij : Pheromone trace amount in t time in the (i,j) corners.  

 The visibility or heuristic information between a pair of 

cities is the inverse of their distance ηij = 1/dij , where dij is 

the distance between cities i and j . Hence, if the distance 

on the arc (i, j)is long, visiting city j after city i (or vice 

versa) will be less desirable.   

 α (alpha) is the parameter that shows the relative 

importance of the pheromone trace.  

  β (beta) is the parameter that shows the importance of the 
visibility value.  

  Nk denotes its practicable neighborhood. Nodes that have 

previously been visited as part of the ant k partial tour are 

not included in the viable neighborhood . The pseudo-

random proportionality rule is used by ACS in the solution 

construction, though the next city to visit is picked as 

follows with a probability q0: 

 

 
 

That is, with a certain probability, the most appealing 

edge is chosen greedily. The ACS pheromone deposit 

modifies just the pheromone levels of adjacent solutions. This 

is either the best-iteration-so-far solution or the best-so-far 
solution. The formula for pheromone updates is as follows: 

 

 
 

During the ants’ solution construction process, a local 

pheromone update rule is used. Each time an ant makes its way 

across an edge (i,j), τij is modified as 

 
where ξ  (0, 1) denotes the pheromone decay factor and 

τ0 denotes the pheromones’ initial value. In ACS, τ0 is a very 
small constant with the value 1/n * Lnn , where Lnn is the 

duration of the nearest neighbor tour; it lowers the pheromone 

value of previously utilized edges, making them less 

interesting to other ants. Table I summarize some of the main 

approaches that have been used in the ACO literature to adapt 

parameter values. As viewed in Table 1 it’s clear that is in the 

recent years, fuzzy systems have been used as a strategy to 

find the best parameters in the ACO variants and the obtained 

results are significance. However we can observe the 

importance of use fuzzy systems for parameter adaptation. 

Even so, with well-designed fuzzy controllers and more 

sensitive fuzzy rules, the algorithm achievement will be 

optimized more and more to achieve the best results. This 

is the main objective of our research.  

 

III. METHODOLOGY 

 
ACO algorithms’ behavior is very dependent on the values 

assigned to parameters [39]. However, altering the 

parameters during calculation, either on a pre-determined 

timetable or in response to the search progress, might 

improve an algorithm’s performance. ACO algorithms are 

increasingly being used to  solve problems involving 

continuous and multi-objective optimization[40]. According 

to[21], the behavior of ACO algorithms is highly dependent 

on the parameter values. In the majority of ACO applications, 

parameter values are maintained constant during the 

algorithm’s execution. The parameter setting problem has 

garnered more attention from developers and end-users of 
metaheuristics, and increased work has been directed toward 

devising systematic and sophisticated techniques to resolve it 

[23]. As a result, it is common to discover ACO algorithms 

that employ fuzzy logic to attain the best outcomes [41]. While 

other approaches, such as genetic algorithms and neural 

networks, perform similarly to fuzzy logic in the majority of 

circumstances, fuzzy logic has the benefit of expressing the 

answer to the issue in words that human operators can 

understand. This enables them to incorporate their knowledge 

into the design of the fuzzy controller, making it easier to 

automate operations that have been effectively performed by 
humans previously. As a result, it was proposed to enhance the 

algorithm’s performance by modifying ACO parameters at 

run-time using a fuzzy logic controller (FLC). ACO 

algorithms require the proper setting of a number of 

parameters. Among these: 

 

Table 1:-  Schematic description of the literature on adaptive 

ACO 

 

 α and β which are used to weigh the relative influence of 

the pheromone and heuristic values in the ants’ solution 

construction. The role of these parameters in biasing the 

ants’ search is intuitively similar. Higher values of α 

emphasize differences in the pheromone values, and β has 

the same effect on the heuristic values.  

  The starting value of the pheromones, τ0, has a 
substantial effect on the algorithm’s convergence speed; 

Paper Adaptation strategy ACO variant Parameters 

[25] pre-scheduled variant of AS β,ρ 

[26] pre-scheduled AS α 
[27] Adaptive ACS ρ 

[28] Adaptive variant of 

MMAS 
β 

[29] Adaptive ACS ρ 

[30] self-adaptation MMAS α,β 
[31] self-adaptation MMAS α,β 
[32] search-based adaptation variant of ACS β,ρ,q0 

[33] search-based adaptation variant of ACS α,ρ,Q 

[34] search-based adaptation variant of ACS β,q0 
[24] search-based adaptation ACS α,β,ρ,Q,S 

[35] fuzzy logic system ACS β,q0 
[36] fuzzy logic system AS α,ρ 

[37] interval type-2 FLC AS α,ρ 

[38] fuzzy logic system ACS population 
[11] fuzzy logic system ACS ρ,ξ 
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even so, the ideal value varies according to the ACO 

algorithm.  

 The evaporation rate parameter, ρ, 0 ≤ ρ ≤ 1, controls the 

degree to which pheromone trails degrade. If ρ is low, the 

effect of the pheromone values would last longer, but high 

values of ρ allow for rapid forgetting of formerly very 

attractive alternatives, allowing for a more rapid 

concentration on newly added information to the 

pheromone matrix.  

 The colony’s population of ants, m. For a certain 

computational budget, such as a maximum computing 

time, the population of ants is essential in defining the 

trade-off between the number of iterations possible and the 
breadth of the search at each iteration. Indeed, the fewer 

rounds the ACO algorithm performs, the larger the number 

of ants every iteration becomes. 

 Q, a The amount of pheromone an ant releases is 

determined by this parameter. 

 q0, the possibility of making a predictive decision about 

the next city to visit. 

 

Choosing which parameters to change and how to 

change them is mostly a random process. Table 2  shows 

some of the state-of-art attempts to achieve the parameters 

tuning.  
 

In our work,  a deep comparison  was utilized to 

determine what parameters to employ in the solution.  
Among these: 

 

A. Pheromone and Heuristic parameters settings: 

α and β which are used to weigh the relative influence 

of the pheromone and heuristic values in the ants’ solution 

construction. The role of these parameters in biasing the ants’ 

search is intuitively similar. Higher values of α emphasize 

differences in the pheromone values, and β has the same 
effect on the heuristic values. If α is too big, ant colony search 

may become prematurely imprisoned in local optima because 

of the increased possibility of re-choosing the path due to 

stochastic variables. The larger the information heuristic 

factor α, the stronger the stochastic components are in the 

path search. However, ant colony’s prior knowledge of path 

search and uncertainty factors, as measured by the relative 

importance of β, indicates the greater likelihood for ants to 

select a local shortest path on the local point, even though the 

search convergence rate increases, the ant colony weakens 

randomness to fall into the local optimum more easily. The 

ant colony algorithm’s performance and role are both 
complementary and intertwined[42]. A satisfactory outcome 

may be achieved by selecting the right α and β ranges; 

typically, α = 0.5  2.0 and β = 2.0  5.0 are used. 

 

B. Global search and convergence speed parameter setting 

The colony’s population of ants, m. For a certain 

computational budget, such as a maximum computing time, 

the population of ants is essential in defining the trade-off 

between the number of iterations possible and the breadth of 

the search at each iteration. Indeed, the fewer rounds the ACO 

algorithm performs, the larger the number of ants every 

iteration becomes. The ACO algorithm uses only one type of 

ant to generate new solutions, and the ant colony size, 

selection parameter, and convergence parameter are used to 

control the solutions[43]. In order to select the ant colony 
algorithm’s m (number of ants), two indications of the 

algorithm’s global search capability and convergence speed 

must be considered extensively. However, it is interesting to 

note that the method performs significantly worse at low 

values (m = 1) than it does at high (m = 100) values. Since 

the ants’ numbers might vary from 30 to 100, we did as 

suggested and varied the number of them accordingly. 

 

 

Table 2 Optimization methods parameters values samples 

 

C. Solution construction parameter setting 

q0, the possibility of making a predictive decision about 

the next city to visit. 

 

Additionally [39] suggested that q0 values that are close 

to 1 are considered to be good. A value of 1 causes search 

stagnation quickly, whereas values less than 0.75 result in 

very slow convergence forward into good solutions. 
Therefore we make our work with q0 adapting values 

between 0.0 and 0.9. 

  

D. Evaporation rate parameter setting 

The evaporation rate parameter, ρ, 0 ≤ ρ ≤ 1, controls 

the degree to which pheromone trails degrade. If ρ is low, the 

effect of the pheromone values would last longer, but high 

values of ρ allow for rapid forgetting of formerly very 

attractive alternatives, allowing for a more rapid 

concentration on newly added information to the pheromone 

matrix.  
 

IV. THE PROPOSED METHOD 

 

It has been popular in recent years for researchers to use 

various strategies to dynamically modify important 

parameters in ACO algorithms in order to obtain better 

convergence. It is our goal to improve performance by 

Optimizatio

n Method 
α β 

Ants 

population 

m 

q0 ρ 

[44] 12 23 - - 
0.70.

8 

[38] - 2 0100 
0.

9 
0.1 

[45] - 25 10 
0.

9 
0.1 

[10] - - 200 - - 

[46] 11.7 36 50150 - 0.3 

[6] 1 2 - - 0.5 

[47] 01 - 

number of 

cities(m=n

) 

- - 

[24] - 2 m=n 
0.

5 
0.2 

[48] 1 2 100 - 0.1 

[49] 
0.751.2

0 

0.651.5

0 
- - - 
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dynamically modifying parameters during algorithm 

execution solely for ACS algorithms that employ fuzzy logic. 
Based on the previous discussion about the role of each 

parameter in the ACS algorithm, we built four Fuzzy Logic 

Controllers FLCs and utilize them to concurrently adapt the 

four parameters α , β, q0 and population size in the Fuzzy Ant 

Colony System FACS technique, which uses the fuzzy 

system to dynamically alter the parameters i.e. they are 

exactly the outputs of the fuzzy system. This parameter 

selection has not been taken into account in other studies, as 

shown in table I. The FLC uses errors and diversity as inputs 

and then applies a set of linguistic knowledge to them in order 

to adjust the given parameters. The algorithm 1 shows the 

four basic phases of the typical ACS. As shown in figure 1, 
the stochastic greedy rule, which differs from other state 

transition rules is providing some kind of balance between 

exploration of new solutions and exploitation of a priori 

information about the problem. ACS algorithm applied this 

rule iteratively by each ant in the Construction Solution step 

to build a feasible solution. The amount of pheromone in the 

solution is constantly being adjusted. A local search 

technique is then activated to improve the algorithm’s 

searchability. The amount of pheromone is updated when all 

the ants have come up with a viable solution. Finally, the 

method returns the best solution it has identified if it meets 
the stop condition or finds the ideal solution. 

 

 
Fig 1:- The FLC steps 

 

A. FLC Model Components 

In this section, we will go over the FLC design in detail 
as well as how to use this model to control the parameter 

adaptation in the ACS algorithm. The Fuzzy Logic Control is 

generally structured by determining the inputs, outputs, 

database, and fuzzy rule base as shown in fig.2 .Each FLC 

component needs to be characterized and implemented. 

Carefully, in order to get more efficient FLCs of related 

parameters. As known, the main design of each controller is 

the same. It consists of similar parts to any FLC. Even so, each 

FLC has some variations in the way of adaptation and its main 

components. The designs of these parts differ from one FLC 

to the other, following the strategy of every controller.  

 
1) Determine The Membership Functions :  

The definition of membership functions is a particularly 

delicate aspect of the Fuzzy Controller’s design. The number 

of membership functions used in a fuzzy controller is critical, 

as is the cardinality of each variable’s universe of discourse. 

Each element of the discourse universe must belong to at least 

one of these fuzzy sets to be considered, i.e. to fire at least one 

rule. With a large number of membership functions, more 

resolution is gained.[50] 

 
 

which motivates us to define five membership functions 

for each of the proposed FLC’s input and output variables and 

to develop 25 different rules as demonstrated in fig 3. Another 

factor to examine is the normalization of the FC’s 

membership functions. Normalizing any membership 

function by having at least one input with a value of one is 

more of a practical rule than an universal guideline. We’ll 

always assume that we’re dealing with normalized 
membership functions. Furthermore, only a portion of the 

challenge of converting fuzzy logic language concepts to 
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membership functions has been solved. [51]has been shown 

that fuzzy control membership functions are often piece wise 
linear, triangular (three parameters) because they are the most 

efficient from the point of view of sensitivity where piece 

wise linear functions are the least sensitive. In this proposed 

FC we will use only three types of most used types in design 

which are the triangular, S- shaped membership function ( 

which is spline-based curve and is named because of its S-

shape) and the Z-shaped membership function ( it is spline-

based too and named because of its Z-shape). 

 

 
 

 
 

2) Inputs for FLC Model: 

In this FLC model the inputs are:  

 

 The Convergence metric: The Convergence is calculated 

by the current best length divided by best of tours length as 

follows: 

 
 

 The second input variable, diversity, was acquired by 

calculating the Euclidean Distance (ED) between the fitness 
of the ants in the population as shown: 

 

 
 

where đ is the average difference in fitness between the 
best ant and the rest of the population’s ants. dmin and dmax are 

are the distances between the worst ant fitness and the second 

best ant fitness and the best ant fitness, respectively[52] . 

Convergence and diversity are constructed in the fuzzy system 

as three triangular and two zmf membership functions, 

respectively, with a range between 0 to 1. 

 

3) Outputs for FLC Model: For ACS based on experiments, 

the parameters α and β from Eq(1) were  

chosen to be tuned dynamically. The Member functions 

of α and β was designed with a range from 0.5 to 2.00 for α 

and with range from 2.00 to 5.00 for  β As mentioned before, 
the q0 range was chosen between 0.0 to 0.9. For the population 

size (n) the range was from 25-80 and all were structured into 

three triangular and two zmf membership functions. 

 

V. EXPERIMENTS AND DISCUSSION 

 

This section will present the experimental results used to 

assess the efficiency of the proposed algorithm. 

 

A. Expermints setup 

Initially to conduct this experiments we have used 10 
TSP standard benchmark problems, with difference between 

them on the number of cities from TSPLIB [53]. The fuzzy 

controller was built in MATLAB in the first step, and the 

proposed methodology was constructed in Java on an Intel 

Core-i5 2.40GHz and 4GB RAM PC in the second stage.The 

symmetric TSP was used in all experiments. When the 

designed algorithm found the optimal solution or achieved 

1000 iterations, it was terminated. Several text scripts and 

EXCEL sheets are used to correlate the collected results and 

solutions. To carry out a comparative analysis, we as well 

choose from the instances in [10] and [11]. Table 3 described 

the chosen problems. In addition for the ρ parameter which is 
not adapting within the fuzzy system we’ve put the initial 

value of it between 0.01 to 0.9 as [21] was proven. These 

instances may be categorized into three categories based on 

their duration. The first group has a short length, ranging from 

55 to 101 cities. The second category may be classified as 

medium, as it has examples ranging from 105 to 124 cities. 

The last category is the large-scale one, which contains cases 

with a length of 575, 1323 and 1655 cities respectively.  

 

 
Table 3 Tsp Benchmark Instances 
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Thus, the tests were repeated ten times, and the findings 

were gathered for each instance with the best average and 
standard deviation being used for comparison. At first, we 

compared the suggested method to the typical algorithm 

(ACS). The proposed algorithm was then compared to two 

state-of-the-art algorithms: [10]  and [11]. Following that, it 

will be compared to three recent works on the ACO algorithm: 

[20], [19] and [54]. We evaluated the suggested method using 

the following metrics: best solution (Min), worst solution 

(Max), average solution, standard deviation, number of 

iterations, and execution time. 

 

 

 

 

B. Analysis of FACS Performance  

Consequently, from Table 4, it can be observed that the 
quality of the solutions acquired by the suggested algorithm 

was much better than the solutions generated by the 

conventional ACS for all evaluation metrics. It was proven 

that the FACS really boosted the accuracy of the conventional 

ACS. As a consequence, the adaptive ACS (FACS) converged 

to optimal solutions more quickly than the normal ACS, which 

may be advantageous for time-constrained problems. For 

bigger TSP cases, the FACS algorithm identified optimum or 

near- optimal solutions that the normal ACS method did not, 

which will be necessary for problems requiring precise 

answers. Additionally, a local search strategy was added to the 

speed of algorithm convergence, yielding a significant impact. 

 

Table 4  Summary of The Results Obtained by Proposed Algorithm And the Standard ACS 

 

Figures 4, 5, 6 and 7 illustrate the proposed method’s 

performance with four various sizes of TSP instances, 

representing short, medium, and large. However, these 

findings can be applied to other TSP cases. Figures 4 and 5 

represent the outcomes of a single run for the eil101 and pr124 

cases, respectively. The figure illustrates the Min, Max, and 
average solutions acquired during the run, as well as the FACS 

convergence behavior. As seen in Fig.4 and 5, the superior 

performance and resilience of FACS resulted in the optimal 

solution being found for both instances in all 10 iterations. The 

figure illustrates how the trend rapidly decreases toward the 

optimal solution during the initial repetitions. It is noteworthy 

that at the early stage, FACS exhibits a high degree of 

convergence with diverse solutions. FACS strikes an optimal 

balance between diversity and intensity during the search 
process. This stability enables FACS to thoroughly scan the 

search space and converge on areas of a probable optimum. 

Moreover, there was no stagnation in the search. 

 

TSP Algorithm BKS Min Max Ave stddev itration Time(sec) 

Eil76 
ACS 

Proposed 
538 

538 

538 

552 

538 

545 

538 

4.5 

0.0 

507 

1 

0.415 

0.028 

Berlin52 
ACS 

Proposed 
7542 

7542 

7542 

7748 

7542 

7598 

7542 

91.5 

0.0 

121 

1 

0.047 

0.014 

eil101 
ACS 

Proposed 
629 

635 

629 

655 

629 

647 

629 

5.10 

0.0 

703 

3 

0.7333 

0.045 

ch130 
ACS 

Proposed 
6110 

6178 

6110 

6377 

6110 

6267 

6110 

73.1 

0.0 

876 

3 

0.927 

0.1 

lin105 
ACS 

Proposed 
14379 

14379 

14379 

14957 

14379 

14545 

14379 

180 

0.0 

946 

1 

0.605 

0.039 

kroA100 
ACS 

Proposed 
21282 

21281 

21281 

22523 

21281 

21619 

21281 

388 

0.0 

829 

1 

0.759 

0.021 

pr124 
ACS 

Proposed 
59030 

59167 

59030 

60158 

59030 

59676 

59030 

422 

0.0 

346 

1 

0.43 

0.02 

rat575 
ACS 

Proposed 
6773 

9632 

6773 

10100 

6786 

9892 

6778 

144 

3.49 

535 

976 

5.468 

78.01 

rl1323 
ACS 

Proposed 
270199 

314403 

270199 

331710 

270546 

320970 

270287 

5715 

138.81 

920 

180 

16.146 

76.24 

d1655 
ACS 

Proposed 
62128 

69139 

62131 

73593 

62202 

71154 

62324 

1421.9 

71.14 

994 

529 

26.54 

338.041 
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Figure 6 demonstrates the results of rat575. As shown 

the suggested method found the best solution on the fifth of 

ten runs, which equals 6773. As seen, the algorithm achieved 

a solution that was close to optimal in the majority of iterations 

until it hit the optimal solution at iteration 393 and then 

remained constant thereafter. This advantage of FACS may be 

due to the fact that the inclusion of the fuzzy system preserves 

the population variance of the algorithm, investigates new 

regions of the search space, and prevents the algorithm from 

being stuck in local optima. Figure 7 shows the results of a 

single run for the d1655 instance, which has 1655 cities. This 

figure illustrates the algorithm’s convergence characteristics 
after 1000 iterations. Although the search space for that 

instance was wide, the proposed method avoided stagnation  

and early convergence, as seen by the method’s convergence 

behavior until it reached the sub-optimal solution, 26131 at 

iteration 539. This smooth convergence occurred as a result of 

the suggested algorithm’s capacity to strike an optimal balance 

between intensification and diversity.  

 

C. Comparison with other state-of-the-art Algorithms  

The first part of this section will demonstrate the results 

from our FACS algorithm compared with two recent ACS 
algorithms:[10] and [11]. We examined measures such as 

Standard Deviation (SD) and Average Solution throughout 

this comparative phase (Avg ). As a consequence, assuring the 

outcomes’ optimality may be deduced from the tiny SD value, 

which indicates the consistency and efficiency of the 

associated method. In Table IV, column 1 displays the TSP 

alongside the best known solutions (BKS), column 2 displays 

the best solutions through all runs (Min), column 3 displays 

the average solution across all runs, column 4 displays the 

standard deviation, column 5 displays the error rate, which is 

calculated by comparing the percentage deviation of the best 

results to the best known solution(Error), and The following 

formula was used to determine the error:  

 

 
 

Table 5 shows that FACS was able to achieve shorter 

distances in the majority of the cases compared to the boldface 
text. The proposed algorithm produces the best results in terms 

of solution quality, with an error of zero. for eil76, 

berlin52,eil101,ch130, lin105, kroA100, Pr124 and rat575, 

and gives remarkable results for rl1323 and d1655. 

Furthermore the proposed algorithm was exceed 

bouzbita2020 [9] method on all instances. Whereas the 

proposed algorithm and S. Ebadinezhad2020 [8] did not vary 

much on the small instances. However, we can assert that the 

suggested method outperforms Ebadinezhad2020 [8] method 

for medium- and large-scale cities such as pr124, rat575, 

rl1323, and d1655. , In terms of the five assessment criteria 
indicated before,. This is due to a well-developed method for 

changing parameters at run time, which was introduced to the 

conventional algorithm.
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Table 5 comparison of proposed algorithm with a state-of-art algorithms 

 

Figure 8 shows a comparison of the proposed algorithm 
to Ebadinezhad [10] and Bouzbita [11] based on the 

percentage deviations of the average solution to the best 

known solution.  

 

 
Fig  8. Percentage Deviations for the Proposed Algorithm 

and the Other two Algorithms. 
 

Clearly, the suggested method outperforms Bouzbita 

[11] in a significant manner, and gained smaller percentage 

deviations than Ebadinezhad [10] in the large-scale TSP 

instances that are rat575, rl1323 and d1655. According to [55], 
there are numerous researches related to the advancement of 

ACO algorithm.  

 

Table 6 compares the proposed method to three 

previously published publications. This part of the experiment 

involves the execution of eight TSP instances with 100 

simulation runs independently. As seen in the table, the 

suggested method produced the best results in all eight 

examples in terms of Average Solution (Avg), Standard 

Deviation (SD), and with an error of zero in all instances. 

Additionally, the minimal SD value demonstrates the 

algorithm’s consistency and efficiency.  
 

The findings show that the suggested algorithm’s 

architecture, which relies on a fuzzy system and local search 

technique to adjust the algorithm’s most influential parameters 

during run time, enables the algorithm to exit from local -

optima and accelerate convergence.  

 

Additionally, the suggested technique obtained 

suboptimal/optimal solutions in all circumstances, 

distinguishing it from the other methods. 

 

Table 6 a comparison of proposed algorithm with a other algorithms  

Instance BKS 
Proposed S. Ebadinezhad2020 bouzbita2020 

Min Ave SD Error Min Ave SD Error Min Ave SD Error 

Eil76 538 538 538 0.0 0.0 541.6 541.6 0.61 0.85 548 556 - 1.86 

Berlin52 7542 7524 7524 0.0 0.0 7542 7542 0.0 0.0 7544 7589 - 0.03 

eil101 629 629 629 0.0 0.0 629 629 - 0.0 646 663 - 2.70 

ch130 6110 6110 6110 0.0 0.0 6110 6110 0.0 0.0 6246 6348 - 2.23 

lin105 14379 14379 14379 0.0 0.0 14379 14379 0.0 0.0 14383 14525 - 0.02 

kroA100 21282 21282 21282 0.0 0.0 21282 21282 0.0 0.0 21285 21612 - 0.01 

pr124 59030 59030 59030 0.0 0.0 59074 - - 0.074 - - - - 

rat575 6773 6773 6778 3.49 0.0 6773 6804 10.3 0.0 - - - - 

rl1323 270199 270199 270287 138.81 0.0 - 272173 436.2 - - - - - 

d1655 62128 62131 62324 71.14 0.005 - 63432 100.97 - - - - - 

Instance BKS 
Rokbani et al Gülcü  et al Khan et al. 

Proposed 
method(FACS) 

Avg SD Error Avg SD Error Avg SD Error Avg SD Error 

eil51 426 428.9 01.85 0.47 426.35 0.49 0.08 427.01 0.46 0.23 426 0.0 0.0 

berlin52 7542 7542 224.7 0.0 7542 0.0 0.0 7542 0.0 0.0 7542 0.0 0.0 

st70 675 675.18 7.079 0.0 677.85 0.99 0.42 675.77 1.17 0.18 675 0.0 0.0 

eil76 538 547 12.62 1.67 539.85 1.09 0.3 538.17 0.60 0.02 538 0.0 0.0 

rat99 1211 1225 29.24 1.16 1217.10 4.01 0.50 1211.50 0.67 0.041 1211 0.0 0.0 

eil1101 629 646 12.42 2.70 630.55 2.63 0.25 630.59 2.37 0.25 629 0.0 0.0 

kroA100 21282 21346 695.24 0.301 21326.80 3.72 0.21 21282 8.10 0.02 21282 0.0 0.0 

kroA200 29368 29850 606.17 1.64 29644.50 53.43 0.94 29469 20.03 0.146 29368 0.0 0.0 
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Table 7 a comparison of proposed algorithm with a other algorithms 

 

Table 7 shows results of the FACS algorithm by [6]] and 

[56] for the 11 instances from the TSP. The results indicate 

that the proposed method’s results were statistically 

significant for three out of eleven datasets, namely, for the 

large datasets rat575, rl1323, and d1655.  

 

VI. CONCLUSION AND FURTHER WORK 

 

NP-hard optimization problems like TSP have been 

solved using swarm intelligence techniques like ACO. The 

ACO has three primary components that influence its 

execution time and solution quality. The first is the ants' 

solution creation mechanism for selecting (next) nodes. The 

second is pheromone memory, which might be costly to 

maintain. The LS heuristic is the third component, and it is 

used to increase the quality of the ants' solutions. At least one 

of the components described is addressed in a major portion 
of the ACO-related research in the literature[57].Moreover, 

due to the parameter values in standard algorithm are stable, 

ACO’s performance is unsatisfactory, and this leads to 

premature convergence. ACO’s shortcomings inspired us to 

develop a new method for dynamically modifying ACO 

parameters while the algorithm is running. A proposed 

algorithm based on the Fuzzy Ant Colony System is given in 

this respect (FACS). TSPLIB examples ranging from 51 to 

1655 cities were used to test the FACS algorithm in a variety 

of ways. Results reveal that FACS has a faster convergence 

time, avoids the local optimum, and is better suited to solving 

the TSP issue. The suggested algorithm’s experimental results 
were compared to those of other leading algorithms. This 

method outperforms others in terms of small/medium sized 

problems and near optimal solution in terms of large sized 

problems. Moreover it has smaller percentage deviations in 

comparison to Bouzbita[11], Ebadinezhad[10], Rokbani et 

al[20] , Gülcü et al. [19] , Khan et al [54], [6] and [56]. 

algorithms. In ¨ terms of generality, the suggested approach 

may be used for a variety of optimization problems. In the 

future, the suggested approach may be used to create dynamic 

parameter adaption methods for the Ant Colony System 

(ACS) using interval type2 fuzzy systems. Furthermore, 

additional assessment of the proposed fuzzy algorithm’s 

performance may be employed in other applications, such as 

the optimization of other types of controllers or dealing with 

more complicated TSP problems.. Furthermore, additional 

assessment of the proposed fuzzy algorithm’s performance 
may be employed in other applications, such as the 

optimization of other types of controllers or dealing with more 

complicated TSP problems. 
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